

Part 3 – M.P.S.

Chapter 1 Lean Systems

Characteristics of Lean Systems

- Pull method of materials flow
- Consistent quality
- Small lot sizes
- Uniform workstation loads
- Standardized components and work methods
- Close supplier ties
- Flexible workforce
- Line flows
- Automation
- Preventive maintenance

Receiving post

Kanban card for product 1 Kanban card for product 2

Empty containers

Full containers

Assembly line 1

Assembly line 2

Figure 11.2

02

Full containers

Assembly line 1

Assembly line 2

Receiving post

Kanban card for product 1 Kanban card for product 2

Empty containers

Assembly line 1

Assembly line 2

Assembly line 1

Assembly line 2

Receiving post

Kanban card for product 1 Kanban card for product 2

Empty containers

Assembly line 1

Assembly line 2

Receiving post

Kanban card for product 1 Kanban card for product 2

Assembly line 1

Assembly line 2

- Each container must have a card
 Assembly always withdraws from fabrication (pull system)
- Containers cannot be moved without a kanban
- Containers should contain the same number of parts
- Only good parts are passed along
 Production should not exceed authorization

Number of Containers Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.08$ day c = 22 units

$$k = \frac{d(\overline{w} + \overline{p})(1 + \alpha)}{c}$$

Number of Containers Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.08$ day c = 22 units

$$k = \frac{2000(\ 0.08 + 0.02\)(\ 1 + 0.10)}{22}$$

Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.08$ day c = 22 units

k = 10 containers

Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.06$ day c = 22 units

k = 10 containers

$$k = \frac{d(\overline{w} + \overline{p})(1 + \alpha)}{c}$$

Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.06$ day c = 22 units

k = 10 containers

 $k = \frac{2000(0.06 + 0.02)(1.10)}{22}$

Westerville Auto Parts

d = 2000 units/day $\overline{p} = 0.02$ day $\alpha = 0.10$ $\overline{w} = 0.06$ day c = 22 units

k = 10 containers

k = 8 containers

Westerville Auto Parts

Solver - Number of Containers

Enter data in yellow-shaded areas.

Daily Expected Demand Quantity in Standard Container Container Waiting Time (days) Processing Time (days) Policy Variable

Containers Required

2000 22 0.06 0.02 10%
8

Operational Benefits

- Reduce space requirements
- Reduce inventory investment
- Reduce lead times
- Increase labor productivity
- Increase equipment utilization
- Reduce paperwork and simplify planning systems
- Valid priorities for scheduling
- Workforce participation
- Increase service/product quality

Implementation issues

- Human costs of lean systems
- Cooperation and trust
- Reward systems and labor classifications
- Process considerations
- Inventory and scheduling
- Schedule stability
- Set-ups
- Purchasing and logistics

Problem

A company using a kanban system has an inefficient machine group. For example, the daily demand for part L105A is 3,000 units. The average waiting time for a container of parts is 0.8 day. The processing time for a container of L105A is 0.2 day, and a container holds 270 units. Currently, there are 20 containers for this item.

a. What is the value of the policy variable, a?

b. What is the total planned inventory (work-in-process and finished goods) for item L105A?

c. Suppose that the policy variable, *a*, were 0. How many containers would be needed now? What is the effect of the policy variable in this example?