Inventory Management and more

PART IV

Demand management

- forecasting
- Order processing

Characteristics

- Demand patterns to be identified
- Trend
- Seasonality
- Random variation
- Stable versus dynamic
- Dependent versus independent demand

FORECASTS

Collection and preparation of data

Forecasting techniques

- Qualitative...on judgment
- Extrinsic : external factors
- Intrinsic
- Average demand if quite steady
- Moving averages with little seasonality
- Exponential smoothing : the new data can be given any weight wanted

FORECASTS

- Seasonality
- Index
- Forecasts and annual demand average
- Deseasonalized demand
- Forecast error
- Mean absolute deviation
- Normal distribution
- Production lead time / Demand lead time ratio

Patterns of Demand

Figure 13.1
(a) Horizontal: Data cluster about a horizontal line.

Patterns of Demand

(b) Trend: Data consistently increase or decrease.

Patterns of Demand

(c) Seasonal: Data consistently show peaks and valleys.

FUTURE TIME HORIZON

- Short-range forecast
- This forecast has a time span of up to 1 year but is generally less than 3 months. It is used for planning purchasing, job scheduling, workforce levels, job assignments, and production levels.
- Medium-range forecast
- A medium-range, or intermediate, forecast generally spans from 3 months to 3 years. It is useful in sales planning, production planning and budgeting, cash budgeting, and analysis of various operating plans.
- Long-range forecast
- Generally 3 years or more in time span, long-range forecasts are used in planning for new products, capital expenditures, facility location or expansion, and research and development.

Patterns of Demand

(d) Cyclical: Data reveal gradual increases and decreases over extended periods.

Demand forecast application

Economic forecasts

- Planning indicators that are valuable in helping organizations prepare mediumto long-range forecasts.

Technological forecasts

- Long-term forecasts concerned with the rates of technological progress.

Demand forecasts

- Projections of a company's sales for each time period in the planning horizon.

Connection with techniques

TABLE 13.1 DEMAND FORECAST APPLICATIONS

Application	Time Horizon		
	Short Term (0-3 months)	Medium Term (3 months2 years)	Long Term (more than 2 years)
Forecast quantity	Individual products or services	Total sales Groups or families of products or services	Total sales
Decision area	Inventory management Final assembly scheduling Workforce scheduling Master production scheduling	Staff planning Production planning Master production scheduling Purchasing Distribution	Facility location Capacity planning Process management
Forecasting technique	Time series Causal Judgment	Causal Judgment	Causal Judgment

Jury of executive opinion

- A forecasting technique that uses the opinion of a small group of high-level managers to form a group estimate of demand.

Delphi method

- A forecasting technique using a group process that allows experts to make forecasts.

Sales force composite

- A forecasting technique based on salespersons' estimates of expected sales.

Market survey

- A forecasting method that solicits input from customers or potential customers regarding future purchasing plans.

FORECASTS

- Principles
- Forecasts are usually wrong
- Every forecast should include an estimate of error
- Forecasts are more accurate for families or groups
- Forecasts are more accurate for nearer time periods

Collection and preparation of data

Forecasting techniques

- Qualitative...on judgment
- Extrinsic : external factors
- Intrinsic
- Average demand if quite steady
- Moving averages with little seasonality
- Exponential smoothing : the new data can be given any weight wanted

Sum up

ABOUT FORECASTS TRENDS

ABOUT TIME

WHAT KIND OF MEASURES' APPROACH

Naive approach

Moving averages

- A forecasting method that uses an average of the n most recent periods of data to forecast

MONTH	ACTUAL SHED SALES	
January	10	3-MONTH MOVING AVERAGE
February	12	
March	13	
April	16	$(10+12+13) / 3=11 \frac{2}{3}$
May	19	$(12+13+16) / 3=13 \frac{2}{3}$
June	23	$(13+16+19) / 3=16$
July	26	$(16+19+23) / 3=19 \frac{1}{3}$
August	30	$(19+23+26) / 3=22 \frac{2}{3}$
September	28	$(23+26+30) / 3=26 \frac{1}{3}$
October	18	$(26+30+28) / 3=28$
November	16	$(30+28+18) / 3=25 \frac{1}{3}$
December	14	$(28+18+16) / 3=20 \frac{2}{3}$

$$
\text { Moving average }=\frac{\sum \text { demand in previous } n \text { periods }}{n}
$$

where n is the number of periods in the moving average-for example, 4,5 , or 6 m respectively, for a 4-, 5-, or 6-period moving average.

Time-Series Methods Simple Moving Averages

DETERMINING THE WEIGHTED MOVING AVERAGE

Donna's Garden Supply (see Example 1) wants to forecast storage shed sales by weighting the past 3 months, with more weight given to recent data to make them more significant.

APPROACH Assign more weight to recent data, as follows:

SOLUTION - The results of this weighted-average forecast are as follows:

MONTH	ACTUAL SHED SALES	3-MONTH WEIGHTED MOVING AVERAGE
January	$10-12$	
February	13	$[(3 \times 13)+(2 \times 12)+(10)] / 6=12 \frac{1}{6}$
March	16	$[(3 \times 16)+(2 \times 13)+(12)] / 6=14 \frac{1}{3}$
April	19	$[(3 \times 19)+(2 \times 16)+(13)] / 6=17$
May	23	$[(3 \times 23)+(2 \times 19)+(16)] / 6=20 \frac{1}{2}$
June	26	$[(3 \times 26)+(2 \times 23)+(19)] / 6=23 \frac{5}{6}$
July	30	$[(3 \times 28)+(2 \times 30)+(26)] / 6=28 \frac{1}{3}$
August	18	$[(3 \times 18)+(2 \times 28)+(30)] / 6=23 \frac{1}{3}$
September	16	$[(3 \times 16)+(2 \times 18)+(28)] / 6=18 \frac{2}{3}$
October	14	
November		
December		

WEIGHTED MOVING AVERAGE

Comparison

- Moving-average methods always lag behind when there is a trend present, as shown by the blue line (actual sales) for January through August.

Exponential Smoothing

Exponential smoothing is another weighted-moving-average forecasting method. It involves ver little record keeping of past data and is fairly easy to use. The basic exponential smoothin formula can be shown as follows:

$$
\begin{align*}
\text { New forecast }= & \text { Last period's forecast } \\
& +\alpha \text { (Last period's actual demand }- \text { Last period's forecast })
\end{align*}
$$

where α is a weight, or smoothing constant, chosen by the forecaster, that has a value greate than or equal to 0 and less than or equal to 1 . Equation (4-3) can also be written mathemati cally as:

$$
F_{t}=F_{t-1}+\alpha\left(A_{t-1}-F_{t-1}\right)
$$

where $\quad F_{t}=$ new forecast
$F_{t-1}=$ previous period's forecast
$\alpha=$ smoothing (or weighting) constant $(0 \leq \alpha \leq 1)$
$A_{t-1}=$ previous period's actual demand

Exponential Smoothing

Weighted exponential smoothing

It can be changed to give more weight to recent data (when a is high) or more weight to past data (when a is low).

WEGGHT ASSIGNED TO					
SMOOTHING CONSTANT	$\begin{aligned} & \text { MOST RECERT } \\ & \text { PERIOD (} \mathrm{c}) \end{aligned}$	2ND MOST RECENT PERIOD $\propto(1-\infty)$	$\begin{aligned} & \text { 3RD MOST } \\ & \text { NECENT PERIOD } \\ & (1-\alpha)^{2} \end{aligned}$	$\begin{aligned} & \text { 4TH MOST } \\ & \text { RECENT PERIOD } \\ & \boldsymbol{a (1 - \alpha) ^ { 2 }} \end{aligned}$	$\begin{aligned} & \text { STH MOST } \\ & \text { RECENT PERIOD } \\ & \alpha(1-\alpha)^{4} \end{aligned}$
$\boldsymbol{\alpha}=.1$. 1	. 09	. 081	. 073	. 066
$\alpha=.5$. 5	25	. 125	. 063	. 031

- Better trend identification
- Demand and forecasts are smoothed

To improve our forecast, let us illustrate a more complex exponential smoothing model, one that adjusts for trend. The idea is to compute an exponentially smoothed average of the data and then adjust for positive or negative lag in trend. The new formula is:

$$
\begin{align*}
\text { Forecast including trend }\left(F I T_{t}\right)= & \text { Exponentially smoothed forecast average }\left(F_{t}\right) \\
& + \text { Exponentially smoothed trend }\left(T_{t}\right) \tag{4-8}
\end{align*}
$$

With trend-adjusted exponential smoothing, estimates for both the average and the trend are smoothed. This procedure requires two smoothing constants: α for the average and β for the trend. We then compute the average and trend each period:
$F_{t}=\alpha($ Actual demand last period $)+(1-\alpha)($ Forecast last period + Trend estimate last period $)$
or:

$$
\begin{equation*}
F_{t}=\alpha\left(A_{t-1}\right)+(1-\alpha)\left(F_{t-1}+T_{t-1}\right) \tag{4-9}
\end{equation*}
$$

$T_{t}=\beta($ Forecast this period - Forecast last period $)+(1-\beta)($ Trend estimate last period $)$
or:

$$
\begin{equation*}
T_{t}=\beta\left(F_{t}-F_{t-1}\right)+(1-\beta) T_{t-1} \tag{4-10}
\end{equation*}
$$

where $\quad F_{t}=$ exponentially smoothed forecast average of the data series in period t
$T_{t}=$ exponentially smoothed trend in period t
$A_{t}=$ actual demand in period t
$\alpha=$ smoothing constant for the average $(0 \leq \alpha \leq 1)$
$\beta=$ smoothing constant for the trend $(0 \leq \beta \leq 1)$

MONTH	ACTUAL DEMAND	FORECAST (F) FOR MONTHS 1-5
1	100	$F_{1}=100($ given $)$
2	200	$F_{2}=F_{1}+\alpha\left(A_{1}-F_{1}\right)=100+.4(100-100)=100$
3	300	$F_{3}=F_{2}+\alpha\left(A_{2}-F_{2}\right)=100+.4(200-100)=140$
4	400	$F_{4}=F_{3}+\alpha\left(A_{3}-F_{3}\right)=140+.4(300-140)=204$
5	500	$F_{5}=F_{4}+\alpha\left(A_{4}-F_{4}\right)=204+.4(400-204)=282$

To improve our forecast, let us illustrate a more complex exponential smoothing model, one that adjusts for trend. The idea is to compute an exponentially smoothed average of the data and then adjust for positive or negative lag in trend. The new formula is:

$$
\begin{align*}
\text { Forecast including trend }\left(F I T_{t}\right)= & \text { Exponentially smoothed forecast average }\left(F_{t}\right) \\
& + \text { Exponentially smoothed trend }\left(T_{t}\right) \tag{4-8}
\end{align*}
$$

With trend-adjusted exponential smoothing, estimates for both the average and the trend are smoothed. This procedure requires two smoothing constants: α for the average and β for the trend. We then compute the average and trend each period:
$F_{t}=\alpha($ Actual demand last period $)+(1-\alpha)($ Forecast last period + Trend estimate last period $)$ or:

$$
\begin{equation*}
F_{t}=\alpha\left(A_{t-1}\right)+(1-\alpha)\left(F_{t-1}+T_{t-1}\right) \tag{4-9}
\end{equation*}
$$

$T_{t}=\beta($ Forecast this period - Forecast last period $)+(1-\beta)$ (Trend estimate last period) or:

$$
\begin{equation*}
T_{t}=\beta\left(F_{t}-F_{t-1}\right)+(1-\beta) T_{t-1} \tag{4-10}
\end{equation*}
$$

where $\quad F_{t}=$ exponentially smoothed forecast average of the data series in period t
$T_{t}=$ exponentially smoothed trend in period t
$A_{t}=$ actual demand in period t
$\alpha=$ smoothing constant for the average $(0 \leq \alpha \leq 1)$
$\beta=$ smoothing constant for the trend $(0 \leq \beta \leq 1)$

Time-Series Methods Exponential Smoothing

Exponential Smoothing with Trend Adjustment Example

MONTH (t)
1
2
3
4
5

ACTUAL DEMAND
$\left(A_{t}\right)$
12
17
20
19
24

MONTH (t)	ACTUAL DEMAND $\left(A_{t}\right)$
6	21
7	31
8	28
9	36
10	$?$

$$
\alpha=.2 \quad \beta=.4
$$

Exponential Smoothing with Trend Adjustment Example (1 of 5)

Table 4.2 Forecast with $\alpha=.2$ and $\beta=.4$

MONTH	ACTUAL DEMAND	$\begin{aligned} & \text { SMOOTHED } \\ & \text { FORECAST } \\ & \text { AVERAGE, } F_{t} \end{aligned}$	SMOOTHED TREND, T_{t}	FORECAST INCLUDING TREND, FIT ${ }_{t}$
1	12	11	2	13.00
2	17	12.80	-	
3	20	,	,	
4	19	Step 1: Average for Menth 2		
5	24			
6	21	$F_{2}=\alpha A$	$(1-\alpha)(h$	$\left.-T_{1}\right)$
7	31	$F_{2}=(.2)(12)+(1-.2)(11+2)$		
8	28			
9	36	$=2.4+(.8)(13)=2.4+10.4$		
10	-	$=12.8 \text { units }$		

Exponential Smoothing with Trend Adjustment Example (2 of 5)

Table 4.2 Forecast with $\alpha=.2$ and $\beta=.4$

MONTH	ACTUAL DEMAND	SMOOTHED FORECAST AVERAGE, F_{t}	$\begin{aligned} & \text { SMOOTHED } \\ & \text { TREND, } T_{t} \end{aligned}$	$\begin{gathered} \text { FORECAST } \\ \text { INCLUDING TREND, } \\ \text { FIT } \end{gathered}$
1	12	Step 2: Trend for Month?$\begin{aligned} T_{2} & =\beta\left(F_{2}-F_{1}\right) \downarrow(1-\beta) T_{1} \\ T_{2} & =(.4)(12.8-11)+(1-.4)(2) \\ & =.72+1.2=1.92 \text { units } \end{aligned}$		
2	17			
3	20			
4	19			
5	24			
6	21			
7	31			
8	28			
9	36			
10	-			

Exponential Smoothing with Trend Adjustment Example (3 of 5)

Table 4.2 Forecast with $\alpha=.2$ and $\beta=.4$

MONTH	ACTUAL DEMAND	SMOOTHED FORECAST AVERAGE, F_{t}	SMOOTHED TREND, T_{t}	$\begin{aligned} & \text { FORECAST } \\ & \text { INCLUDING TREND, } \\ & \text { FIT. } \end{aligned}$
1	12	11	2	13.00
2	17	12.80	1.92	14.72
3	20			\uparrow
4	19	Step 3: Calculate FIT for Month 2		
5	24			
6	21	$F / T_{2}=F_{0}+T_{2}$		
7	31	$F I T_{2}=F_{2}+T_{2}$		
8	28	$F I T_{2}=12.8+1.92$		
10	36	$=14.72 \text { units }$		
10	-			

Exponential Smoothing with Trend Adjustment Example (4 of 5)

Table 4.2 Forecast with $\alpha=.2$ and $\beta=.4$

MONTH	ACTUAL DEMAND
1	12
2	17
3	20
4	19
5	24
6	21
7	31
8	28
9	36
10	

SMOOTHED FORECAST AVERAGE, F_{t}

11
12.80
15.18
17.82
19.91
22.51
24.11
27.14
29.28
32.48

SMOOTHED TREND, T_{t}

FORECAST INCLUDING TREND, FIT ${ }_{t}$

2	13.00
1.92	14.72
2.10	17.28
2.32	20.14
2.23	22.14
2.38	24.89
2.07	26.18
2.45	29.59
2.32	31.60
2.68	35.16

Seasonal indices

1. Find the average historical demand each season (or month in this case) by summing the demand for that month in each year and dividing by the number of years of data available. For example, if, in January, we have seen sales of 8, 6, and 10 over the past 3 years, average January demand equals $(8+6+10) / 3=8$ units.
2. Compute the average demand over all months by dividing the total average annual demand by the number of seasons. For example, if the total average demand for a year is 120 units and there are 12 seasons (each month), the average monthly demand is $120 / 12=10$ units.
3. Compute a seasonal index for each season by dividing that month's historical average demand (from Step 1) by the average demand over all months (from Step 2). For example, if the average historical January demand over the past 3 years is 8 units and the average demand over all months is 10 units, the seasonal index for January is $8 / 10=.80$. Likewise, a seasonal index of 1.20 for February would mean that February's demand is 20% larger than the average demand over all months.
4. Estimate next year's total annual demand.
5. Divide this estimate of total annual demand by the number of seasons, then multiply it by the seasonal index for each month. This provides the seasonal forecast.

Time-Series Methods Seasonal Influences

Quarter	Year 1	Year 2	Year 3	Year 4
1	45	70	100	100
2	335	370	585	725
3	520	590	830	1160
4	100	170	285	215
	Total	1000	1200	1800

Seasonal variations
Regular upward or downward movements in a time series that tie to recurring events.

Time-Series Methods Seasonal Influences

Time-Series Methods Seasonal Influences

Seasonal Patterns

Seasonal Patterns

Seasonal Index Example (1 of 6)

DEMAND						
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90		
Feb	70	85	85	80		
Mar	80	93	82	85		
Apr	90	95	115	100		
May	113	125	131	123		
June	110	115	120	115		
July	100	102	113	105		
Aug	88	102	110	100		
Sept	85	90	95	90		
Oct	77	78	85	80		
Nov	75	82	83	80		
Dec	82	78	80	80		
Total average annual demand $=1,128$						

Seasonal Index Example (2 of 6)

Seasonal Index Example (3 of 6)

Seasonal Index Example (4 of 6)

DEMAND				AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	$\begin{aligned} & \text { SEASONAL } \\ & \text { INDEX } \end{aligned}$
MONTH	YEAR 1	YEAR 2	YEAR 3			
Jan	80	85	105	90	94	. 957 (= 90/94)
Feb	70	85	85	80	94	. 851 (= 80/94)
Mar	80	93	82	85	94	. 904 (= 85/94)
Apr	90	95	115	100	94	1.064 (= 100/94)
May	113	125	131	123	94	1.309 (= 123/94)
June	110	115	120	115	94	1.223 (= 115/94)
July	100	102	113	105	94	1.117 (= 105/94)
Aug	88	102	110	100	94	1.064 (= 100/94)
Sept	85	90	95	90	94	. 957 (= 90/94)
Oct	77	78	85	80	94	. 851 (= 80/94)
Nov	75	82	83	80	94	. 851 (= 80/94)
Dec	82	78	80	80	94	. 851 (= 80/94)
Total average annual demand $=1,128$						

Seasonal Index Example (5 of 6)

Seasonal forecast for Year 4

MONTH	DEMAND	MONTH	DEMAND
Jan	$\frac{1,200}{12} \times .957=96$	July	$\frac{1,200}{12} \times 1.117=112$
Feb	$\frac{1,200}{12} \times .851=85$	Aug	$\frac{1,200}{12} \times 1.064=106$
Mar	$\frac{1,200}{12} \times .904=90$	Sept	$\frac{1,200}{12} \times .957=96$
Apr	$\frac{1,200}{12} \times 1.064=106$	Oct	$\frac{1,200}{12} \times .851=85$
May	$\frac{1,200}{12} \times 1.309=131$	Nov	$\frac{1,200}{12} \times .851=85$
June	$\frac{1,200}{12} \times 1.223=122$	Dec	$\frac{1,200}{12} \times .851=85$

USING REGRESSION ANALYSIS FOR FORECASTING

- We can use the same mathematical model that we employed in the least-squares method of trend projection to perform a linear-regression analysis.
- The dependent variables that we want to forecast will still be $n y$. But now the independent variable, x, need no longer be time.
- We use the equation: $n y=a+b x$ where $\mathrm{n} y=$ value of the dependent variable (in our example, sales) $a=y$ axis intercept $\quad b=$ slope of the regression line $\quad x=$ independent variable

We now deal with the same mathematical model that we saw earlier, the least-squares method. But we use any potential "cause-and-effect"

$$
\begin{aligned}
& \text { And } \mathrm{a} \text { is }=(\text { average } \mathrm{y})-\mathrm{b} \text { (average } \mathrm{x} \text {) } \\
& \qquad \hat{y}=a+b x \\
& b=\frac{\sum x y-n x y}{\sum x^{2}-n \bar{x}^{2}}
\end{aligned}
$$

Least Squares Example

YEAR	ELECTRICAL POWER DEMAND	YEAR	ELECTRICAL POWER DEMAND
1	74	5	105
2	79	6	142
3	80	7	122
4	90		

Least Squares Example

YEAR (x)	ELECTRICAL POWER DEMAND (y)	x^{2}	$x y$
1	74	1	74
2	79	4	158
3	80	9	240
4	90	16	360
5	105	25	525
6	142	36	852
7	122	49	854
$\Sigma x=28$	$\Sigma y=692$	$\Sigma x^{2}=140$	$\Sigma x y=3,063$

$$
\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{28}{7}=4 \quad \overline{\mathrm{y}}=\frac{\sum \mathrm{y}}{\mathrm{n}}=\frac{692}{7}=98.86
$$

Least Squares Example

$$
\begin{aligned}
& b=\frac{\sum x y-n \overline{x y}}{\sum x^{2}-n \bar{x}^{2}}=\frac{3,063-(7)(4)(98.86)}{140-(7)\left(4^{2}\right)}=\frac{295}{28}=10.54 \\
& a=\bar{y}-b \bar{x}=98.86-10.54(4)=56.70
\end{aligned}
$$

Thus, $\hat{y}=56.70+10.54 x$

Demand in year $8=56.70+10.54(8)$

$$
=141.02, \text { or } 141 \text { megawatts }
$$

Figure 4.5

Least Squares Example

Least Squares Requirements

- We always plot the data to insure a linear relationship
- We do not predict time periods far beyond the database
- Deviations around the least squares line are assumed to be random

Forecast errors

$$
\begin{aligned}
\text { Tracking signal } & =\frac{\text { Cumulative error }}{\text { MAD }} \\
& =\frac{\sum(\text { Actual demand in period } i-\text { Forecast demand in period } i)}{\text { MAD }} \\
\text { where } \quad \text { MAD } & =\frac{\sum \mid \text { Actual-Forecast } \mid}{n}
\end{aligned}
$$

Monitoring and controling forecast

- Using a tracking signal is a good way to make sure the forecasting system is continuing to do a good job
- even negative or positive

Choosing a Method Forecast Error

Measures of Forecast Error

$$
E_{t} \equiv D_{t}-F_{t}
$$

$\mathrm{CFE}=\Sigma E_{t}$
MSE $\equiv \frac{\sum E_{t}^{2}}{n}$
$\sigma \equiv \sqrt{\left.\frac{\sum\left(E_{t}-\bar{E}\right.}{n-1}\right)^{2}}$
MAD $\equiv \frac{\sum\left|E_{t}\right|}{n}$
MAPE $\equiv \frac{\sum\left[\left|E_{t}\right|(100)\right] / D_{t}}{n}$

$$
\begin{aligned}
\text { Forecast error } & =\text { Actual demand }- \text { Forecast value } \\
& =A_{t}-F_{t}
\end{aligned}
$$

Several measures are used in practice to calculate the overall forecast error. These measures can be used to compare different forecasting models, as well as to monitor forecasts to ensure they are performing well. Three of the most popular measures are mean absolute deviation (MAD), mean squared error (MSE), and mean absolute percent error (MAPE). We now describe and give an example of each.
Mean Absolute Deviation The first measure of the overall forecast error for a model is the mean absolute deviation (MAD). This value is computed by taking the sum of the absolute values of the individual forecast errors (deviations) and dividing by the number of periods of data (n):

$$
\begin{equation*}
\text { MAD }=\frac{\Sigma \mid \text { Actual }- \text { Forecast } \mid}{n} \tag{4-5}
\end{equation*}
$$

FORECAST ERRORS MAD

MAPE

DETERMINING THE MEAN ABSOLUTE PERCENT ERROR (MAPE)

The Port of Baltimore wants to now calculate the MAPE when $\alpha=.10$.
APPROACH Equation (4-7) is applied to the forecast data computed in Example 4.
SOLUTION

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST FOR $\omega=.10$	ABSOLUTE PERCENT ERROR 100 (ERROF(ACTUAL)
1	180	175.00	100(5/180) - 2.78\%
2	168	175.50	$100(7.5 / 168)=4.46 \%$
3	159	174.75	100(15.75/159)-9.90\%
4	175	173.18	$100(1.82 / 175)=1.05 \%$
5	190	173.36	$100(16.64 / 190)=8.76 \%$
6	205	175.02	$100(29.98 / 205)=14.62 \%$
7	180	178.02	$100(1.98 / 180)=1.10 \%$
8	182	178.22	100(3.78/182) - 2.08\%
			Sum of \% errors $=44.75 \%$

$$
\text { MAPE }=\frac{\sum \text { absolute percent error }}{n}=\frac{44.75 \%}{8}=5.59 \%
$$

INSIGHT MAPE expresses the error as a percent of the actual values, undistorted by a single large value.

Monitoring and Controlling Forecasts

- Tracking Signal
- Measures how well the forecast is predicting actual values
- Ratio of cumulative forecast errors to mean absolute deviation (MAD)
- Good tracking signal has low values
- If forecasts are continually high or low, the forecast has a bias error

Monitoring and Controlling Forecasts (2 of 2)

Cumulative error MAD

$=\frac{\sum(\text { Actual demand in period } i-\text { Forecast demad in period i) }}{\frac{\sum \mid \text { Actual }- \text { Forecast } \mid}{n}}$

Choosing a Method

 Tracking SignalsTracking signal $=\frac{\text { CFE }}{\text { MAD }}$

Standard Error of the Estimate

The forecast of $\$ 3,250,000$ for Nodel's sales in Example 12 is called a point estimate of y. The point estimate is really the mean, or expected value, of a distribution of possible values of sales. Figure 4.9 illustrates this concept.

To measure the accuracy of the regression estimates, we must compute the standard error of the estimate, $S_{y, x}$. This computation is called the standard deviation of the regression: It measures the error from the dependent variable, y, to the regression line, rather than to the mean. Equation (4-14) is a similar expression to that found in most statistics books for computing the standard deviation of an arithmetic mean:

$$
\begin{equation*}
S_{y, x}=\sqrt{\frac{\sum\left(y-y_{c}\right)^{2}}{n-2}} \tag{4-14}
\end{equation*}
$$

where $\quad y=y$-value of each data point
$y_{c}=$ computed value of the dependent variable, from the regression equation $n=$ number of data points

Standard Error of the estimate

Forecasting in the service sector

Forecasting at McDonald's, FedEx, and Walmart is as important and complex as it is for manufacturers such as Toyota and Dell. shops, may have other unusual demand patterns, and those patterns will differ depending on the holiday

Fast-food restaurants are well aware not only of weekly, daily, and hourly but even 15minute variations in demands that influence sales. Therefore, detailed forecasts of demand are needed

- Taco Bell now use point-of-sale computers that track sales every quarter hour. Taco Bell found that a 6 -week moving average was the forecasting technique that minimized its mean squared error (MSE) of these quarter-hour forecasts.

Services again

- Projections of customer transactions. These in turn are used by store managers to schedule staff, who begin in 15-minute increments, not 1-hour blocks as in other industries. The forecasting model has been so successful that Taco Bell has increased customer service while documenting more than $\$ 50$ million in labor cost savings in 4 years of use.

(a)
(b)

Application

COMPUTING THE TRACKING SIGNAL AT CARLSON'S BAKERY

Carlson's Bakery wants to evaluate performance of its croissant forecast.
APPROACH Develop a tracking signal for the forecast, and see if it stays within acceptable limits, which we define as ± 4 MADs.
SOLUTION - Using the forecast and demand data for the past 6 quarters for croissant sales, we develop a tracking signal in the following table:

QUARTER	ACTUAL DEMAND	FORECAST DEMAND	ERROR	CUMULATIVE ERROR	ABSOLUTE FORECAST ERROR	CUMULATIVE ABSOLUTE FORECAST ERROR	MAD	TRACKING SICNAL (CUMULATIVE ERROR/MAD)
1	90	100	-10	-10	10	10	10.0	$-10 / 10=-1$
2	95	100	-5	-15	5	15	7.5	$-15 / 7.5=-2$
3	115	100	+15	0	15	30	10.0	$0 / 10=0$
4	100	110	-10	-10	10	40	10.0	$-10 / 10=-1$
5	125	110	+15	+5	15	55	11.0	$+5 / 11=+0.5$
6	140	110	+30	+35	30	85	14.2	$+35 / 14.2=+2.5$

$$
\begin{aligned}
& \text { At the end of quarter } 6, \mathrm{MAD}=\frac{\sum \mid \text { Forecast errors } \mid}{n}=\frac{85}{6}=14.2 \\
& \text { and Tracking signal }=\frac{\text { Cumulative error }}{\text { MAD }}=\frac{35}{14.2}=2.5 \mathrm{MADs}
\end{aligned}
$$

The following data come from regression line projections:

Exercice

PERIOD	FORECAST VALUES	ACTUAL VALUES
1	410	406
2	419	423
3	428	423
4	435	440

Compute the MAD and MSE.

Another

Room registrations in the Toronto Towers Plaza Hotel have been recorded for the past 9 years. To project future occupancy, management would like to determine the mathematical trend of guest registration. This estimate will help the hotel determine whether future expansion will be needed. Given the following time-series data, develop a regression equation relating registrations to time (e.g., a trend equation). Then forecast year 11 registrations. Room registrations are in the thousands:

Year 1: 17	Year 2: 16	Year 3: 16	Year 4: 21	Year 5: 20
Year 6: 20	Year 7:23	Year 8: 25	Year 9: 24	

Seasonal

Quarterly demand for Ford F150 pickups at a New York auto dealer is forecast with the equation:

$$
\begin{gathered}
\hat{y}=10+3 x \\
\text { where } x=\text { quarters, and: } \\
\text { Quarter I of year } 1=0 \\
\text { Quarter II of year } 1=1 \\
\text { Quarter III of year } 1=2 \\
\text { Quarter IV of year } 1=3 \\
\text { Quarter I of year } 2=4 \\
\text { and: }
\end{gathered}
$$

$$
\hat{y}=\text { quarterly demand }
$$

The demand for trucks is seasonal, and the indices for Quarters I, II, III, and IV are $0.80,1.00,1.30$, and 0.90 , respectively. Forecast demand for each quarter of year 3 . Then, seasonalize each forecast to adjust for quarterly variations.

Inventory Management

Inventory management why?

- When Jeff Bezos opened his revolutionary business in 1995, Amazon.com was intended to be a "virtual" retailer-no inventory, no warehouses, no overheadjust a bunch of computers taking orders for books and authorizing others to fill them.
- Now, Amazon stocks millions of items of inventory, amid hundreds of thousands of bins on shelves in over 150 warehouses around the world.

Why inventory?

1. To provide a selection of goods for anticipated customer demand and to separate the firm from fluctuations in that demand. Such inventories are typical in retail establishments.
2. To decouple various parts of the production process. For example, if a firm's supplies fluctuate, extra inventory may be necessary to decouple the production process from suppliers.
3. To take advantage of quantity discounts, because purchases in larger quantities may reduce the cost of goods or their delivery.
4. To hedge against inflation and upward price changes

Types of inventory

- Raw material inventory Materials that are usually purchased but have yet to enter the manufacturing process.
- Work-in-process (WIP) inventory Products or components that are no longer raw materials but have yet to become finished products.
- Maintenance/repair/operatin g (MRO) inventory
Maintenance, repair, and operating materials.

Inventory Costs

- Interest or

Opportunity Cost

- Storage and Handling Costs
- Taxes, Insurance, and Shrinkage

Inventory Costs

- Customer Service
- Ordering Cost
- Setup Cost
- Labor and Equipment Utilization
- Transportation Costs

- Payments to Suppliers

Types of Inventory

Cycle Inventory
Average cycle inventory $=\frac{Q+0}{2}$
Safety Stock Inventory
Anticipation Inventory
Pipeline Inventory
Pipeline inventory $\equiv \mathrm{D}_{\mathrm{L}}^{-} \equiv \mathrm{dL}$

Types of Inventory

$$
\begin{aligned}
\text { Cycle inventory } & \equiv \mathrm{Q} / 2 \\
& =280 / 2 \\
& =140 \text { drills }
\end{aligned}
$$

Pipeline inventory $\equiv \bar{D}_{\mathrm{L}}=\mathrm{dL}$
$=(70$ drills $/$ week $)(3$ weeks $)$
$=210$ drills

Example 15.1

ABC Analysis

How

 Much? When!
Record accuracy

And Cycle counting

- A continuing reconciliation of inventory with inventory records

In this hospital, thess vertically rotating storage carousels provida rapid access to hundreds of cribcal iterns and at the same tim save floar space. This Omnicel inventory management carousel is also secure and has the added adrantage of printing bar code labels.

Cycle counting example (pipeline)

- CYCLE COUNTING AT COLE’S TRUCKS, INC. Cole's Trucks, Inc., a builder of high-quality refuse trucks, has about 5,000 items in its inventory. It wants to determine how many items to cycle count each day.
- APPROACH After hiring Matt Clark, a bright young OM student, for the summer, the firm determined that it has
- 500 A items, $1,750 \mathrm{~B}$ items, and 2,750 C items.
- Company policy is to count all A items every month (every 20 working days), all B items every quarter (every 60 working days), and all C items every 6 months (every 120 working days). The firm then allocates some items to be counted each day.

Economic Order Quantity

Assumptions

1. Demand rate is constant
2. No constraints on lot size
3. Only relevant costs are holding and ordering/setup
4. Decisions for items are independent from other items
5. No uncertainty in lead time or supply

Economic Order Quantity

Economic Order Quantity

Figure 15.4
Lot Size (Q)

EXAMPLE

Total cost is Holding cost + ordering cost

- Costing Out a Lot-Sizing Policy
- A museum of natural history opened a gift shop two years ago. Managing inventories has become a problem. Low inventory turnover is squeezing profit margins and causing cash-flow problems.
- One of the top-selling items in the container group at the museum's gift shop is a bird feeder. Sales are 18 units per week, and the supplier charges $\$ 60$ per unit. The cost of placing an order with the supplier is $\$ 45$. Annual holding cost is 25 percent of a feeder's value, and the museum operates 52 weeks per year. Management chose a 390-unit lot size so that new orders could be placed less frequently. What is the annual cost of the current policy of using a 390-unit lot size? Would a lot size of 468 be better?

Economic Order Quantity

Economic Order Quantity

Example 15.2

Bird feeder costs
$D=(18 /$ week $)(52$ weeks $)=936$ units Holding cost $\equiv \frac{Q}{2}(H)$ $H=0.25$ (\$60/unit) $=\$ 15$
$S=\$ 45 \quad Q=390$ units

$$
\begin{gathered}
C=\frac{Q}{2}(H)+\frac{D}{Q}(S) \\
C=\$ 2925+\$ 108=\$ 3033
\end{gathered}
$$

Economic Order Quantity

Economic Order Quantity

Bird feeder costs
$D=(18 /$ week $)(52$ weeks $)=936$ units $H=0.25$ (\$60/unit) $=\$ 15$
$S=\$ 45 \quad Q=390$ units

$$
C=\frac{Q}{2}(H)+\frac{D}{Q}(S)
$$

$$
C=\$ 2925+\$ 108=\$ 3033
$$

Economic Order Quantity

Parameters

Current Lot Size (Q)	390
Demand (D)	936

Order Cost (S)
Unit Holding Cost (H)
Annual Costs
Orders per Year
Annual Ordering Cost Annual Holding Cost Annual Inventory Cost $\$ 3,033.00$

Economic Order Quantity
75

Figure 15.6

Economic Order Quantity

Time between orders $\mathrm{TBO}_{\text {EOQ }}=\frac{E O Q}{D}=75 / 936=0.080$ year
$\mathrm{TBO}_{\text {EOQ }}=(75 / 936)(12)=0.96$ months
$\mathrm{TBO}_{\text {EOQ }}=(75 / 936)(52)=4.17$ weeks
$\mathrm{TBO}_{\text {EOQ }}=(75 / 936)(365)=29.25$ days

Example 15.3

How

 Much? When!
Continuous Review

Figure 15.7

EXAMPLE

Determining Whether to Place an Order

Demand for chicken soup at a supermarket is always 25 cases a day and the lead time is always four days. The shelves were just restocked with chicken soup, leaving an onhand inventory of only 10 cases. There are no backorders, but there is one open order for 200 cases. What is the inventory position? Should a new order be placed?

Continuous Review

Special Inventory Models
 Quantity Discounts

Special Inventory Models

 Quantity Discounts

(a) Total cost curves with purchased materials added

Special Inventory Models

 Quantity Discounts
(a) Total cost curves with purchased materials added

Special Inventory Models

 Quantity Discounts

(a) Total cost curves with purchased materials added

Special Inventory Models

 Quantity Discounts

(a) Total cost curves with purchased materials added

Special Inventory Models

Quantity Discounts

(a) Total cost curves with purchased materials added

Special Inventory Models

Quantity Discounts

Figure E. 3

Special Inventory Models

 Quantity Discounts
(a) Total cost curves with purchased materials added

Figure E. 3

(b) EOQs and price break quantities

Special Inventory Models

 Quantity Discounts

Figure E. 3

To Accompany Krajewski \& Ritzman Opera(B) EQQSa, and price break quantities
Strategy and Analysis, Seventh Edition © (b)

Special Inventory Models

 Quantity Discounts

Figure E. 3

(b) EOQs and price break quantities

Special Inventory Models
 Quantity Discounts

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $=936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price
$\mathrm{EOQ}_{57.00} \equiv \sqrt{\frac{2 D S}{H}}$

Special Inventory Models Quantity Discounts

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $=936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price
$E O Q_{57.00} \equiv \sqrt{\frac{2(936)(45)}{0.25(57.00)}}$

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $=936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price
$E O Q_{57.00} \equiv 77$ units

Special Inventory Models Quantity Discounts

Annual demand $\equiv 936$ units
Ordering cost $=\$ 45$ Holding cost $=25 \%$ of unit price

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $=936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand =936 units
Ordering cost $\equiv \$ 45$
Holding cost $=25 \%$ of unit price

$E O Q=7$ units $E O Q_{58.80} \equiv 76$ units

Special Inventory Models Quantity Discounts

Annual demand $=936$ units
Ordering cost $=\$ 45$ Holding cost $=25 \%$ of unit price

$E O Q_{58.80} \equiv 76$ units

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00}=75$ units

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $=936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price
$\mathrm{EOQ}_{60.00} \equiv 75$ units

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00}=75$ units

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00}=75$ units

$$
C \equiv \frac{Q}{2}(H)+\frac{D}{Q}(S)+P D
$$

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$$
C_{75}=\frac{75}{2}[(0.25)(\$ 60.00)]+\frac{936}{75}(\$ 45)+\$ 60.00(936)
$$

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00}=75$ units

$$
C_{75} \equiv \$ 57,284
$$

Special Inventory Models Quantity Discounts

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00} \equiv 75$ units
$C_{75} \equiv \$ 57,284$
$C_{300} \equiv \$ 57,382$

Example E. 2

Special Inventory Models Quantity Discounts

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

$E O Q_{60.00} \equiv 75$ units

$$
\begin{aligned}
& C_{75} \equiv \$ 57,284 \\
& C_{300} \equiv \$ 57,382 \\
& C_{300}=\$ 56,999
\end{aligned}
$$

Special Inventory Models Quantity Discounts

Order Quantity	Price per Unit
$0-299$	$\$ 60.00$
$300-499$	$\$ 58.80$
500 or more	$\$ 57.00$

Annual demand $\equiv 936$ units
Ordering cost =\$45
Holding cost $=25 \%$ of unit price

EOQ $\quad 1$ units

$E O Q_{60.00}=75$ units
$C_{75} \equiv \$ 57,284$
$C_{300} \equiv \$ 57,382$
$C_{500} \equiv \$ 56,999$

Discount

Whole Nature Foods sells a gluten-free product for which the annual demand is 5,000 boxes. At the moment, it is paying $\$ 6.40$ for each box; carrying cost is 25% of the unit cost; ordering costs are $\$ 25$. A new supplier has offered to sell the same item for $\$ 6.00$ if Whole Nature Foods buys at least 3,000 boxes per order. Should the firm stick with the old supplier, or take advantage of the new quantity discount?

Special Inventory Models

One-Period Decisions

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $\equiv \$ 10$
Loss per ornament after season $=\$ 5$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $\equiv \$ 10$
Loss per ornament after season $=\$ 5$

	D				
Q	10	20	30	40	50
10					
20					
30					
40					
50					

> For $Q \equiv D$
> Payoff $\equiv p Q$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $\equiv \$ 10$ Loss per ornament after season $=\$ 5$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $\equiv \$ 10$
Loss per ornament after season $=\$ 5$

	D					
Q	10	20	30	40	50	
10	$\$ 100$					
20						For $Q=D$
30						Payoff $=\$ 100$
40						
50						

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D				
	10	20	30	40	50
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$

20
30
40
50

For $Q \leq D$
Payoff $\equiv p Q$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D					
	10	20	30	40	50	
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	
20		200	200	200	200	
30			300	300	300	For $Q \leq D$
40				400	400	Payoff $\equiv p Q$
50					500	

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D					
Q	10	20	30	40	50	
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	
20		200	200	200	200	
30			300	300	300	For $Q>D$
40				400	400	Payoff $=p D-I(Q-D)$
50				500		

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D				
Q	10	20	30	40	50
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$
20		200	200	200	200
30			300	300	300
40				400	400
50					500

Special Inventory Models One-Period Decisions

Demand	10	20	30	10	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $\equiv \$ 10$
Loss per ornament after season $=\$ 5$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D					
Q	10	20	30	40	50	
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	
20		200	200	200	200	For $Q>D$
30			300	300	300	Payoff $=\$ 250$
40				400	400	
50					500	

Example E. 3

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Profit per ornament during season $=\$ 10$
Loss per ornament after season $=\$ 5$

	D					
Q	10	20	30	40	50	
10	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	
20	50	200	200	200	200	
30	0	150	300	300	300	For $Q>D$
40	-50	100	250	400	400	Payoff $=p D-I(Q-D)$
50	-100	50	200	350	500	

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Expected payoff ${ }_{30}=$					
			D		
Q	10	20	30	40	50
10	\$100	\$100	\$100	\$100	\$100
20	50	200	200	200	200
30	0	150	300	300	300
40	-50	100	250	400	400
50	-100	50	200	350	500

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Expected payoff ${ }_{30}=0.2(\$ 0)$					
Q			D		
	10	20	30	40	50
10	\$100	\$100	\$ 70	\$100	\$100
20	50	200	200	200	200
30		150	300	300	300
40	-50	100	250	400	400
50	-100	50	200	350	500

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Expected payoff ${ }_{30}=0.2(\$ 0)+0.3(\$ 150)$					
			D		
Q	10	20	30	40	50
10	\$100	\$100	\$100	\$100	\$100
20	50	200	200	200	200
30	0	150	300	300	300
40	-50	100	250	400	400
50	-100	50	200	350	500

Special Inventory Models One-Period Decisions

Example E. 3

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.0	0.1	0.1

Expected payoff $_{30}=$			$\begin{aligned} & 0.2(\cdot .0)+0.3(\$ 150)+0.3(\$ 300) \\ & +0.1(\$ 300) \end{aligned}$			
			D			
Q	10	20	30	0	50	
10	\$100	\$100	\$100	\$1 0	\$100	
20	50	200	200	20	200	
30	0	150	300	300	300	
40	-50	100	250	400	400	
50	-100	50	200	350	500	

Special Inventory Models One-Period Decisions

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Expected payoff 30 (${ }^{\text {d }}$ (95					
			D		
Q	10	20	30	40	50
10	\$100	\$100	\$100	\$100	\$100
20	50	200	200	200	200
30	0	150	300	300	300
40	-50	100	250	400	400
50	-100	50	200	350	500

Special Inventory Models One-Period Decisions

Demand	10	20	30	40	50
Demand Probability	0.2	0.3	0.3	0.1	0.1

Expected payoff ${ }_{30}=\$ 195$						
Q	D					
	10	20	30	40	50	Expecied Payoff
10	\$100	\$100	\$100	\$100	\$100	-
20	50	200	200	200	200	
30	0	150	300	300	300	195
40	-50	100	250	400	400	
50	-100	50	200	350	500	

Example E. 3

Uncertain Demand

Figure 15.8

Reorder Point / Safety Stock

Figure 15.9

EXAMPLE

Records show that the demand for dishwasher detergent during the lead time is normally distributed, with an average of 250 boxes and variance $l=22$.
What safety stock should be carried for a 99 percent cycle-service level? What is R?

Reorder Point / Safety Stock

Safety Stock/R
Safety stock $=z \sigma_{L}$

$$
\begin{aligned}
& =2.33(22)=51.3 \\
& =51 \text { boxes }
\end{aligned}
$$

Cycle-service level $=85 \%$

Reorder point $=$ ADDLT + SS
$=250+51$
$=301$ boxes
Average
demand
during
lead time
Probability of stockout $(1.0-0.85=0.15)$

Example 15.5

Lead Time Distributions

Demand for week 1

Demand for week 2

Demand for week 3

Figure 15.10

Example Finding the safety stock and R When the Demand Distribution for Lead Time must Be Developped

- Let us return to the bird feeder example. Suppose that the average demand is 18 units per week \}
- with a standard deviation of 5 units. The lead time is constant at two weeks. Determine the safety stock and reorder point if management wants a 90 percent cycle-service level. What is the j total cost of the Q system?

Lead Time Distributions

Bird feeder Lead Time Distribution

Demand for week

$$
\begin{gathered}
t=1 \text { week } \quad d=18 \quad L=2 \\
\sigma_{L}=\sigma_{t} \sqrt{L}=5 \sqrt{2}=7.1
\end{gathered}
$$

Safety stock $=z \sigma_{L}=1.28(7.1)=9.1$ or 9 units
Dem
Reorder point $=d L+$ Safety stock

$$
=2(18)+9=45 \text { units }
$$

Example 15.6

Demand for week 3

	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
. 4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 1	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
8	. 7881	. 7910	. 7939	. 1967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	.8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 91115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.1	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
21	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
22	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.1	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
29	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
31	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
33	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Lead Time Distributions

Demand for week

Bird feeder Lead Time Distribution

$$
t=1 \text { week } \quad d=18 \quad L=2
$$

Reorder point $=2(18)+9=45$ units

$$
C=\frac{75}{2}(\$ 15)+\frac{936}{75}(\$ 45)+9(\$ 15)
$$

$$
C=\$ 562.50+\$ 561.60+\$ 135=\$ 1259.10
$$

Example 15.6

Demand for week 3

Lead Time Distributions

TABLE 15.1	PROBABILITY DISTRIBUTION FOR LEAD TIME
Lead Time (weeks)	Probability for Lead Time
1	0.35
2	0.45
3	0.10
4	0.05
5	0.05

TABLE 15.2	PROBABILITY DISTRIBUTION FOR DEMAND
Demand (units per week)	Probability of Demand
10	0.10
13	0.20
18	0.40
23	0.20
26	0.10

图 Microsoft Excel－Fig 15．11 Master＿2
图 File Edit Yiew Insert Format Iools Data Window Help
Type a question for help
\square

Figure 15．11（c）

图Microsoft Excel－Fig 15．11 Master＿2
膡 Eile Edit Yiew Insert Format Iools Data Window Help
Type a question for help

14 1 M Sheet1／Sheet2／Sheet3／
Ready

Figure 15．11（d）

- The demand at Arnold Palmer Hospital for a specialized surgery pack is 60 per week, virtually every week. The lead time from McKesson, its main supplier, is normally distributed, with a mean of 6 weeks for this product and a standard deviation of 2 weeks. A 90\% weekly service level is desired. Find the ROP.

Safety stock

- The inclusion of safety stock (ss) changed the expression to
- ROP = d * L + ss
- The amount of safety stock maintained depends on the cost of incurring a stockout and the cost of holding the extra inventory. Annual stockout cost is computed as follows:
- Annual stockout costs =
- The sum of the units short for each demand level * The probability of that demand level * The stockout cost / unit * The number of orders per year

Periodic Review Systems

Example Calculating P and T

- Again, let us return to the bird feeder example. Recall that demand for the bird feeder is normally distributed with a mean of 18 units per week and a standard deviation in weekly demand of 5 units. The lead time is 2 weeks, and the business operates 52 weeks per year. The Q system developed in Example 15.6 called for an EOQ of 75 units and a safety stock of 9 units for a cycleservice level of 90 percent. What is the equivalent P system? What is the total cost ? Answers are to be rounded to the nearest integer.

Periodic Review Systems

Bird feeder-Calculating Pend T

$\sigma_{t}=5$ units $L=2$ weeks cycle/service level $=90 \%$
$E O Q=75$ units $\quad D=(18$ units/week)(52 weeks) $=936$ units

$$
\begin{gathered}
P=\frac{E O Q}{D}(52)=\frac{75}{936}(52)=4.2 \text { or } 4 \text { weeks } \\
\sigma_{P+L}=\sigma_{\tau} \sqrt{P+L}=5 \sqrt{6}=12 \text { units }
\end{gathered}
$$

$T=$ Average demand during the protection interval + Safety stock
$=d(P+L)+\sigma_{P+L}$
$=(18$ units/week)(6 weeks) $+1.28(12$ units $)=123$ units
\longleftarrow Protection interval \square

Periodic Review Systems

- 1

Bird feeder-Calculating P and T

On-hand inventory

$$
\begin{aligned}
& \sigma_{t}=18 \text { units } L=2 \text { weeks cycle/service level }=90 \% \\
& Q=75 \text { units } \quad D=(18 \text { units/week })(52 \text { weeks })=936 \text { units } \\
& P=4 \text { weeks } \quad T=123 \text { units } \\
& C=\frac{4(18)}{2}(\$ 15)+\frac{936}{4(18)}(\$ 45)+15(\$ 15) \\
& C=\$ 540+\$ 585+\$ 225=\$ 1350
\end{aligned}
$$

\longleftarrow Protection interval

Comparison of Q and P Systems

P Systems

- Convenient to administer
- Orders may be combined
- IP only required at review

Q Systems

- Individual review frequencies
- Possible quantity discounts
- Lower, less-expensive safety stocks

Problem 1

Booker's Book Bindery divides inventory items into three classes, according to their dollar usage. Calculate the usage values of the following inventory items and determine which is most likely to be classified as an A item.

PART NUMBER	DESCRIPTION	QUANTITY USED PER YEAR	UNIT VALUE (\$)
1	Boxes	500	3.00
2	Cardboard (square feet)	18,000	0.02
3	Cover stock	10,000	0.75
4	Glue (gallons)	75	40.00
5	Inside covers	20,000	0.05
6	Reinforcing tape (meters)	3,000	0.15
7	Signatures	150,000	0.45

Problem 2

A regional warehouse purchases hand tools from various suppliers and then distributes them on demand to retailers in the region. The warehouse operates five days per week, 52 weeks per year. Only when it is open can orders be received. The following data are estimated for $3 / 8$-inch hand drills with double insulation and variable speeds:

```
Average daily demand =100 drills
Standard deviation of daily demand ( }\mp@subsup{\sigma}{t}{})=30\mathrm{ drills
Lead time (L) = 3 days
Holding cost }(H)=$9.40/unit/yea
Ordering cost (S)=$35/order
Cycle-service level =92 percent
```

The warehouse uses a continuous review (Q) system.
a. What order quantity, Q and reorder point, R, should be used?
b. If on-hand inventory is 40 units, there is one open order for 440 drills, and there are no backorders, should a new order be placed?

Problem 3

Suppose that a periodic review (P) system is used at the warehouse, but otherwise the data are the same as in Solved Problem 5.
a. Calculate the P (in workdays, rounded to the nearest day) that gives approximately the same number of orders per year as the EOQ.
b. What is the value of the target inventory level, T ? Compare the P system to the Q system in Solved Problem 5.
c. It is time to review the item. On-hand inventory is 40 drills; there is a scheduled receipt of 440 drills and no backorders. How much should be reordered?

David Rivera Optical has determined that its reorder point for eyeglass frames is $50(d \times L)$ units. Its carrying cost per frame per year is $\$ 5$, and stockout (or lost sale) cost is $\$ 40$ per frame. The store has experienced the following probability distribution for inventory demand during the lead time (reorder period). The optimum number of orders per year is six.

NUMSER OF UNITS	PROBABIIIY
30	.2
40	.2
ROP $\rightarrow 50$.3
60	.2
70	$\frac{.1}{1.0}$

How much safety stock should David Rivera keep on hand?
APPROACH The objective is to find the amount of safety stock that minimizes the sum of the additional inventory holding costs and stockout costs. The annual holding cost is simply the holding cost per unit multiplied by the units added to the ROP. For example, a safety stock of 20 frames, which implies that the new ROP, with safety stock, is $70(-50+20)$, raises the annual carrying cost by $\$ 5(20)-\$ 100$.

However, computing annual stockout cost is more interesting. For any level of safety stock, stockout cost is the expected cost of stocking out. We can compute it, as in Equation (12-12), by multiplying the number of frames short (Demand - ROP) by the probability of demand at that level, by the stockout cost, by the number of times per year the stockout can occur (which in our case is the number of orders per year). Then we add stockout costs for each possible stockout level for a given ROP. ${ }^{4}$

SOLUTION We begin by looking at zero safety stock. For this safety stock, a shortage of 10 frames will occur if demand is 60 , and a shortage of 20 frames will occur if the demand is 70 . Thus the stockout costs for zero safety stock are:
$(10$ frames short $)(.2)(\$ 40$ per stockout $)(6$ possible stockouts per year $)$
$+(20$ frames short $)(.1)(\$ 40)(6)=\$ 960$

The following table summarizes the total costs for each of the three alternatives:

| SAFETY
 STOCX | ADDIIDNAL
 HOLDING COST | | STOCXOUT COST |
| :---: | :---: | :---: | :---: | :---: |

The safety stock with the lowest total cost is 20 frames. Therefore, this safety stock changes the reorder point to $50+20-70$ frames.

INSIGHT The optical company now knows that a safety stock of 20 frames will be the most economical decision.

