UPJV UFR des SCIENCES

Licence STS 3^{ème} Année Informatique Aide à la Détection d'Erreurs

Corrigé de la feuille de TD n°1

LOGIQUE

Donner la table de vérité de $p \to q$ (que l'on peut noter aussi $p \Rightarrow q$). Énoncer la négation de $p \to q$. Donner 2 équivalents tautologiques de $p \to q$.

Table de vérité:

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Négation : $p \land \neg q$

2 équivalents tautologiques : $\neg p \lor q, \neg q \longrightarrow \neg p$

- 2) Montrer (lois de de Morgan):
 - a) $(\neg(p \land q)) \equiv ((\neg p) \lor (\neg q))$
 - b) $(\neg (p \lor q)) \equiv ((\neg p) \land (\neg q))$
 - a) $(\neg (p \land q)) \equiv ((\neg p) \lor (\neg q))$

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg(p \land q)$	$(\neg p) \lor (\neg q)$	$(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$
V	V	F	F	V	F	F	V
V	F	F	V	F	V	V	V
F	V	V	F	F	V	V	V
F	F	V	V	F	V	V	V

 $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$ est donc bien une tautologie.

b)
$$(\neg(p \lor q)) \equiv ((\neg p) \land (\neg q))$$

Connaissant a), il est possible de démontrer b) sans utiliser de table de vérité.

On remplace p et q respectivement par $\neg p$ et $\neg q$ (cf. exo 4, « règle de substitution ») dans a), on obtient alors :

$$\Big(\neg \big((\neg p) \land (\neg q) \big) \Big) \equiv \Big(\Big(\neg (\neg p) \Big) \lor \Big(\neg (\neg q) \Big) \Big)$$

qui se simplifie (car $(\neg(\neg x)) \equiv x$) en :

$$\Big(\neg \big((\neg p) \land (\neg q)\big)\Big) \equiv (p \lor q)$$

Cette tautologie est tautologiquement équivalente à la tautologie suivante (car $(a \equiv b) \equiv ((\neg a) \equiv (\neg b))$):

$$\left(\neg\left(\neg((\neg p) \land (\neg q))\right)\right) \equiv \left(\neg(p \lor q)\right)$$

qui se simplifie en $((\neg p) \land (\neg q)) \equiv (\neg (p \lor q))$, qui est bien b).

3) Montrer: $(p \land (p \rightarrow q)) \models q$.

On peut utiliser une table de vérité :

p	q	$p \longrightarrow q$	$p \land (p \rightarrow q)$	$(p \land (p \rightarrow q)) \rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

 $(p \land (p \rightarrow q)) \rightarrow q$ est donc bien une tautologie.

On peut aussi utiliser la règle de remplacement (cf. exo 4) pour éliminer les → et procéder alors à des simplifications :

$$\left(\left(p \land (p \to q) \right) \to q \right) \equiv \left(\left(p \land (\neg p \lor q) \right) \to q \right) \equiv \left(\left(\underbrace{(p \land \neg p)}_{F} \lor (p \land q) \right) \to q \right) \\
\equiv \left((p \land q) \to q \right) \equiv (\neg (p \land q) \lor q) \equiv_{\text{de Morgan}} \left((\neg p \lor \neg q) \lor q \right) \equiv \left(\neg p \lor \underbrace{(\neg q \lor q)}_{V} \right) \equiv V$$

4) <u>Règle de substitution</u> : « substituer la même formule à toutes les occurrences de la même lettre dans une tautologie donne une tautologie ».

En utilisant cette règle, démontrer la tautologie suivante :

$$((p \to q) \land q) \equiv (q \land (p \to q))$$

Règle de remplacement : « Soit F une formule et A une sous-formule de F. Si $A \equiv B$, alors le remplacement de A par B dans F donne une formule F' tautologiquement équivalente à F ».

En utilisant cette règle, démontrer que les 2 formules suivantes sont tautologiquement équivalentes, en déduire que la seconde formule est une tautologie :

$$((p \to q) \land q) \leftrightarrow (q \land (p \to q))$$
$$((\neg(p \land (\neg q))) \land q) \leftrightarrow (q \land (p \to q))$$

Règle de substitution : on sait que $(p \land q) \equiv (q \land p)$ (commutativité de \equiv). Il suffit donc de substituer $(p \rightarrow q)$ à p et on obtient $((p \rightarrow q) \land q) \equiv (q \land (p \rightarrow q))$ qui est bien la tautologie attendue.

<u>Règle de remplacement</u>: on sait que $p \land (\neg q)$ est la négation de $p \to q$. Donc on a la tautologie suivante : $(\neg(p \land (\neg q))) \equiv (p \to q)$. On peut donc remplacer $(p \to q)$ par $(\neg(p \land (\neg q)))$ dans le membre gauche de la première équivalence et on obtient la seconde équivalence :

$$\left(\left(\neg(p \land (\neg q))\right) \land q\right) \longleftrightarrow \left(q \land (p \to q)\right).$$

Ces deux formules sont donc tautologiquement équivalentes et puisque la première équivalence est une tautologie (cf. exercice sur la règle de substitution), la seconde équivalence est bien une tautologie.

Soit S la suite infinie de nombres s₀, s₁, s₂, ... s_i ... où les indices des éléments de la suite sont les entiers naturels. Caractériser le fait que les éléments de la suite S sont en ordre croissant en utilisant une formule de la logique des prédicats. Si possible, donner deux caractérisations.
Faire de même avec T la suite finie de n + 1 nombres t₀, t₁, t₂, ... t_i ... t_n.

Pour S on obtient:

- a) $\forall i, (i \in \mathbb{N}) \rightarrow (s_i \leq s_{i+1})$ ou
- b) $\forall (i,j), (((i,j) \in \mathbb{N}^2) \land (i < j)) \rightarrow (s_i \le s_j).$

Pour T on obtient:

- a) $\forall i, (i \in \mathbb{N} \cap [0, n[) \rightarrow (t_i \leq t_{i+1}))$ ou
- b) $\forall (i,j), \left(\left((i,j) \in (\mathbb{N} \cap [0,n])^2\right) \land (i < j)\right) \rightarrow \left(t_i \le t_j\right).$