
Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Failure Detectors: definition, algorithms, and
applications

Alain Cournier Stéphane Devismes

Université de Picardie Jules Verne

April 26, 2023

Cournier & Devismes Failure Detectors April 26, 2023 1 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 2 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 3 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Outline of the FLP’s Impossibility [3]

The impossibility of the consensus comes from the fact that correct
processes cannot differentiate slow processes from crashed ones.

Using synchrony assumptions, processes can obtain information
about crashes.

Then, this information enables solving problems, including consensus.

Cournier & Devismes Failure Detectors April 26, 2023 4 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Outline of the FLP’s Impossibility [3]

The impossibility of the consensus comes from the fact that correct
processes cannot differentiate slow processes from crashed ones.

Using synchrony assumptions, processes can obtain information
about crashes.

Then, this information enables solving problems, including consensus.

Cournier & Devismes Failure Detectors April 26, 2023 4 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Failure Detector Approach [1]

In a software engineering spirit:

separate the necessary knowledge on crashes to solve the
problem (the definition of the failure detector)

from the way it can be obtained1 (the implementation of the failure
detector)

Advantages

Separation of concerns: modularity and simplicity

Possibility to compare and to have a necessary and sufficient
assumption (the minimum failure detector to solve a problem)2

1In particular, the necessary assumptions on the system.
2A lesson we be dedicated to this aspect.

Cournier & Devismes Failure Detectors April 26, 2023 5 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Failure Detector Approach [1]

In a software engineering spirit:

separate the necessary knowledge on crashes to solve the
problem (the definition of the failure detector)

from the way it can be obtained1 (the implementation of the failure
detector)

Advantages

Separation of concerns: modularity and simplicity

Possibility to compare and to have a necessary and sufficient
assumption (the minimum failure detector to solve a problem)2

1In particular, the necessary assumptions on the system.
2A lesson we be dedicated to this aspect.

Cournier & Devismes Failure Detectors April 26, 2023 5 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 6 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

(Distributed) Failure Detector: an Oracle

Each process p can access a local failure detector module (an oracle
function) denoted by Dp.

Each module watches a subset of system processes (usually the
whole set of processes), and returns information about crashed:
usually a set of suspected processes.3

Precisely, the identifiers of processes that are suspected of being
crashed.

Unless otherwise mentioned, we will always assume that

each local failure detector module watches all processes and returns a
list of suspected processes.

3N.b., some failure detectors, such as Ω or Σ, do not return a list of suspected processes.

Cournier & Devismes Failure Detectors April 26, 2023 7 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

(Distributed) Failure Detector: an Oracle

Each process p can access a local failure detector module (an oracle
function) denoted by Dp.

Each module watches a subset of system processes (usually the
whole set of processes), and returns information about crashed:
usually a set of suspected processes.3

Precisely, the identifiers of processes that are suspected of being
crashed.

Unless otherwise mentioned, we will always assume that

each local failure detector module watches all processes and returns a
list of suspected processes.

3N.b., some failure detectors, such as Ω or Σ, do not return a list of suspected processes.

Cournier & Devismes Failure Detectors April 26, 2023 7 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

(Distributed) Failure Detector: an Oracle

Each process p can access a local failure detector module (an oracle
function) denoted by Dp.

Each module watches a subset of system processes (usually the
whole set of processes), and returns information about crashed:
usually a set of suspected processes.3

Precisely, the identifiers of processes that are suspected of being
crashed.

Unless otherwise mentioned, we will always assume that

each local failure detector module watches all processes and returns a
list of suspected processes.

3N.b., some failure detectors, such as Ω or Σ, do not return a list of suspected processes.

Cournier & Devismes Failure Detectors April 26, 2023 7 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Unreliable Failure Detectors

Each local module can make mistakes:

by wrongly suspecting correct processes

by missing some crashed processes

Cournier & Devismes Failure Detectors April 26, 2023 8 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Failure Detector Classes

The classes of failure detectors are distinguished by two important
properties:

Completeness: restrict the ability of the failure detector module to
detect crashes

Accuracy: qualify the possibility of the failure detector module to
wrongly suspect correct processes

Cournier & Devismes Failure Detectors April 26, 2023 9 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Completeness: Examples

Strong Completeness: Every faulty process is eventually permanently
suspected by every correct process.

Weak Completeness: Every faulty process is eventually permanently
suspected by some correct process.

Cournier & Devismes Failure Detectors April 26, 2023 10 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Completeness: Examples

Strong Completeness: Every faulty process is eventually permanently
suspected by every correct process.

Weak Completeness: Every faulty process is eventually permanently
suspected by some correct process.

Cournier & Devismes Failure Detectors April 26, 2023 10 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Accuracy: Examples

Strong accuracy: no process is suspected (by any alive process4)
before it crashes.

Weak accuracy: some correct process is never suspected (by any
alive process).

Eventual strong accuracy: there is a time after which no correct
process is suspected by any correct process.5

Eventual weak accuracy: there is a time after which some correct
process is never suspected by any correct process.

4An alive process is either a correct process or a faulty process that has not crashed yet.
5As explained in [1], we can use correct instead of alive with loss of generality for eventual strong/weak accuracy.

Cournier & Devismes Failure Detectors April 26, 2023 11 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Accuracy: Examples

Strong accuracy: no process is suspected (by any alive process4)
before it crashes.

Weak accuracy: some correct process is never suspected (by any
alive process).

Eventual strong accuracy: there is a time after which no correct
process is suspected by any correct process.5

Eventual weak accuracy: there is a time after which some correct
process is never suspected by any correct process.

4An alive process is either a correct process or a faulty process that has not crashed yet.
5As explained in [1], we can use correct instead of alive with loss of generality for eventual strong/weak accuracy.

Cournier & Devismes Failure Detectors April 26, 2023 11 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Accuracy: Examples

Strong accuracy: no process is suspected (by any alive process4)
before it crashes.

Weak accuracy: some correct process is never suspected (by any
alive process).

Eventual strong accuracy: there is a time after which no correct
process is suspected by any correct process.5

Eventual weak accuracy: there is a time after which some correct
process is never suspected by any correct process.

4An alive process is either a correct process or a faulty process that has not crashed yet.
5As explained in [1], we can use correct instead of alive with loss of generality for eventual strong/weak accuracy.

Cournier & Devismes Failure Detectors April 26, 2023 11 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Accuracy: Examples

Strong accuracy: no process is suspected (by any alive process4)
before it crashes.

Weak accuracy: some correct process is never suspected (by any
alive process).

Eventual strong accuracy: there is a time after which no correct
process is suspected by any correct process.5

Eventual weak accuracy: there is a time after which some correct
process is never suspected by any correct process.

4An alive process is either a correct process or a faulty process that has not crashed yet.
5As explained in [1], we can use correct instead of alive with loss of generality for eventual strong/weak accuracy.

Cournier & Devismes Failure Detectors April 26, 2023 11 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Some Classes of Failure Detectors

Completeness
Accuracy

Strong Weak Eventually Strong Eventually Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S ⋄P ⋄S

Weak Quasi-perfect Weak Eventually Quasi-perfect Eventually Weak
Q W ⋄Q ⋄W

Cournier & Devismes Failure Detectors April 26, 2023 12 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 13 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Failure Detector S

We now study a consensus algorithm6 that uses S :

Strong Completeness: Every faulty process is eventually permanently
suspected by every correct process.

Weak accuracy: some correct process is never suspected (by any
alive process).

6This algorithm is inspired for one of Chandra and Toueg [2].

Cournier & Devismes Failure Detectors April 26, 2023 14 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Assumptions

1 Failure detector S : local module Sp for each process p

2 Asynchronous processes

3 Asynchronous reliable links (not necessarily FIFO)

4 Any process p can broadcast a message to all processes (p included!)

5 No assumption on the number of crashes!

Cournier & Devismes Failure Detectors April 26, 2023 15 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Principles

3 Phases:

Phase 1: n−1 asynchronous rounds where proposed values are
broadcast and relayed.

Phase 2: 1 asynchronous round where all alive processes agree
on the value of a vector V based on proposed values.

Phase 3: each alive process decides according to the vector V .

Cournier & Devismes Failure Detectors April 26, 2023 16 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Constants & Variables

Processes are identified: a process and its identifier are used
equivalently

V : set of processes

n: number of processes

vp: a boolean (read-only) input, the value proposed by process p

dp ∈ {⊥,0,1}: the decision variable

rp ∈N: the round number of process p

∆p[],Vp[]: vectors indexed on the process IDs.

→ ∀q ∈ V , Vp[q] ∈ {0,1,⊥} and ∆p[q] ∈ {0,1,⊥}

Cournier & Devismes Failure Detectors April 26, 2023 17 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Algorithm of Chandra and Toueg
1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]
10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from every process q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 18 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Validity

Remark 1

At the end of Round r ≥ 1, ∆p[q] ̸=⊥
IFF p ̸= q, ∆p[q] is the value proposed
by q, and p has received this value for
the first time during Round r .

From Remark 1 and owing the fact that
Vp[p] = vp after the initialization (Lines
1-4), we can deduce the following lemma
by definition of the algorithm:

Lemma 1

For every two processes p and q, after
the initialization (Lines 1-4) and while p is
not crashed, Vp[q] is either vq or ⊥.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 19 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination

Lemma 2

Every correct process eventually
executes Line 23.

Proof.

The only way to prevent a correct process
p from reaching Line 23 is to block it
forever on Line 7 or 18 in some round r .

Let Faulty ⊆ V be the set of faulty
processes. Let Correct ⊆ V be the set of
correct processes.

By definition, V = Faulty ∪̇ Correct .

By strong completeness, eventually
V \Sp ⊆ Correct forever

We now consider the cases of Line 7 and
18 separately.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 20 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination

Lemma 2

Every correct process eventually
executes Line 23.

Proof.
The only way to prevent a correct process
p from reaching Line 23 is to block it
forever on Line 7 or 18 in some round r .

Let Faulty ⊆ V be the set of faulty
processes. Let Correct ⊆ V be the set of
correct processes.

By definition, V = Faulty ∪̇ Correct .

By strong completeness, eventually
V \Sp ⊆ Correct forever

We now consider the cases of Line 7 and
18 separately.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 20 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination

Lemma 2

Every correct process eventually
executes Line 23.

Proof.
The only way to prevent a correct process
p from reaching Line 23 is to block it
forever on Line 7 or 18 in some round r .

Let Faulty ⊆ V be the set of faulty
processes. Let Correct ⊆ V be the set of
correct processes.

By definition, V = Faulty ∪̇ Correct .

By strong completeness, eventually
V \Sp ⊆ Correct forever

We now consider the cases of Line 7 and
18 separately.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 20 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination

Lemma 2

Every correct process eventually
executes Line 23.

Proof.
The only way to prevent a correct process
p from reaching Line 23 is to block it
forever on Line 7 or 18 in some round r .

Let Faulty ⊆ V be the set of faulty
processes. Let Correct ⊆ V be the set of
correct processes.

By definition, V = Faulty ∪̇ Correct .

By strong completeness, eventually
V \Sp ⊆ Correct forever

We now consider the cases of Line 7 and
18 separately.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 20 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination
Case 1: Line 7

By induction on r : ∀p ∈ Correct , p
completes every Round r ∈ [1..n−1].

r = 1: ∀q ∈ Correct , q completes Line 6
during Round 1.

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨1,∆q ,q⟩ from every
q ∈ Correct in Round 1.

Since eventually V \Sp ⊆ Correct
forever, p completes Round 1.

r > 1: By induction hypothesis,
∀q ∈ Correct , q completes Round r −1,
so q completes Line 6 during Round r .

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨r ,∆q ,q⟩ from every
q ∈ Correct in Round r .

Since eventually V \Sp ⊆ Correct forever,
∀p ∈ Correct , p completes Round r .

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 21 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination
Case 1: Line 7

By induction on r : ∀p ∈ Correct , p
completes every Round r ∈ [1..n−1].

r = 1: ∀q ∈ Correct , q completes Line 6
during Round 1.

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨1,∆q ,q⟩ from every
q ∈ Correct in Round 1.

Since eventually V \Sp ⊆ Correct
forever, p completes Round 1.

r > 1: By induction hypothesis,
∀q ∈ Correct , q completes Round r −1,
so q completes Line 6 during Round r .

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨r ,∆q ,q⟩ from every
q ∈ Correct in Round r .

Since eventually V \Sp ⊆ Correct forever,
∀p ∈ Correct , p completes Round r .

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 21 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination
Case 1: Line 7

By induction on r : ∀p ∈ Correct , p
completes every Round r ∈ [1..n−1].

r = 1: ∀q ∈ Correct , q completes Line 6
during Round 1.

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨1,∆q ,q⟩ from every
q ∈ Correct in Round 1.

Since eventually V \Sp ⊆ Correct
forever, p completes Round 1.

r > 1: By induction hypothesis,
∀q ∈ Correct , q completes Round r −1,
so q completes Line 6 during Round r .

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨r ,∆q ,q⟩ from every
q ∈ Correct in Round r .

Since eventually V \Sp ⊆ Correct forever,
∀p ∈ Correct , p completes Round r .

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 21 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Termination
Case 2: Line 18

From the previous induction,
∀p ∈ Correct , p completes Phase 1.

So, ∀p ∈ Correct , p completes Line 17.

By link reliability, ∀p ∈ Correct , p
eventually receives ⟨Vq⟩ from every
q ∈ Correct .

Since eventually V \Sp ⊆ Correct forever,
∀p ∈ Correct , p completes Line18.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 22 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Notations

By weak accuracy: there is a correct process c which is never suspected.

Let Π1 be the set of processes that terminate the n−1 rounds of Phase 1.

Let Π2 be the set of processes that terminate Phase 2.

By definition, Π2 ⊆ Π1.

We note Vp ≤ Vq IFF ∀k , either Vp[k ] = Vq[k ] or Vp[k ] =⊥.

Cournier & Devismes Failure Detectors April 26, 2023 23 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Messages from c

Lemma 3

During Round r , with 1≤ r ≤ n−1,
every process of Π1 receives (r ,∆c ,c)
from c, i.e., (r ,∆c ,c) ∈ Rp[c].

Proof. Since p ∈Π1, p terminates all
rounds of Phase 1.

At each round, p waits and receives a
⟨r ,∆c ,c⟩ message from c since c /∈ Sp
forever. 2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 24 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values

Lemma 4

∀p ∈Π1, Vc ≤ Vp at the end of Phase 1.

Proof.
Assume that Vc [q] ̸=⊥ at the end of
Phase 1 for some process q.

By Lemma 1, Vc [q] = vq .

Let p ∈Π1. We now show that
Vp[q] = vq at the end of Phase 1.

The case p = c is trivial. So, we now
assume that p ̸= c.

Let r be the first round where c receives
vq (if c = q, we let r = 0 and assume the
end of Round 0 is Line 4)

∆c [q] = vq at the end of Round r .

Two cases: r < n−1 and r = n−1

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 25 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values
Case 1: r < n−1

During Round r +1≤ n−1, c relays vq
by broadcasting ⟨r +1,∆c ,c⟩ with
∆c [q] = vq .

By Lemma 3, p receives ⟨r +1,∆c ,c⟩
during Round r +1.

From the code of the algorithm,
Vp[q] = vq at the end of round r +1.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 26 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values
Case 1: r < n−1

During Round r +1≤ n−1, c relays vq
by broadcasting ⟨r +1,∆c ,c⟩ with
∆c [q] = vq .

By Lemma 3, p receives ⟨r +1,∆c ,c⟩
during Round r +1.

From the code of the algorithm,
Vp[q] = vq at the end of round r +1.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 26 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values
Case 1: r < n−1

During Round r +1≤ n−1, c relays vq
by broadcasting ⟨r +1,∆c ,c⟩ with
∆c [q] = vq .

By Lemma 3, p receives ⟨r +1,∆c ,c⟩
during Round r +1.

From the code of the algorithm,
Vp[q] = vq at the end of round r +1.

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 26 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values
Case 2: r = n−1

Since c receives vq for the first time
during Round n−1 and every process
relays vq at most once:

vq has been relayed by n−1 distinct
different from c before reaching c.

p necessarily belongs to this set of
processes.

Now, Vp[q] = vq right before relaying vq ,
so Vp[q] = vq at the end of Phase 1.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 27 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Learning Values
Case 2: r = n−1

Since c receives vq for the first time
during Round n−1 and every process
relays vq at most once:

vq has been relayed by n−1 distinct
different from c before reaching c.

p necessarily belongs to this set of
processes.

Now, Vp[q] = vq right before relaying vq ,
so Vp[q] = vq at the end of Phase 1. 2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 27 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (1/3)

Lemma 5

∀p ∈Π2, Vc = Vp at the end of Phase 2.

Proof. Let p ∈Π2 . Let q be a process. We should
show that Vp [q] = Vc [q] at the end of Phase 2.

By Lemma 1, we have the following two cases:

Vc [q] = vq at the end of Phase 1.

By Lemma 4, ∀p′ ∈Π1 (p and c included),
Vp′ [q] = vq at the end of Phase 1.

Thus, for all vectors V sent during Phase 2,
we have V [q] = vq .

Hence, Vp [q] and Vc [q] remain equal to vq
during Phase 2.

Vc [q] =⊥ at the end of Phase 1.

Since c /∈ Sp forever, p waits and receives Vc
during Phase 2.

Since Vc [q] =⊥, p sets Vp [q] to ⊥ during
Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 28 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (1/3)

Lemma 5

∀p ∈Π2, Vc = Vp at the end of Phase 2.

Proof. Let p ∈Π2 . Let q be a process. We should
show that Vp [q] = Vc [q] at the end of Phase 2.

By Lemma 1, we have the following two cases:

Vc [q] = vq at the end of Phase 1.

By Lemma 4, ∀p′ ∈Π1 (p and c included),
Vp′ [q] = vq at the end of Phase 1.

Thus, for all vectors V sent during Phase 2,
we have V [q] = vq .

Hence, Vp [q] and Vc [q] remain equal to vq
during Phase 2.

Vc [q] =⊥ at the end of Phase 1.

Since c /∈ Sp forever, p waits and receives Vc
during Phase 2.

Since Vc [q] =⊥, p sets Vp [q] to ⊥ during
Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 28 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (1/3)

Lemma 5

∀p ∈Π2, Vc = Vp at the end of Phase 2.

Proof. Let p ∈Π2 . Let q be a process. We should
show that Vp [q] = Vc [q] at the end of Phase 2.

By Lemma 1, we have the following two cases:

Vc [q] = vq at the end of Phase 1.

By Lemma 4, ∀p′ ∈Π1 (p and c included),
Vp′ [q] = vq at the end of Phase 1.

Thus, for all vectors V sent during Phase 2,
we have V [q] = vq .

Hence, Vp [q] and Vc [q] remain equal to vq
during Phase 2.

Vc [q] =⊥ at the end of Phase 1.

Since c /∈ Sp forever, p waits and receives Vc
during Phase 2.

Since Vc [q] =⊥, p sets Vp [q] to ⊥ during
Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 28 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (2/3)

Lemma 6

∀p ∈Π2, Vp[c] = vc at the end of Phase
2.

Proof.

From the code of the algorithm
(Line 3), we know that Vc [c] = vc at the
end of Phase 1.

By Lemma 4, ∀q ∈Π1, Vq [c] = vc at the
end of Phase 1.

Thus, no process sends a vector V such
that V [c] =⊥ during Phase 2.

Hence, from the code of the algorithm,
we can deduce that ∀p ∈Π2, Vp[c] = vc
at the end of Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 29 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (2/3)

Lemma 6

∀p ∈Π2, Vp[c] = vc at the end of Phase
2.

Proof. From the code of the algorithm
(Line 3), we know that Vc [c] = vc at the
end of Phase 1.

By Lemma 4, ∀q ∈Π1, Vq [c] = vc at the
end of Phase 1.

Thus, no process sends a vector V such
that V [c] =⊥ during Phase 2.

Hence, from the code of the algorithm,
we can deduce that ∀p ∈Π2, Vp[c] = vc
at the end of Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 29 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (2/3)

Lemma 6

∀p ∈Π2, Vp[c] = vc at the end of Phase
2.

Proof. From the code of the algorithm
(Line 3), we know that Vc [c] = vc at the
end of Phase 1.

By Lemma 4, ∀q ∈Π1, Vq [c] = vc at the
end of Phase 1.

Thus, no process sends a vector V such
that V [c] =⊥ during Phase 2.

Hence, from the code of the algorithm,
we can deduce that ∀p ∈Π2, Vp[c] = vc
at the end of Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 29 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (2/3)

Lemma 6

∀p ∈Π2, Vp[c] = vc at the end of Phase
2.

Proof. From the code of the algorithm
(Line 3), we know that Vc [c] = vc at the
end of Phase 1.

By Lemma 4, ∀q ∈Π1, Vq [c] = vc at the
end of Phase 1.

Thus, no process sends a vector V such
that V [c] =⊥ during Phase 2.

Hence, from the code of the algorithm,
we can deduce that ∀p ∈Π2, Vp[c] = vc
at the end of Phase 2.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 29 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (2/3)

Lemma 6

∀p ∈Π2, Vp[c] = vc at the end of Phase
2.

Proof. From the code of the algorithm
(Line 3), we know that Vc [c] = vc at the
end of Phase 1.

By Lemma 4, ∀q ∈Π1, Vq [c] = vc at the
end of Phase 1.

Thus, no process sends a vector V such
that V [c] =⊥ during Phase 2.

Hence, from the code of the algorithm,
we can deduce that ∀p ∈Π2, Vp[c] = vc
at the end of Phase 2. 2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 29 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Decision (3/3)

Corollary 1

No two processes decide differently.

Proof. By Lemma 6, all processes that
execute Phase 3 take a well-defined
decision.

By Lemma 5, all processes that execute
Phase 3 have the same vector.

So, they take the same decision. 2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 30 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Result

Theorem 1

The algorithm of Chandra and Toueg
solves the consensus in an
asynchronous system enriched with a
failure detector S .

Proof.

Integrity: from the code of the
algorithm, Phase 3 is executed
only once.

Termination: Lemma 2.

Agreement: Corollary 1.

Validity: Lemma 1 and Line 23.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 31 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Result

Theorem 1

The algorithm of Chandra and Toueg
solves the consensus in an
asynchronous system enriched with a
failure detector S .

Proof.

Integrity: from the code of the
algorithm, Phase 3 is executed
only once.

Termination: Lemma 2.

Agreement: Corollary 1.

Validity: Lemma 1 and Line 23.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 31 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

The Model
The Algorithm
The Proof

Result

Theorem 1

The algorithm of Chandra and Toueg
solves the consensus in an
asynchronous system enriched with a
failure detector S .

Proof.

Integrity: from the code of the
algorithm, Phase 3 is executed
only once.

Termination: Lemma 2.

Agreement: Corollary 1.

Validity: Lemma 1 and Line 23.

2

1: dp ←⊥
2: Vp ← [⊥, . . . ,⊥]
3: Vp [p]← vp

4: ∆p ← Vp

5: For all rp from 1 to n−1 do /* Phase 1 */

6: broadcast ⟨rp ,∆p ,p⟩ to V (p included)

7: wait to receive ⟨rp ,∆q ,q⟩ from q ∈ V \Sp

8: let Rp [rp ] be the set of received ⟨rp ,∆q ,q⟩
9: ∆p ← [⊥, . . . ,⊥]

10: For all k ∈ V do
11: If Vp [k] =⊥ ∧(∃(rp ,∆q ,q) ∈ Rp [rp ],∆q [k] ̸=⊥) then

12: Vp [k]←∆q [k]

13: ∆p [k]←∆q [k]

14: End If
15: Done
16: Done
17: broadcast ⟨Vp⟩ to V (p included) /* Phase 2 */

18: wait to receive ⟨Vq ⟩ from q ∈ V \Sp

19: Let lastmsgsp be the set of received ⟨Vq ⟩
20: For all k ∈ V do
21: If ∃Vq ∈ lastmsgsp ,Vq [k] =⊥ then Vp [k]←⊥
22: Done
23: dp ← x where x is the first non-⊥ value in Vp /* Phase 3 */

Cournier & Devismes Failure Detectors April 26, 2023 31 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 32 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

A Simple Example: ⋄P

Every failure detector of the class ⋄P satisfies both strong
completeness and eventual strong accuracy:

Strong Completeness: Every faulty process is eventually permanently
suspected by every correct process.

Eventual strong accuracy: there is a time after which no correct
process is suspected by any correct process.

Cournier & Devismes Failure Detectors April 26, 2023 33 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
Motivation

Given a failure detector of class ⋄P , consensus can be solved in an
asynchronous crash-prone system with reliable links where a majority
of processes is correct.7

The FLP implies that partial synchrony assumptions are required
to implement such a failure detector!

7In these settings, consensus can be even solved with a weaker failure detector (Ω). This fact will be established in the next
lesson.

Cournier & Devismes Failure Detectors April 26, 2023 34 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
Motivation

Given a failure detector of class ⋄P , consensus can be solved in an
asynchronous crash-prone system with reliable links where a majority
of processes is correct.7

The FLP implies that partial synchrony assumptions are required
to implement such a failure detector!

7In these settings, consensus can be even solved with a weaker failure detector (Ω). This fact will be established in the next
lesson.

Cournier & Devismes Failure Detectors April 26, 2023 34 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
The Partially Synchronous System S⋄b (1/2)

Complete Network Topology

Process failures: only crashes!

Correct processes are eventually synchronous: for every correct
process p, there exists a time tp (a priori unknown by all
processes) from which p executes each of its instructions in a
time belonging to [αp..βp] with 0 < αp ≤ βp.

αp and βp are a priori unknown, for every process p.

Cournier & Devismes Failure Detectors April 26, 2023 35 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
The Partially Synchronous System S⋄b (1/2)

Complete Network Topology

Process failures: only crashes!

Correct processes are eventually synchronous: for every correct
process p, there exists a time tp (a priori unknown by all
processes) from which p executes each of its instructions in a
time belonging to [αp..βp] with 0 < αp ≤ βp.

αp and βp are a priori unknown, for every process p.

Cournier & Devismes Failure Detectors April 26, 2023 35 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
The Partially Synchronous System S⋄b (1/2)

Complete Network Topology

Process failures: only crashes!

Correct processes are eventually synchronous: for every correct
process p, there exists a time tp (a priori unknown by all
processes) from which p executes each of its instructions in a
time belonging to [αp..βp] with 0 < αp ≤ βp.

αp and βp are a priori unknown, for every process p.

Cournier & Devismes Failure Detectors April 26, 2023 35 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
The Partially Synchronous System S⋄b (2/2)

There exists at least one eventual bi-source ⋄b (a priori
unknown by processes): all its outgoing and incoming links are
eventually reliable and synchronous, i.e.,

there exists a time t⋄b from which every message sent to or from
⋄b is delivered within at most δ⋄b time units.

⋄b, t⋄b, and δ⋄b are a priori unknown (even by ⋄b!)

Every other link is arbitrary slow and lossy.

Recall that every message is delivered or lost within finite time.

Cournier & Devismes Failure Detectors April 26, 2023 36 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

System Assumptions
The Partially Synchronous System S⋄b (2/2)

There exists at least one eventual bi-source ⋄b (a priori
unknown by processes): all its outgoing and incoming links are
eventually reliable and synchronous, i.e.,

there exists a time t⋄b from which every message sent to or from
⋄b is delivered within at most δ⋄b time units.

⋄b, t⋄b, and δ⋄b are a priori unknown (even by ⋄b!)

Every other link is arbitrary slow and lossy.

Recall that every message is delivered or lost within finite time.

Cournier & Devismes Failure Detectors April 26, 2023 36 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Principles

1 Each process regularly broadcasts ALIVE messages tagged with
its ID

Each message is relayed once.

This way, ⋄b acts as a hub: eventually messages tagged with IDs
of correct processes are delivered within bounded time.

2 Each process maintains a timer for each other process.

On Time Out: the watched process is suspected.

If later, the process receives a message tagged with the ID of
some suspected process, it stops suspecting it and increases the
waiting time of the associated timer.

Cournier & Devismes Failure Detectors April 26, 2023 37 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Principles

1 Each process regularly broadcasts ALIVE messages tagged with
its ID

Each message is relayed once.

This way, ⋄b acts as a hub: eventually messages tagged with IDs
of correct processes are delivered within bounded time.

2 Each process maintains a timer for each other process.

On Time Out: the watched process is suspected.

If later, the process receives a message tagged with the ID of
some suspected process, it stops suspecting it and increases the
waiting time of the associated timer.

Cournier & Devismes Failure Detectors April 26, 2023 37 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Constants & Variables

Processes are identified: a process and its identifier are used
equivalently

ALIVE : message type

V : set of processes

k ∈N∗: constant

Timerp[], ElapseTimep[]: arrays of integer indexed on the process
IDs, except p.

Alivep, Suspectedp: sets of identifiers

(Suspectedp is the algorithm output)

Cournier & Devismes Failure Detectors April 26, 2023 38 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Algorithm EP
Algorithm EP for each process p, output: Suspectedp

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast ⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast ⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 39 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (1/3)

Recall that the wildcard “_” designates any
value.

Lemma 1

Each correct process p eventually no more
receives ⟨ALIVE ,q,_⟩ where q is a faulty
process.

Proof.

q broadcasts finitely many
⟨ALIVE ,q,q⟩ messages before crashing.

Now, each ⟨ALIVE ,q,q⟩ message is relayed at
most once by every other processes.

As every sent message is eventually either
received or lost, the lemma holds.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast ⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 40 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (1/3)

Recall that the wildcard “_” designates any
value.

Lemma 1

Each correct process p eventually no more
receives ⟨ALIVE ,q,_⟩ where q is a faulty
process.

Proof. q broadcasts finitely many
⟨ALIVE ,q,q⟩ messages before crashing.

Now, each ⟨ALIVE ,q,q⟩ message is relayed at
most once by every other processes.

As every sent message is eventually either
received or lost, the lemma holds.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast ⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 40 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (1/3)

Recall that the wildcard “_” designates any
value.

Lemma 1

Each correct process p eventually no more
receives ⟨ALIVE ,q,_⟩ where q is a faulty
process.

Proof. q broadcasts finitely many
⟨ALIVE ,q,q⟩ messages before crashing.

Now, each ⟨ALIVE ,q,q⟩ message is relayed at
most once by every other processes.

As every sent message is eventually either
received or lost, the lemma holds.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast ⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 40 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (1/3)

Recall that the wildcard “_” designates any
value.

Lemma 1

Each correct process p eventually no more
receives ⟨ALIVE ,q,_⟩ where q is a faulty
process.

Proof. q broadcasts finitely many
⟨ALIVE ,q,q⟩ messages before crashing.

Now, each ⟨ALIVE ,q,q⟩ message is relayed at
most once by every other processes.

As every sent message is eventually either
received or lost, the lemma holds. 2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast ⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 40 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (2/3)

Lemma 2

Let p be a correct process. ∃tp,Kp,K ′p ∈N with Kp ≥ K ′p such that after time tp , each iteration of
the “while” loop by p lasts a time belonging to [K ′p,Kp].

Proof.
By definition, ∃ a time t from which each instruction is executed by p within a time that is both
lower and upper bounded since p is eventually synchronous.

There is a finite number of instructions before the “while” loop. So, in the worst case, the “while”
loop begins within bounded time tp after t .

Similarly, after tp , ∃Kp,K ′p ∈N with K ′p ≤ Kp such that each iteration of the “while” loop by p lasts
a time belonging to [K ′p,Kp] since the “while” loop contains a bounded number of instructions
and the time to execute any instruction is both lower and upper bounded.

2

Cournier & Devismes Failure Detectors April 26, 2023 41 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (2/3)

Lemma 2

Let p be a correct process. ∃tp,Kp,K ′p ∈N with Kp ≥ K ′p such that after time tp , each iteration of
the “while” loop by p lasts a time belonging to [K ′p,Kp].

Proof.
By definition, ∃ a time t from which each instruction is executed by p within a time that is both
lower and upper bounded since p is eventually synchronous.

There is a finite number of instructions before the “while” loop. So, in the worst case, the “while”
loop begins within bounded time tp after t .

Similarly, after tp , ∃Kp,K ′p ∈N with K ′p ≤ Kp such that each iteration of the “while” loop by p lasts
a time belonging to [K ′p,Kp] since the “while” loop contains a bounded number of instructions
and the time to execute any instruction is both lower and upper bounded.

2

Cournier & Devismes Failure Detectors April 26, 2023 41 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (2/3)

Lemma 2

Let p be a correct process. ∃tp,Kp,K ′p ∈N with Kp ≥ K ′p such that after time tp , each iteration of
the “while” loop by p lasts a time belonging to [K ′p,Kp].

Proof.
By definition, ∃ a time t from which each instruction is executed by p within a time that is both
lower and upper bounded since p is eventually synchronous.

There is a finite number of instructions before the “while” loop. So, in the worst case, the “while”
loop begins within bounded time tp after t .

Similarly, after tp , ∃Kp,K ′p ∈N with K ′p ≤ Kp such that each iteration of the “while” loop by p lasts
a time belonging to [K ′p,Kp] since the “while” loop contains a bounded number of instructions
and the time to execute any instruction is both lower and upper bounded.

2

Cournier & Devismes Failure Detectors April 26, 2023 41 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (3/3)

Corollary 1

Every faulty process is eventually forever
suspected by every correct process.

Proof. Let q be a faulty process and p be a
correct process.

By Lemma 2, there exists a time tp from which
p executes a “while” loop iteration within at
most Kp time units.

So, from time tp , p eventually satisfies
ElapseTimep[q] = 0 forever, by Lemma 1.

Hence, q is eventually removed from Alivep
forever and so eventually belongs forever to
Suspectedp .

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 42 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (3/3)

Corollary 1

Every faulty process is eventually forever
suspected by every correct process.

Proof. Let q be a faulty process and p be a
correct process.

By Lemma 2, there exists a time tp from which
p executes a “while” loop iteration within at
most Kp time units.

So, from time tp , p eventually satisfies
ElapseTimep[q] = 0 forever, by Lemma 1.

Hence, q is eventually removed from Alivep
forever and so eventually belongs forever to
Suspectedp .

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 42 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (3/3)

Corollary 1

Every faulty process is eventually forever
suspected by every correct process.

Proof. Let q be a faulty process and p be a
correct process.

By Lemma 2, there exists a time tp from which
p executes a “while” loop iteration within at
most Kp time units.

So, from time tp , p eventually satisfies
ElapseTimep[q] = 0 forever, by Lemma 1.

Hence, q is eventually removed from Alivep
forever and so eventually belongs forever to
Suspectedp .

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 42 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Eventual Suspicion of Faulty Processes (3/3)

Corollary 1

Every faulty process is eventually forever
suspected by every correct process.

Proof. Let q be a faulty process and p be a
correct process.

By Lemma 2, there exists a time tp from which
p executes a “while” loop iteration within at
most Kp time units.

So, from time tp , p eventually satisfies
ElapseTimep[q] = 0 forever, by Lemma 1.

Hence, q is eventually removed from Alivep
forever and so eventually belongs forever to
Suspectedp . 2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 42 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (1/4)

Lemma 3

Let p and q be two correct processes such that p ̸= q. There exists tp,∆p ∈N such
that after time tp , p receives ⟨ALIVE ,q,_⟩ at least every ∆p time units.

Proof. Let ⋄b be an eventual bi-source.

By Lemma 2 and by definition of eventual bi-source, there exists t ∈N such that after
time t ,

q, ⋄b, and p respectively execute each “while” loop iteration within at most Kq ,
K⋄b , and Kp time units.

Moreover, every message sent from or to ⋄b is delivered in at most δ⋄b time
units.

Two cases: q = ⋄b or q ̸= ⋄b.

Cournier & Devismes Failure Detectors April 26, 2023 43 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (1/4)

Lemma 3

Let p and q be two correct processes such that p ̸= q. There exists tp,∆p ∈N such
that after time tp , p receives ⟨ALIVE ,q,_⟩ at least every ∆p time units.

Proof. Let ⋄b be an eventual bi-source.

By Lemma 2 and by definition of eventual bi-source, there exists t ∈N such that after
time t ,

q, ⋄b, and p respectively execute each “while” loop iteration within at most Kq ,
K⋄b , and Kp time units.

Moreover, every message sent from or to ⋄b is delivered in at most δ⋄b time
units.

Two cases: q = ⋄b or q ̸= ⋄b.

Cournier & Devismes Failure Detectors April 26, 2023 43 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (1/4)

Lemma 3

Let p and q be two correct processes such that p ̸= q. There exists tp,∆p ∈N such
that after time tp , p receives ⟨ALIVE ,q,_⟩ at least every ∆p time units.

Proof. Let ⋄b be an eventual bi-source.

By Lemma 2 and by definition of eventual bi-source, there exists t ∈N such that after
time t ,

q, ⋄b, and p respectively execute each “while” loop iteration within at most Kq ,
K⋄b , and Kp time units.

Moreover, every message sent from or to ⋄b is delivered in at most δ⋄b time
units.

Two cases: q = ⋄b or q ̸= ⋄b.

Cournier & Devismes Failure Detectors April 26, 2023 43 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (2/4)
Case q = ⋄b

∃t ′ ∈ [t..t +Kq] such that q starts a “while” loop iteration at time t ′. From t ′, q
executes a (full) ”while” loop iteration at least every Kq time units. So, q broadcasts
⟨ALIVE ,q,q⟩ at least every Kq time units from t ′.

These messages are delivered to p within at most δ⋄b time units after their sending.

Now, p executes a full ”while” loop iteration at least every 2.Kp time units.

Hence, with ∆p = Kq +δ⋄b +2.Kp , the lemma holds in this case.

Cournier & Devismes Failure Detectors April 26, 2023 44 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (2/4)
Case q = ⋄b

∃t ′ ∈ [t..t +Kq] such that q starts a “while” loop iteration at time t ′. From t ′, q
executes a (full) ”while” loop iteration at least every Kq time units. So, q broadcasts
⟨ALIVE ,q,q⟩ at least every Kq time units from t ′.

These messages are delivered to p within at most δ⋄b time units after their sending.

Now, p executes a full ”while” loop iteration at least every 2.Kp time units.

Hence, with ∆p = Kq +δ⋄b +2.Kp , the lemma holds in this case.

Cournier & Devismes Failure Detectors April 26, 2023 44 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (2/4)
Case q = ⋄b

∃t ′ ∈ [t..t +Kq] such that q starts a “while” loop iteration at time t ′. From t ′, q
executes a (full) ”while” loop iteration at least every Kq time units. So, q broadcasts
⟨ALIVE ,q,q⟩ at least every Kq time units from t ′.

These messages are delivered to p within at most δ⋄b time units after their sending.

Now, p executes a full ”while” loop iteration at least every 2.Kp time units.

Hence, with ∆p = Kq +δ⋄b +2.Kp , the lemma holds in this case.

Cournier & Devismes Failure Detectors April 26, 2023 44 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (3/4)
Case q ̸= ⋄b

Similarly to the previous case: ∃t ′ ∈ [t..t +Kq ] such that q broadcasts ⟨ALIVE ,q,q⟩
at least every Kq time units from t ′.

These messages are delivered to ⋄b within at most δ⋄b time units after their sending;
so at least every Kq +δ⋄b time units.

⋄b sends ⟨ALIVE ,q,⋄b⟩ to p at least every Kq +δ⋄b +2.K⋄b time units.

⟨ALIVE ,q,_⟩ messages are delivered to p at least Kq +2.δ⋄b +2.K⋄b time units.

Since p executes a full “while” loop iteration at least every 2.Kp time units, by letting
∆p = Kq +2.δ⋄b +2.K⋄b +2.Kp , the lemma holds in this case.

2

Cournier & Devismes Failure Detectors April 26, 2023 45 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (3/4)
Case q ̸= ⋄b

Similarly to the previous case: ∃t ′ ∈ [t..t +Kq ] such that q broadcasts ⟨ALIVE ,q,q⟩
at least every Kq time units from t ′.

These messages are delivered to ⋄b within at most δ⋄b time units after their sending;
so at least every Kq +δ⋄b time units.

⋄b sends ⟨ALIVE ,q,⋄b⟩ to p at least every Kq +δ⋄b +2.K⋄b time units.

⟨ALIVE ,q,_⟩ messages are delivered to p at least Kq +2.δ⋄b +2.K⋄b time units.

Since p executes a full “while” loop iteration at least every 2.Kp time units, by letting
∆p = Kq +2.δ⋄b +2.K⋄b +2.Kp , the lemma holds in this case.

2

Cournier & Devismes Failure Detectors April 26, 2023 45 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (3/4)
Case q ̸= ⋄b

Similarly to the previous case: ∃t ′ ∈ [t..t +Kq ] such that q broadcasts ⟨ALIVE ,q,q⟩
at least every Kq time units from t ′.

These messages are delivered to ⋄b within at most δ⋄b time units after their sending;
so at least every Kq +δ⋄b time units.

⋄b sends ⟨ALIVE ,q,⋄b⟩ to p at least every Kq +δ⋄b +2.K⋄b time units.

⟨ALIVE ,q,_⟩ messages are delivered to p at least Kq +2.δ⋄b +2.K⋄b time units.

Since p executes a full “while” loop iteration at least every 2.Kp time units, by letting
∆p = Kq +2.δ⋄b +2.K⋄b +2.Kp , the lemma holds in this case.

2

Cournier & Devismes Failure Detectors April 26, 2023 45 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (3/4)
Case q ̸= ⋄b

Similarly to the previous case: ∃t ′ ∈ [t..t +Kq ] such that q broadcasts ⟨ALIVE ,q,q⟩
at least every Kq time units from t ′.

These messages are delivered to ⋄b within at most δ⋄b time units after their sending;
so at least every Kq +δ⋄b time units.

⋄b sends ⟨ALIVE ,q,⋄b⟩ to p at least every Kq +δ⋄b +2.K⋄b time units.

⟨ALIVE ,q,_⟩ messages are delivered to p at least Kq +2.δ⋄b +2.K⋄b time units.

Since p executes a full “while” loop iteration at least every 2.Kp time units, by letting
∆p = Kq +2.δ⋄b +2.K⋄b +2.Kp , the lemma holds in this case.

2

Cournier & Devismes Failure Detectors April 26, 2023 45 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (3/4)
Case q ̸= ⋄b

Similarly to the previous case: ∃t ′ ∈ [t..t +Kq ] such that q broadcasts ⟨ALIVE ,q,q⟩
at least every Kq time units from t ′.

These messages are delivered to ⋄b within at most δ⋄b time units after their sending;
so at least every Kq +δ⋄b time units.

⋄b sends ⟨ALIVE ,q,⋄b⟩ to p at least every Kq +δ⋄b +2.K⋄b time units.

⟨ALIVE ,q,_⟩ messages are delivered to p at least Kq +2.δ⋄b +2.K⋄b time units.

Since p executes a full “while” loop iteration at least every 2.Kp time units, by letting
∆p = Kq +2.δ⋄b +2.K⋄b +2.Kp , the lemma holds in this case. 2

Cournier & Devismes Failure Detectors April 26, 2023 45 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Unsuspicion of Correct Processes (4/4)

Corollary 2

There exists a time from which no correct process is
suspected by any correct process.

Proof.
Let p and q be two correct processes.

If p = q, q is never removed from Alivep and so never
inserted into Suspectedp . Hence, the lemma holds in this
case.

Otherwise, q is regularly inserted into Alivep , by Lemma 3.

Assume, by contradiction, that q is suspected infinitely often
by p.

Between every removal and insertion of q, Timerp [q] is
incremented.

So, the time between two consecutive receptions of
⟨ALIVE ,q,_⟩ by p regularly increases by Lemma 2, a
contradiction to Lemma 3.

2

1: Alivep ← V ; Suspectedp ← /0

2: Timerp ← [k , . . . ,k]; ElapseTimep ← [k , . . . ,k]

3: While true do
4: broadcast⟨ALIVE ,p,p⟩ to V \{p}
5: For all q ∈ V \{p} do
6: If receive ⟨ALIVE , r ,q⟩ then
7: If r ̸= p then
8: If ElapseTimep [r ]≤ 0 then Timerp [r ]++

9: ElapseTimep [r ]← Timerp [r ]

10: Alivep ← Alivep ∪{r}
11: If r = q then broadcast⟨ALIVE , r ,p⟩ to V \{p}
12: End If
13: End If
14: Done
15: For all q ∈ V \{p} do
16: If ElapseTimep [q] = 0 then

17: Alivep ← Alivep \{q}
18: else
19: ElapseTimep [q]−−
20: End If
21: Done
22: Suspectedp ← V \Alivep

23: Done

Cournier & Devismes Failure Detectors April 26, 2023 46 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

⋄P
The Model
The Algorithm
The Proof

Correctness of the Algorithm

By Corollaries 1 and 2, follows.

Theorem 1

Algorithm EP is a failure detector of type ⋄P in System S⋄b.

Cournier & Devismes Failure Detectors April 26, 2023 47 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

Roadmap

1 Introduction

2 Definition

3 Application: a Consensus Algorithm
The Model
The Algorithm
The Proof

4 Implementation of a Failure Detector
⋄P
The Model
The Algorithm
The Proof

5 References

Cournier & Devismes Failure Detectors April 26, 2023 48 / 49



Introduction
Definition

Application: a Consensus Algorithm
Implementation of a Failure Detector

References

References

[1] T. D. Chandra and S. Toueg.
Unreliable failure detectors for asynchronous systems (preliminary version).
In L. Logrippo, editor, Proceedings of the Tenth Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages 325–340.
ACM, 1991.

[2] T. D. Chandra and S. Toueg.
Unreliable failure detectors for reliable distributed systems.
J. ACM, 43(2):225–267, 1996.

[3] M. J. Fischer, N. A. Lynch, and M. Paterson.
Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

Cournier & Devismes Failure Detectors April 26, 2023 49 / 49


	Introduction
	Definition
	Application: a Consensus Algorithm
	The Model
	The Algorithm
	The Proof

	Implementation of a Failure Detector
	P
	The Model
	The Algorithm
	The Proof

	References

