
Unreliable Failure Detectors for Reliable

Distributed Systems

TUSHAR DEEPAK CHANDRA

1.11..tf.Thomas J. Warson Research Center, Hawthorne, New York

AND

SAM TOUEG

Cornell University, Ithaca, New York

We introduce the concept of unreliable failure detectors and study how they can be used to solve
Consensus in asynchronous systems with crash failures. We characterise unreliable failure detectors
in terms of two properties—completeness and accuracy. We show that Consensus can be solved even
with unreliable failure detectors that make an infinite number of mistakes, and determine which ones
can be used to solve Consensus despite any number of crashes, and which ones require a majority of
correct processes. We prove that Consensus and Atomic Broadcast are redueible to each other in
asynchronous systems with crash failures; thus, the above results also apply to Atomic Broadcast. A
companion paper shows that one of the failure detectors introduced here is the weakest failure
detector for solving Consensus [Chandra et al, 1992].

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—disoifsured applications; distributed databases; network operating ~s(ems; C,4 [Performance of
Systems]: reliability, availability, and serviceability; D.1,3 [Programming Techniques]: Concurrent
programming—disrrik. utedprogrammirr& D.4.5 [Operating Systems]: Reliability+auft-f olerance; F.1.l
[Computation by Abstract Devices]: Models of Computation—automata; rekzrions among models;
F. 1.2 [Computation by Abstract Devices]: Modes of Computation—purallefism and concurrency; H.2,4
IDatabase Management]: Systems—concurrency; distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous systems, atomic broadcast,
Byzantine Generals’ problem, commit problem, consensus problem, crash failures, failure detection,
fault-tolerance, message passing, partial synchrony, processor failures

A preliminary version of this paper appeared in Proceedings of (he IOth ACM Symposium on Principles
of Distributed Computing (ACM, New York, pp. 325-340).

Research supported by an IBM graduate fellowship, NSF grants CCR-8901780, CCR-9102231, and

CCR-940286, and DARPMNASA Ames Grant NAG-2-593.

Authors’ present addresses: Tushar Deepak Chandra, 1.B.M. T.J, WatsonResearchCenter, 30 Saw
Mill Road, Hawthorne,NY 10532;Sam Toueg, Department of Computer Science, Upson Hall,
Cornell University, Ithaca, NY 148S3.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
0 1996 ACM 0004-54 11/96/0300-0225 $03.50

JournaloftheACM, V,,l43.No 2,March{996,pp 225-267

226 T. D. CHANDRA AND S. TOUEG

1. Introduction

The design and verification of fault-tolerant distributed applications is widely
viewed as a complex endeavor. In recent years, several paradigms have been
identified which simplify this task. Key among these are Consensus and Atomic
Broadcast. Roughly speaking, Consensus allows processes to reach a common
decision, which depends on their initial inputs, despite failures. Consensus
algorithms can be used to solve many problems that arise in practice, such as
electing a leader or agreeing on the value of a replicated sensor. Atomic
Broadcast allows processes to reliably broadcast messages, so that they agree on
the set of messages they deliver and the order of message deliveries. Applications
based on these paradigms include SIFT [Wensley et al. 1978], State Machines
[Lamport 1978; Schneider 1990], Isis [Birman and Joseph 1987; Birman et al.
1990], Psync [Peterson et al. 1989], Amoeba [Mullender 1987], Delta-4 [Powell
1991], Transis [Amir et al. 1991], HAS [Cristian 1987], FAA [Cristian et al.
1990], and Atomic Commitment.

Given their wide applicability, Consensus and Atomic Broadcast have been
extensively studied by both theoretical and experimental researchers for over a
decade. In this paper, we focus on solutions to Consensus and Atomic Broadcast
in the asynchronous model of distributed computing. Informally, a distributed
system is asynchronous if there is no bound on message delay, clock drift, or the
time necessary to execute a step. Thus, to say that a system is asynchronous is to
make no timing assumptions whatsoever. This model is attractive and has
recently gained much currency for several reasons: It has simple semantics;
applications programmed on the basis of this model are easier to port than those
incorporating specific timing assumptions; and in practice, variable or unex-
pected workloads are sources of asynchrony—thus, synchrony assumptions are, at
best, probabilistic.

Although the asynchronous model of computation is attractive for the reasons
outlined above, it is well known that Consensus and Atomic Broadcast cannot be
solved deterministically in an asynchronous system that is subject to even a single
crash failure [Fischer et al. 1985; Dolev et al. 1987].1 Essentially, the impossibility
results for Consensus and Atomic Broadcast stem from the inherent difficulty of
determining whether a process has actually crashed or is only “very slow.”

To circumvent these impossibility results, previous research focused on the use
of randomisation techniques [Chor and Dwork 1989], the definition of some
weaker problems and their solutions [Dolev et al. 1986; Attiya et al. 1987;
Bridgland and Watro 1987; Biran et al. 1988], or the study of several models of
partial synchrony [Dolev et al. 1987; Dwork et al. 1988]. Nevertheless, the
impossibility of deterministic solutions to many agreement problems (such as
Consensus and Atomic Broadcast) remains a major obstacle to the use of the
asynchronous model of computation for fault-tolerant distributed computing.

In this paper, we propose an alternative approach to circumvent such impossi-
bility results, and to broaden the applicability of the asynchronous model of
computation. Since impossibility results for asynchronous systems stem from the
inherent difficulty of determining whether a process has actually crashed or is

1Roughly speaking, a crash failure occurs when a process that has been executing correctly, stops
prematurely. Once a process crashes, it does not reeover.

Unreliable Failure Detectors for Reliable Distributed Systems 227

only “very slow,” we propose to augment the asynchronous model of computa-
tion with a model of an external failure detection mechanism that can make
mistakes. In particular, we model the concept of unreliable failure detectors for
systems with crash failures. In the rest of this introduction, we informally
describe this concept and summarise our results.

We consider distributed failure detectors: each process has access to a local
failure detector modufe. Each local module monitors a subset of the processes in
the system, and maintains a list of those that it currently suspects to have
crashed. We assume that each failure detector module can make mistakes by
erroneously adding processes to its list of suspects: that is, it can suspect that a
process p has crashed even though p is still running. If this module later believes
that suspecting was a mistake, it can remove p from its list. Thus, each module
may repeatedly add and remove processes from its list of suspects. Furthermore,
at any given time the failure detector modules at two different processes may
have different lists of suspects.

It is important to note that the mistakes made by an unreliable failure detector
should not prevent any correct process from behaving according to specification
even if that process is (erroneously) suspected to have crashed by all the other
processes. For example, consider an algorithm that uses a failure detector to
solve Atomic Broadcast in an asynchronous system. Suppose all the failure
detector modules wrongly (and permanently) suspect that correct process p has
crashed. The Atomic Broadcast algorithm must still ensure that p delivers the
same set of messages, in the same order, as all the other correct processes.
Furthermore, ifp broadcasts a message m, all correct processes must deliver m .Z

We define failure detectors in terms of abstract properties as opposed to giving
specific implementations; the hardware or software implementation of failure detec-
tors is not the concern of this paper, This approach allows us to design applications
and prove their correctness relying solely on these properties, without referring to
low-level network parameters (such as the exact duration of time-outs that are used
to implement failure detectors). This makes the presentation of applications and
their proof of correctness more modular. Our approach is well suited to model many
existing systems that decouple the design of fault-tolerant applications from the
underlying failure detection mechanisms, such as the Isis Toolkit [Birman et al. 1990]
for asynchronous fault-tolerant distributed computing.

We characterize a class of failure detectors by specifying the completeness and
accuracy properties that failure detectors in this class must satisfy. Roughly
speaking, completeness requires that a failure detector eventually suspects every
process that actually crashes,3 while accuracy restricts the mistakes that a failure
detector can make. We define two completeness and four accuracy properties,
which gives rise to eight classes of failure detectors, and consider the problem of
solving Consensus using failure detectors from each class.4

z A different approach was taken by the Isis system [Ricciardi and Birman 1991]: a correct process
that is wrongly suspected to have crashed, is forced to crash itself. In other words, the Isis failure
detector forces the system to conform to its view. To applications such a failure detector makes no
mistakes. For a more detailed discussion on this, see Section 9.3.
‘ In this introduction, we say that the failure detector suspects that a process p has crashed if any

local failure detector module suspects that p has crashed.
‘ We later show that Consensus and Atomic Broadcast are equivalent in asynchronous systems: any
Consensus algorithm can bc transformed into an Atomic Broadcast algorithm and vice versa. Thus,

228 T. D. CHANDRAAND S. TOUEG

To do so, we introduce the concept of “reducibility” among failure detectors.
Informally, a failure detector ‘3’ is reducible to ~ailure detector QI if there is a
distributed algorithm that can transform S3into 9’. We also say that Q‘ is weaker
than $3: Given this reduction algorithm, anything that can be done using failure
detector $3’, can be done using 9 instead. Two failure detectors are equivalent if
they are reducible to each other. Using the concept of reducibility (extended to
classes of failure detectors), we show how to reduce our eight classes of failure
detectors to four, and consider how to solve Consensus for each class.

We show that certain failure detectors can be used to solve Consensus in
systems with any number of process failures, while others require a majority of
correct processes. In order to better understand where the majority requirement
becomes necessary, we study an infinite hierarchy of failure detector classes and
determine exactly where in this hierarchy the majority requirement becomes
necessary.

Of special interest is OW, the weakest class of failure detectors considered in
this paper. Informally, a failure detector is in OW if it satisfies the following two
properties:

Completeness. There is a time after which every process that crashes is
permanently suspected by some correct process.

Accuracy. There is a time after which some correct process is never suspected
by any correct process.

Such a failure detector can make an infinite number of mistakes: Each local
failure detector module can repeatedly add and then remove correct processes
from its list of suspects (this reflects the inherent difficulty of determining
whether a process is just slow or whether it has crashed). Moreover, some correct
processes may be erroneously suspected to have crashed by all the other
processes throughout the entire execution.

The two properties of OW state that eventually some conditions must hold
forever; of course this cannot be achieved in a real system. However, in practice,
it is not really required that these conditions hold forever. When solving a
problem that “terminates”, such as Consensus, it is enough that they hold for a
“sufficiently long” period of time: This period should be long enough for the
algorithm to achieve its goal (e.g., for correct processes to decide). When solving
a problem that does not terminate, such as Atomic Broadcast, it is enough that
these properties hold for “sufficiently long” periods of time: Each period should
be long enough for some progress to occur (e.g., for correct processes to deliver
some messages). However, in an asynchronous system it is not possible to
quantify “sufficiently long”, since even a single process step is allowed to take an
arbitrarily long amount of time, Thus, it is convenient to state the properties of
OW in the stronger form given above.s

Another desirable feature of OW is the following. If an application assumes a
failure detector with the properties of OW, but the failure detector that it actually
uses “malfunctions” and continuously fails to meet these properties-for example,

we can focus on solving Consensus since all our results will automatically apply to Atomic Broadcast
as well.
5 Solving a problem with the assumption that certain properties hold for sufficiently long has been
done previously, see Dwork et al. [1988].

Unreliable Faiiure Detectors for Reliable Distributed Systems 229

there is a crash that no process ever detects, and all correct processes are repeatedly
(and forever) falsely suspected—the application may lose liveness but not safe(y. For
example, if a Consensus algorithm assumes the properties of OW, but the failure
detector that it actually uses misbehaves continuously, processes may be prevented
from deciding, but they never decide different values (or a value that is not allowed).
Similarly, with an Atomic Broadcast algorithm, processes may stop delivering
messages, but they never deliver messages out-of-order.

The failure detector abstraction is a clean extension to the asynchronous
model of computation that allows us to solve many problems that are otherwise
unsolvable. Naturally, the question arises of how to support such an abstraction
in an actual system. Since we specifi failure detectors in terms of abstract
properties, we are not committed to a particular implementation. For instance,
one could envision specialised hardware to support this abstraction. However,
most implementations of failure detectors are based on time-out mechanisms.
For the purpose of illustration, we now outline one such implementation based
on an idea in [Dwork et al, 1988] (a more detailed description of this implemen-
tation and of its properties is given in Section 9.1).

Every process q periodically sends a “q-is-alive” message to all. If a process p
times-out on some process q, it adds q to its list of suspects. If p later receives a
“q-is-alive” message, p recognizes that it made a mistake by prematurely timing
out on q: p removes q from its list of suspects, and increases the length of its
timeout period for q in an attempt to prevent a similar mistake in the future.

In an asynchronous system, this scheme does not implement a failure detector
with the properties of OW:C an unbounded sequence of premature time-outs may
cause every correct process to be repeatedly added and then removed from the
list of suspects of every correct process, thereby violating the accuracy property
of OW. Nevertheless, in many practical systems, increasing the timeout period
after each mistake ensures that eventually there are no premature time-outs on
at least one correct process p. This gives the accuracy property of 07$”: there is a
time after which p is permanently removed from all the lists of suspects. Recall
that, in practice, it is not necessary for this to hold permanently; it is sufficient
that it holds for periods that are “long enough” for the application using the
failure detector to make sufficient progress or to complete its task. Accordingly,
it is not necessary for the premature time-outs on p to cease permanently: it is
sufficient that they cease for “long enough” periods of time.

Having made the point that in practical systems one can use time-outs to
implement a failure detector with the properties of 074”, we reiterate that all
reasoning about failure detectors (and algorithms that use them) should be done in
terms of their abstract properties and not in terms of any particular implementation.
This is an important feature of this approach, and the reader should refrain from
thinking of failure detectors in terms of specific time-out mechanisms.

Any failure detector that satisfies the completeness and accuracy properties of
OW provides sufficient information about failures to solve Consensus. But is this
information necessary? Indeed, what it is the “weakest” failure detector for
solving Consensus?

h Indeed, no algorithm can implement such a failure detector in an asynchronous system: as we show
in Section 6.2, this implementation could be used to solve Consensus in such a system, contradicting
the impossibility result of Fischeret al. [1985].

230 T. D. CHANDRAAND S. TOUEG

Chandra et al. [1992] answer this question by considering OWO, the weakest
failure detector in OW. Roughly speaking, OWO satisfies the properties of
OW, and no other properties. Chandra et al. [1992] show that OWO is the
weakest failure detector that can be used to solve Consensus in asynchronous
systems (with a majority of correct processes). More precisely, Chandra et al.
[1992] show that if a failure detector Q can be used to solve Consensus, then
there is a distributed algorithm that transforms Q into O’WO. Thus, in a
precise sense, O’WO is necessary and sufficient for solving Consensus in
asynchronous systems (with a majority of correct processes). This result is
further evidence to the importance of O’W for fault-tolerant distributed
computing in asynchronous systems.

In our discussion so far, we focused on the Consensus problem. In Section 7,
we show that Consensus is equivalent to Atomic Broadcast in asynchronous
systems with crash failures. This is shown by reducing each problem to the
other.’ In other words, a solution for one automatically yields a solution for the
other. Thus, Atomic Broadcast can be solved using the unreliable failure
detectors described in this paper. Furthermore, OWO is the weakest failure
detector that can be used to solve Atomic Broadcast.

A different tack on circumventing the unsolvability of Consensus is pursued in
Dolev et al. [1987] and Dwork et al. [1988]. The approach of those papers is
based on the observation that between the completely synchronous and com-
pletely asynchronous models of distributed systems there lie a variety of interme-
diate partiah!y synchronous models. In particular, those two papers consider at
least 34 different models of partial synchrony and for each model determine
whether or not Consensus can be solved. In this paper, we argue that partial
synchrony assumptions can be encapsulated in the unreliability of failure detec-
tors. For example, in the models of partial synchrony considered in Dwork et al.
[1988] it is easy to implement a failure detector that satisfies the properties of
OW. This immediately implies that Consensus and Atomic Broadcast can be
solved in these models. Thus, our approach can be used to uni@ several
seemingly unrelated models of partial synchrony.8

As we argued earlier, using the asynchronous model of computation is highly
desirable in many applications: it results in code that is simple, portable and
robust. However, the fact that fundamental problems such as Consensus and
Atomic Broadcast have no (deterministic) solutions in this model is a major
obstacle to its use in fault-tolerant distributed computing. Our model of unreli-
able failure detectors provides a natural and simple extension of the asynchro-
nous model of computation, in which Consensus and Atomic Broadcast can be
solved deterministically. Thus, this extended model retains the advantages of
asynchrony without inheriting its disadvantages.

Finally, even though this paper is concerned with solvability rather than
efficiency, one of our algorithms (the one assuming a failure detector with the
properties of OW) appears to be quite efficient: We have recently implemented a
slightly modified version that achieves Consensus within two “asynchronous
rounds” in most runs. Thus, we believe that unreliable failure detectors can be

7 They are actually equivalent even in asynchronous systems with arbitrary, that is, “Byzantine”,
failures. However, that reduction is more complex and is omitted from this paper.
8 The relation between our approach and partial synchrony is discussed in more detail in Section 9.1.

UnreIiabie Failure Detectors for Reliable Distn”buted Systems 231

used to bridge the gap between known impossibility results and the need for

practical solutions for fault-tolerant asynchronous systems.
The remainder of this paper is organised as follows: In Section 2, we describe

our model and introduce eight classes of failure detectors defined in terms of
properties. In Section 3, we use the concept of reduction to show that we can
focus on four classes of failure detectors rather than eight. In Section 4, we
present Reliable Broadcast, a communication primitive for asynchronous systems
used by several of our algorithms. In Section 5, we define the Consensus
problem. In Section 6, we show how to solve Consensus for each one of the four
equivalence classes of failure detectors. In Section 7, we show that Consensus
and Atomic Broadcast are equivalent to each other in asynchronous systems. In
Section 8, we complete our comparison of the failure detector classes defined in
this paper. In Section 9, we discuss related work, and in particular, we describe
an implementation of a failure detector with the properties of OW in several
models of partial synchrony. Finally, in the Appendix we define an infinite
hierarchy of failure detector classes, and determine exactly where in this
hierarchy a majority of correct processes is required to solve Consensus.

2. The Model

We consider asynchronous distributed systems in which there is no bound on
message delay, clock drift, or the time necessary to execute a step. Our model of
asynchronous computation with failure detection is patterned after the one
in Fischer et al. [1985]. The system consists of a set of n processes, II =

{Pi, P27 p.}. Every pair of processes is connected by a reliable communi-
cation channel.

To simplify the presentation of our model, we assume the existence of a
discrete global clock. This is merely a fictional device: the processes do not have
access to it. We take the range 3 of the clock’s ticks to be the set of natural
numbers.

2.1. FAILURESAND FAILURE PATTERNS. Processes can fail by crashing, that is,
by prematurely halting. A failure pattern F is a function from 9 to 2“, where F(t)
denotes the set of processes that have crashed through time t. Once
a process crashes, it does not “recover”, that is, Vt: F(t)C F(t + 1). We define
crashed(F) = U,= T F(r) and correct, = II – crashed(F). If p E crashed(F), we
say p crashes in F and if p E correct(F), we say p is correct in F. We consider only
failure patterns F such that at least one process is correct, that is, correct(F) # 0.

2.2. FAILURE DETECTORS. Each failure detector module outputs the set of
processes that it currently suspects to have crashed.g A failure detector history His
a function from H X 7 to 2n. H(p, t) is the value of the failure detector module
of process p at time f. If q G Ff(p, t), we say that p suspects q at time t in H. We
omit references to H when it is obvious from the context. Note that the
failure detector modules of two different processes need not agree on
the list of processes that are suspected to have crashed, that is, if p # q, then
H(p, t) # H(g, t) ispossible.

9 In Chandra et al. [1992], failure detectors can output values from an arbirrary range

232 T. D. CHANDRAAND S. TOUEG

Informally, a failure detector ~ provides (possibly incorrect) information
about the failure pattern F that occurs in an execution. Formally, fiiihue detector
$3 is a function that maps each failure pattern F to a set of failure detector
histories !3 (F). This is the set of ail failure detector histories that could occur in
executions with failure pattern F and failure detector 9.’0

In this paper, we do not define failure detectors in terms of specific implemen-
tations. Such implementations would have to refer to low-level network parame-
ters, such as the network topology, the message delays, and the accuracy of the
local clocks. To avoid this problem, we specify a failure detector in terms of two
abstract properties that it must satisfy completeness and accuracy. This allows us
to design applications and prove their correctness relying solely on these
properties.

2.3. FAILURE DETECTORPROPERTIES. We now state two completeness prop-
erties and four accuracy properties that a failure detector $/l may satisfy.

COMPLETENESS. We consider two completeness properties:

Strong Completeness. Eventually every process that crashes is permanently
suspected by every correct process. Formally, !21satisfies strong completeness if

VF, VH G Qb(F),3t G 9, Vp E crashed(F),

Vq G correct(F), Vt’ a t :p G If(q, t’).

Weak Completeness. Eventually every process that crashes is permanently
suspected by some correct process. Formaliy, 9 satisfies weak completeness if

VF, VH E Q(F), 3 E 9, Vp ~ crashed(F),

3q G correct(F), Vf’ 2 t:p C H(q, t’).

However, completeness by itself is not a useful property. To see this, consider a
failure detector which causes every process to permanently suspect every other
process in the system. Such a failure detector trivially satisfies strong complete-
ness but is clearly useless since it provides no information about failures. To be
useful, a failure detector must also satisfy some accuracy property that restricts
the mistakes that it can make. We now consider such properties.

ACCURACY. Consider the following two accuracy properties:

Strong Accuracy. No process is suspected before it crashes. Formally, ‘3
satisfies strong accuracy if

Since it is difficult (if not impossible) to achieve strong accuraq in many
practical systems, we also define:

10In general, there are ~anY executions with the same failure pattern ~ (e-g., these executions maY

differ by the pattern of their message exchange). For each such execution, ~ may have a different
failure detector history.

Unreliable Failure Detectors for Reliable Distributed Systems 233

Weak Accuracy. Some correct process is never suspected. Formally, ‘3 satis-
fies weak accuracy if

VF, VH ~ $3(F), 3p E correct(F), Vt E 3, Vg G II – F(t):p @ H(q, t).

Even weak accuracy guarantees that at least one correct process is never
suspected. Since this type of accuracy may be difficult to achieve, we consider
failure detectors that may suspect eve~ process at one time or another. Infor-
mally, we only require that strong accuracy or weak accuracy are eventually
satisfied. The resulting properties are called eventual strong accuracy and eventual
weak accuracy, respectively.

For example, eventual strong accuracy requires that there is a time after which
strong accuracy holds. Formally, 9 satisfies eventual strong accuracy if

VF, VHG$l(F), =t= $, Vt’ at, vp,qE~ –F(t’):p@H(q, t’).

An observation is now in order. Since all faulty processes will crash after some
finite time, we have:

VF, 3t G 3, Vt’ at:II – F(t’) = correct(F).

Thus, an equivalent and simpler formulation of eventual strong accuracy is:

Eventual Strong Accuracy. There is a time after which correct processes are
not suspected by any correct process. Formally, 9 satisfies eventual strong
accuracy if

VF, VH E $3(F), 3 = 3, Vt’ 2 t, Vp, q E correct(F) :p $! I/(q, 1’).

Similarly, we specify eventual weak accuracy as follows:

Eventual Weak Accuracy. There is a time after which some correct process is
never suspected by any correct process. Formally, 9 satisfies eventual weak
accuracy if

VF, VH E 9(F), 3t G 3, 3p E correct(F),

Vr’ a t, Vq c correct(F) :p @ H(q, /’).

We will refer to eventual strong accuracy and eventual weak accuracy as
eventual accuracy properties, and strong accuracy and weak accuracy as pe~etual
accuracy properties.

2.4. FAILUREDETECTORCLASSES. A failure detector is said to be Pe~ect if it
satisfies strong completeness and strong aecuraey. The set of all such failure
detectors, called the class of Petfect failure detectors, is denoted by 9. Similar
definitions arise for each pair of completeness and accuracy properties. There
are eight such pairs, obtained by selecting one of the two completeness proper-
ties and one of the four accuracy properties introduced in the previous section.
The resulting definitions and corresponding notation are given in Figure 1.

2.5. ALGORITHMSAND RUNS. In this paper, we focus on algorithms that use
unreliable failure detectors. To describe such algorithms, we only need informal

234 T. D. CHANDRAAND S. TOUEG

Accuracy
Completeness Strong Weak EventualStrong EventuaIWeak

Strong Perfect Strung Eventuoilp Perfect Eventuall~ Strvng
9 Y 09 Oy’

Weak Wenk EventuaU~ Weak

9 w 02 Ow

FIG.1. Eight classes of failure detectors defined in terms of accuracy and completeness.

definitions of algorithms and runs, based on the formal definitions given
Chandra et al. [19921.11

in

An algorithm A is a collection of n deterministic automata, one for each
process in the system. Computation proceeds in steps of A. In each step, a
process (1) may receive a message that was sent to it, (2) queries its failure
detector module, (3) undergoes a state transition, and (4) may send a message to
a single process. 12Since we model asynchronous systems, messages may experi-
ence arbitrary (but finite) delays. Furthermore, there is no bound on relative
process speeds.

A run of algorithm A using a failure detector QJ is a tuple R = (F, Ha, I, S, T)
where F is a failure pattern, HQ G ~(F) is a history of failure detector ~ for
failure pattern F, 1 is an initial configuration of A, S is an infinite sequence of
steps of A, and T is a list of increasing time values indicating when each step in
S occurred. A run must satisfy certain well-formedness and fairness properties.
In particular, (1) a process cannot take a step after it crashes, (2) when a process
takes a step and queries its failure detector module, it gets the current value
output by its local failure detector module, and (3) every process that is correct
in F takes an infinite number of steps in S and eventually receives every message
sent to it.

Informally, a problem P is defined by a set of properties that runs must satisfy.
An algorithm A solves a problem P using a failure detector ~ if all the runs of A
using $3 satisfy the properties required by P. Let % be a class of failure detectors.
Algorithm A solves problem P using % if for all !2dE %, A solves P using !3.
Finally, we say that problem P can be solved using% if for all failure detectors 9
c & there is an algorithm A that solves P using Q.

We use the following notation. Let v be a variable in algorithm A. We denote
by UPprocess p’s copy of v. The history of v in run R is denoted by ~, that is,
#(p, t) is the value of VPat time t in run R. We denote by 3P process p’s local
failure detector module. Thus, the value of !21Pat time t in run R = (F, H%, 1, S, T)
is HQ(p, t).

2.6. REDUCIBILITY. We now define what it means for an algorithm TQ -Q, to
transform a failure detector Q into another failure detector $3’ (T9+Q, is called
a reduction algotidtm). Algorithm Ta +9, uses ~ to maintain a variable outputp at
every process p. This variable, which is part of the local state of p, emulates the
output of Q‘ at p. Algorithm TQ -Q, transforms !23into Qil’ if and only if for every
run R = (F, HQ, 1, S, T) of TQ+Q, using S3, outpu~ E $3’(F). Note that

II Forma] definitions are necessag in Chandra et al. [1992] to Provea subtlelowerbound.
12Chandraet al. [1992]assumethat eaclrstep is atomic, that is, indivisible with reSpeCtto failures.

Furthermore, each process can send a message to all processes during such a step. These assumptions
were made to strengthen the lower bound result of Chandra et al, [1992].

Unreliable Failure Detectors for Re[iabIe Distributed Systems 235

3’ emulated

FIG,2. Transforming 9 into 9‘,

T%,+i, need not emulate all the failure detector histories of q‘; what we do
require is that all the failure detector histories it emulates be histories of 23’.

Given a reduction algorithm Tg~9,, any problem that can be solved using
failure detector Q‘, can be solved using !JI instead. To see this, suppose a given
algorithm A requires failure detector Q‘, but only 9 is available. We can still
execute A as follows. Concurrently with A, processes run Tg, +a, to transform ~
into ~’. We modify algorithm A at process p as follows: whenever A requires
that p queries its failure detector module, p reads the current value of outputP
(which is concurrently maintained by Ta+q,) instead. This is illustrated in
Figure 2.

Intuitively, since TQ +9 is able to use !23to emulate !3’, 9 must provide at least
as much information about process failures as ‘3’ does. Thus, if there is an
algorithm Ty, +q, that transforms $3 into 9‘, we write $3 Z 93’ and say that Q‘ is
reducible to ‘3; we also say that Qb’ is weaker than 9. Clearly, 5 is a transitive
relation. If $2 Z !3’ and 9’ 5 $3, we write !’3 = 9‘ and say that $2 and $3’ are
equivalent.

Similarly, given two classes of failure detectors % and %‘, if for each failure
detector ’53G % there is a failure detector ‘3’ E %’ such that Q 553’, we write %
> ‘%’and say that %’ is weaker than % (note that if Yi 5 %’, then if a problem is
solvable using %‘, it is also solvable using %). From this definition, 2 is clearly
transitive. If % > %’ and %‘ > %, we write % - %‘ and say that % and %’ are
equivalent.

Consider the trivial reduction algorithm in which each process p periodically
writes the current value output by its local failure detector module into outputP.
From this trivial reduction the following relations between classes of failure
detectors are immediate:

3. From Weak Completeness to Strong Completeness

In Figure 3, we give a reduction algorithm T9 +9, that transforms any given
failure detector $7 that satisfies weak completeness, into a failure detector !21’
that satisfies strong completeness. Furthermore, if !2 satisfies one of the four

236 T. D. CHANDRA AND S. TOUEG

Every process p exwutes the following

Outputp+ 0

cobegin
II Task f: repeat forever

{p queries its load jailure detector module S3,]
Suspectsp 6 3P

send (p, suspectsP) to all

II Task 2: when receive (g, Suspectsq) for some q

Outputp4- (Outputpu suspedsq) - {9} {output, emulates 91}
coencf

FIG.3. Ta-g ~: From Weak Completeness to Strong Completeness.

accuracy properties that we defined in Section 2.3 then 9‘ also does so. In other
words, Tq+q, strengthens completeness while preseming accuracy.

This result allows us to focus on the four classes of failure detectors defined in
the first row of Figure 1, that is, those with strong completeness. This is because,
T~+a, (together with Observation 2.6.1) shows that every failure detector class
in the second row of Figure 1 is actually equivalent to the class above it in that
figure.

Informally, Tq+Q, works as follows: Every process p periodically sends
(p, suspectsP)—where suspectsP denotes the set of processes that p suspects
according to its local failure detector module !31P-to every process. When p
receives a message of the form (q, suspectsg), itadds suspectsq to outputP and
removes q from outputP (recall that outputP is the variable emulating the output
of the failure detector module !?il~).

In our algorithms, we use the notation “send m to all” as a short-hand for “for
all q E II: send m to q.” If a process p crashes while executing this “for loop”, it
is possible that some processes receive the message m while others do not.

Let R = (F, HQ, 1, S, T) be an arbitrary run of Ta+9, using failure detector
‘3. In the following, the run R and its failure pattern F are fixed. Thus, when we
say that a process crashes we mean that it crashes in F. Similarly, when we say
that a process is correct, we mean that it is correct in F. We will show that
outpu~ satisfies the following properties:

PI (Transforming weak completeness into strong completeness). Let p be any
process that crashes. If eventually some correct process permanently suspects p b

H3, then eventually ail correct processes permanently suspect p in outpu~. More
formally:

Vp ~ crashed(F):

3 E 9, =q G correct(F), Vt’ a t:p G Hg(q, t’)

3 3t E 9, Vq ~ correct(F), Vt’ a t:p E outpu~(q, t’).

P2 (Preserving pe~etual accuracy). Let p be any process. If no process
suspects p in Ha before time t, then no process suspects p in outpu~ before
time t.More formally:

Unreliable Failure Detectors for Reliable Distributed Systems 237

Vt’ <t, Vq c n –F(t’):p@Hg(q, t’)

+ Vt’ <t, Vq E II – F(t’):p $$outpu~(g, t’).

P3 (Preserving eventual accuracy). Let p be any correct process. If there is a
time after which no correct process suspects p in lfa, then there is a time after
which no correct process suspects p in outpufi. More formally:

Vp G correct(F):

+’ 3t E 3, Vq G correct(F), Vt’ a t :p @ outputR(q, t‘).

LEMMA 3.1. TW+J satisfies PI.

PROOF. Let p be any process that crashes. Suppose that there is a time t after
which some correct process q permanently suspects p in Hz. We must show that
there is a time after which every correct process suspects p in outpu~.

Since p crashes, there is a time t‘ after which no process receives a message
from p. Consider the execution of Task 1 by process q after time tP = max(t, t‘).

Process q sends a message of the type (q, suspectsq) with p E suspectsq to all
processes. Eventually, every correct process receives (q, suspectsq) and adds p to

output (in Task 2). Since no correct process receives any messages from p after
time t‘ and rP z r‘, no correct process removes p from output after time lP. Thus,
there is a time after which every correct process permanently suspects p in
outputR. •1

LEMMA 3.2. T%+Q, satisfies P2.

PROOF. Let p be any process. Suppose there is a time t before which no
process suspects p in Ha. No process sends a message of the type (–, suspects)
with p E suspects before time t.Thus, no process q adds p to outputq before
time t. •l

LEMMA 3.3. TQ,+% satisfies P3.

PROOF. Let p be any correct process. Suppose that there is a time t after
which no correct process suspects p in 1-la, Thus, all processes that suspect p
after time t eventually crash. Thus, there is a time t’ after which no correct
process receives a message of the type (–, suspec[s) with p G suspects.

Let q be any correct process. We must show that there is a time after which q
does not suspect p in outpu~. Consider the execution of Task 1 by process p
after time t‘, Process p sends a message m = (p, suspectsP) to q. When q
receives m, it removes p from outputq (see Task 2). Since q does not receive any
messages of the type (–, suspects) with p G suspects after time t‘,q does not add
p to outputq after time t‘.Thus, there is a time after which q does not suspect p

in outpu~. •l

THEOREM 3.4. P ? Q, W ? 9, 02 ? 0’3, and OW ? 09.

PROOF. Let ‘3 be any failure detector in Q, W OQ, or OW. We show that
T ,J,-(< , transforms 9! into a failure detector $3’ in 9, $’, 09, or 09’, respectively.

238 T. D. CHANDRA AND S. TOUEG

Every process p executes the following

To execute R-broadcast(m):
send m to all (including p)

R-deliver(m) occurs as fo]lows:
when receive m for the first time

if sender(m) # p then send m to afl
R-deliver(m)

FIG.4. Reliable Broadcast by message diffusion.

Since Q satisfies weak completeness, by Lemma 3.1, 53’ satisfies strong complete-
ness. We now show that ~ and $23’have the same accuracy property. If 9 is in Q
or W, this follows from Lemma 3.2. If !3 is in 0S2 or OW, this follows from
Lemma 3.3. •l

By Theorem 3.4 and Observation 2.6.1, we have:

COROLLARY3.5. 9 = Q, Y’= W, OQ? = 03, and OY = OW.

The relations given in Corollary 3.5 are sufficient for the purposes of this
paper. A complete enumeration of the relations between the eight failure
detectors classes defined in Figure 1 is given in Section 8.

4. Reliable Broadcast

We now define Reliable Broadcast, a communication primitive for asynchronous
systems that we use in our algorithm.13 Informally, Reliable Broadcast guaran-
tees that (1) all correct processes deliver the same set of messages, (2) all
messages broadcast by correct processes are delivered, and (3) no spurious
messages are ever delivered. Formally, Reliable Broadcast is defined in terms of
two primitives, R-broadcasr(m) and R-deliver(m) where m is a message drawn
from a set of possible messages. When a process executes R-broadcast(m), we
say that it R-broadcasts m, and when a process executes R-deliver(m), we say
that it R-delivers m. We assume that every message m includes a field denoted
sender(m) that contains the identity of the sender, and a field with a sequence
number; these two fields make every message unique. Reliable Broadcast
satisfies the following properties [Hadzilacos and Toueg 1994]:

Validity. If a correct process R-broadcasts a message m, then it eventually
R-delivers m.

Agreement. If a correct process R-delivers a message m, then all correct
processes eventually R-deliver m.

Uniform tnte~”ty. For any message m, every process R-delivers m at most
once, and only if m was previously R-broadcast by sender(m).

In Figure 4, we give a simple Reliable Broadcast algorithm for asynchronous
systems. Informally, when a process receives a message for the first time, it relays
the message to all processes and then R-delivers it, This algorithm satisfies

1~This is a ~rash.failure version of the asynchronous broadcast primitive defined in Bracha and
Toueg [1985] for “Byzantine” failures.

Unreliable Failure Detectors for Reliab[e Distributed Systems 239

validity, agreement and uniform integrity in asynchronous systems with up to
n – 1 crash failures. The proof is obvious and therefore omitted.

5. The Consensus Problem

In the Consensus problem, all correct processes propose a value and must reach
a unanimous and irrevocable decision on some value that is related to the
proposed values [Fischer 1983], We define the Consensus problem in terms of
two primitives, propose(v) and decide(u), where u is a value drawn from a set of
possible proposed values. When a process executes propose(v), we say that it
proposes v; similarly, when a process executes decide(u), we say that it decides u.
The Consensus problem is specified as follows:

Termination. Every correct process eventually decides some value.

Uniform inte~”~. Every process decides at most once.

Agreement. No two correct processes decide differently.

UniJorm validi~. If a process decides v, then v was proposed by some
process .14

It is well-known that Consensus cannot be solved in asynchronous systems that
are subject to even a single crash failure [Fischer et al, 1985; Dolev et al. 1987].

6. Solving Consensus using Unreliable Failure Detectors

We now show how to solve Consensus using each one of the eight classes of
failure detectors defined in Figure 1. By Corollary 3.5, we only need to show how
to solve Consensus using each one of the four classes of failure detectors that
satisfy strong completeness, namely, 9, Y’,09, and OY.

In Section 6.1, we present an algorithm that solves Consensus using Y. Since W
> Y, this algorithm also solves Consensus using 9. In Section 6.2, we give a
Consensus algorithm that uses 09’. Since 09 5 0!3’, this algorithm also solves
Consensus using 0$7. Our Consensus algorithms actually solve a stronger form of
Consensus than the one specified in Section 5: They ensure that no two
processes, whether correct or faulty, decide differently—a property called uniform
agreement [Neiger and Toueg 1990].

The Consensus algorithm that uses 9 tolerates any number of failures. In
contrast, the one that uses 09’ requires a majority of correct processes. We show
that to solve Consensus this requirement is necessary even if one uses 09, a class
of failure detectors that is stronger than OY’. Thus, our algorithm for solving
Consensus using 0.9’ (or 09’) is optimal with respect to the number of failures
that it tolerates.

6.1. SOLVINGCONSENSUS USING 9’. The algorithm inFigure 5 solves Consen-
sus using any Strong failure detector $2 E !3’.In other words, it works with any
failure detector Q that satisfies strong completeness and weak accuracy. This
algorithm tolerates up to n – 1 faulty processes (in asynchronous systems with n
processes).

‘4The validitypropertycaptures the relation between the decision value and the proposed values.
Changing this property results in other types of Consensus [Fischer 1983].

240 T. D. CHANDRA AND S. TOUEG

Every procese p executes the foliowin~

procedure propose
vp4-(L,l,... ,l)
VP(P]4- IJp
APt VP

{p’s estimate of the pruposed values}

Phase 1: {astmchnmous rounds r~, 1< rP < n – 1}
forrptltorb-l

send (rP, AP, p) to all
wait until ~q : received (rp, Aq, q) or ~ ~ 9P] {que~ the ~ailum detector}
nwgsP(rP]t {(rp,Aq,II)I r-+ed (rp, AQ~ q)}

Apt(L, L,...,l)

fork+ lton
if Vp[k] = 1 and 3(rP, Aq,q) E msgsp[rP] with A~[k] # 1 then

Vp[k] t Aq[k]
AP[k] + AQ[k]

Pheee 2: send VP to all
wait until ~q : received VQ or q 6 ‘3P] {que~ the faike detector}
lastm9gsP t {Vq I received VQ}
forktl ton

if WQ G hmtnasgsp with Vq[k] = 1 then Vp[k] t 1

Phase 3: decide(first non-l component of Vp)

FIG.5. Solving Consensus using any Q c 9.

The algorithm runs through three phases. In Phase 1, processes execute n – 1
asynchronous rounds (rP denotes the current round number of process p) during
which they broadcast and relay their proposed values. Each process p waits until
it receives a round r message from every process that is not in 9P, before
proceeding to round r + 1. Note that while p is waiting for a message from q in
round r, it is possible that q is added to 9P. If this occurs, p stops waiting for q‘s
message and proceeds to round r + 1.

By the end of Phase 2, correct processes agree on a vector based on the
proposed values of all processes. The ith element of this vector either contains
the proposed value of process pi or 1. We will show that this vector contains the
proposed value of at least one process. In Phase 3, correct processes decide the
first nontrivial component of this vector.

Let R = (F, H9, 1, S, T) be any run of the algorithm in Figure 5 using
9 G Y in which all correct processes propose a value. We have to show that the
termination, uniform validity, agreement and uniform integrity properties of
Consensus hold.

Note that VP[q] is p‘s current estimate of q‘s proposed value. Furthermore,
AP[q] = Uqat the end of round r if and only if p receives Vq, the value proposed
by q, for the first time in round r.

LEMMA 6.1.1. For all p and q, and in all phases, VP[q] is either v~ or 1.

PROOF. Obvious from the algorithm. •l

LEMMA 6.1.2. Eveiy correct process eventual~ reaches Phase 3.

Unreliable Failure Detectors for Reliable Distributed Systems 241

PROOF (SKETCH). The only way a correct processp can be prevented from
reaching Phase 3 is by blocking forever at one of the two wait statements (in
Phase 1 and 2, respectively). This can happen only if p is waiting forever for a
message from a process q and q never joins $lP. There are two cases to consider:

(1) q crashes. Since S2 satisfies strong completeness, there is a time after which
q E !3P.

(2) q does not crash. In this case, we can show (by an easy but tedious induction
on the round number) that q eventually sends the message p is waiting for.

In both cases p is not blocked forever and reaches Phase 3. ❑

Since ~ satisfies weak accuracy there is a correct process c that is never
suspected by any process, that is, Vt E 5, Vp E II – F(t) :c @ H@(p, t). Let

II,denote the set of processes that complete all n – 1 rounds of Phase 1, and Ilz
denote the set of processes that complete Phase 2. We say VP s Vq if and only if
for all k E ~, V,,[k] is either Vq[k] or 1-.

LEMMA 6.1.3. In every round r, 1 s r 5 n – 1, all processes p E 111 receive
(r, A{., c) from process c, that is, (r, Ac, c) is in msgsP[r].

PROOF. Since p E 111,p completes all n – 1 rounds of Phase 1. At each round r,
since c @ 9P, p waits forand receives the message (r, AC,c) from c. ❑

LEMMA6.1.4. For all p G 111, VC = VP at the end of Phase 1.

PROOF, Suppose for some process g, V=[q] # L at the end of Phase 1, From
Lemma 6.1.1. VC[q] = I+. Consider any p E IIl. We must show that VP[q] = Vq at
the end of Phase 1. This is obvious if p = c, thus we consider the case where p # c.

Let r be the first round in which c received Uq (if c = q, we define r to be O).
From the algorithm, it is clear that A=[q] = Vq at the end of round r. There are
two cases to consider:

(l)rSn- 2. In round r + 1 s n – 1, c relays Vq by sending the mes-
sage (r + 1, AC, c) with AC[q] = Uq to all. From Lemma 6.1.3, p receives
(r + 1, A=, c) in round r + 1, From the algorithm, it is clear that p sets
VP[q] to 7Jq by the end of round r + 1.

(2) r = n – 1. In this case, c received Vq for the first time in round n – 1.
Since each process relays Uq (in its vector A) at most once, it is easy to see
that ijq was relayed by all n – 1 processes in II – {c}, including p, before
being received by c. Since p sets VP[q] = Uq before relaying Vq, it follows
that VP[q] = II,, at the end of Phase 1. Cl

LEMMA6.1.5. For all p E IIz, VC = VP al the end of Phase 2.

PROOF. Consider any p c IIz and q E II. We have to show that
VP[q] = VC[q] at the end of Phase 2. There are two cases to consider:

(1) V.[q] = Vq at the end of Phase 1. From Lemma 6.1.4, for all processes
p‘ E II, (including p and c), VP, [q] = Uq at the end of Phase 1. Thus, for all
the vectors V sent in Phase 2, V[q] = Vq. Hence, both VP[q] and V,[q]
remain equal to v~ throughout Phase 2.

(2) Vr[q] = L at the end of Phase 1. Since c @ !3,, p waits for and receives V=
in Phase 2. Since V=[q] = ~, p sets VP[q] t J at the end of Phase 2. ❑

242 T. D. CHANDRAAND S. TOUEG

LEMMA 6.1.6 (UNIFORMAGREEMENT), No two processes decide diflerentfy.

PROOF. From Lemma 6.1.5, all processes that reach Phase 3 have the same
vector V. Thus, all processes that decide, decide the same value. ❑

LEMMA 6.1.7. For all p E IIz, J$[c] = v= at the end of Phase 2.

PROOF. From the algorithm, V=[c] = v= at the end of Phase 1. From Lemma
6.1.4, for all q E II ~, Vq[c] = u= at the end of Phase 1. Thus, no process sends
V with ~c] = 1 in Phase 2. From the algorithm, it is clear that for all p E IIz,
VP[C] = v= at the end of Phase 2. •l

THEOREM 6,1.8. The algorithm in Figure 5 solves Consensus using Y’ in asyn-
chronous systems.

PROOF. From the algorithm in Figure 5, it is clear that no process decides
more than once, and this satisfies the uniform integrity requirement of Consen-
sus. By Lemma 6.1.6, the (uniform) agreement property of Consensus holds.
From Lemma 6.1.2, every correct process eventually reaches Phase 3. From
Lemma 6.1.7, the vector VP of every correct process has at least one non-l
component in Phase 3 (namely, VP[C] = v=). From the algorithm, every process
p that reaches Phase 3 decides on the first non-l component of VP. Thus, every
correct process decides some non- L value in Phase 3—and this satisfies termina-
tion of Consensus. From Lemma 6.1.1, this non-1 decision value is the proposed
value of some process. Thus, uniform validity of Consensus is also satisfied. ❑

By Theorems 3.4 and 6.1.8, we have:

COROLLARY6.1.9. Consensus is solvable using W in aqnchronous systems.

6.2. SOLVINGCONSENSUSUSINGW’. In the previous section, we showed how
to solve Consensus using 9, a class of failure detectors that satisfy weak accuracy:
at least one correct process is never suspected. That solution tolerates any
number of process failures. If we assume that the maximum number of faulty
processes is less than half then we can solve Consensus using 09, a class of
failure detectors that satisfy only eventual weak accuracy. With such failure
detectors, all processes may be erroneously added to the lists of suspects at one
time or another. However, there is a correct process and a time after which that
process is not suspected to have crashed. (Note that at any given time t,

processes cannot determine whether any specific process is correct, or whether
some correct process will never be suspected after time f.)

Let ~ denote the maximum number of processes that may crash.ls Consider
asynchronous systems with ~ < [n/21, that is, where at least [(n + 1)/27 processes
are correct. In such systems, the algorithm in Figure 6 solves Consensus using any
Eventual Strong failure detector $3 E 0$3’.In other words, it works with any failure
detector 9 that satisfies strong completeness and eventual weak accuracy.

This algorithm uses the rotating coordinator paradigm,lb and it proceeds in
asynchronous “rounds”. We assume that all processes have a priori knowledge

*5In the literature, t is often used instead of ~, the notation adopted here. In this paper, we reserve t
to denote real-time.
16See for example,Reischuk [1982], Chang and Maxemchuk [1984], Dwork et al. [1988], Berman et

al. [19’89],and Chandra and Toueg [1990].

Unreliable Failure Detectors for Reliable Distributed Systems 243

Every process p executes the following

procedure propose
estimateP + UP {estimateP is p‘s estimate of the decision uafue}
stateP + un&cided
?-Pto {rp is p‘s currentrmmd number}
tsp +- o {t., is the bt ruund in which p updatededirndeP, initiatly O}

{Rotate thmtigh coordinator. until decisionis reuched}

while stateP = undeci&d

rPtrP+l
CP + (rP mod n) + 1 {~ is the current coordinator}

Phase 1: {AU processes p send estimateP to the current coordinator}
send (p, rP, estimateP, tsP) to CP

Phase 2: {The current coordinator gathers [WI estimates and proposes a new estimate}
if p = CP then

wait until [for [~ 1 processes g : reeeivad (9, rP, estimateq, taq)from q]
msgsp[rp] t {(q, rP, estirnate~, ts~) Ip received (~,rP,estimate~, ts~) from q)
t+ largest tsqsuch that (q, rP,estimateg, tsQ) 6 msgsP[rP]
estimateP + select one estimateq such that (q, rp, estimateq, t) E msgap[rp]
send (p, rp, estimatep) to atl

Phase S: {AH proasses wait for the new estimate proposed by the current coordinator}
wait until [received (CP,rp, estimatecP) from q or CP E 9P]{ Quety the jaihm detector}
if [received (CP,rp, estimateCP) from CP]then {p received estimate=, frum CP}

estimatep + e9timateCP
tsP + rP
send (p, rP, ack) to CP

else send (p, rP, nack) to CP {p suspeets that CP crushed]

Phase 4:
{

The curmmt coordinator waits for [91 replies. lj they indicate that [~1
prvcesses adopted its estimate, the coordinator R-bmndcasta a decide meauage

}
if p = CPthen

wait until [for [*] processes q : received (q, rp, ack) or (q, rP, nack)]

if [for [91 proceasea q : received (q, r~, ack)] then
R-bmadcmt(p, rP, estimateP, deci&)

{If p R-delivers a decide message, p decides acconfingl~}

when R-delive<q, r~, estimateg, decide)
if statep = un&cided then

deeide(estimateq)
WateP + dea”ded

FIG.6. Solving Consensus using any Q ~ 0S?

that during round r, the coordinator is process c = (r mod n) + 1. All messages
are either to or from the “current” coordinator. Every time a process becomes a
coordinator, it tries to determine a consistent decision value. If the current
coordinator is correct and is not suspected by any surviving process, then it will
succeed, and it will R-broadcast this decision value.

The algorithm in Figure 6 goes through three asynchronous epochs, each of
which may span several asynchronous rounds. In the first epoch, several
decision values are possible. In the second epoch, a value gets focked: no

244 T. D. CHANDRA AND S. TOUEG

other decision value is possible. In the third epoch, processes decide the
locked value.1’

Each round of this Consensus algorithm is divided into four asynchronous
phases. In Phase 1, every process sends its current estimate of the decision value
timestamped with the round number in which it adopted this estimate, to the
current coordinator, c. In Phase 2, c gathers r (n + 1)/21 such estimates, selects
one with the largest timestamp, and sends it to all the processes as their new
estimate, estirnateC. In Phase 3, for each process p, there are two possibilities:

(1) p receives estimate= from c and sends an ack to c to indicate that it adopted
estimate= as its own estimate; or

(2) upon consulting its failure detector module QIP, p suspects that c crashed,
and sends a nack to c.

In Phase 4, c waits for [(n + 1)/21 replies (acks or nacks). If all replies are acks,
then c knows that a majority of processes changed their estimates to estirnateC,
and thus estirnateC is locked. Consequently, c R-broadcasts a request to decide
estimateC. At any time, if a process R-delivers such a request, it decides
accordingly.

This algorithm relies on the assumption that ~ < Fn/21, that is, that at least
F(fr + 1)/21 processes are correct. Note that processes do not have to know the
value of ~. But they do need to have a priori knowledge of the list of (potential)
coordinators. Let R be any run of the algorithm in Figure 6 using ~ G 09’ in
which all correct processes propose a value. We have to show that the termina-
tion, uniform validity, agreement and uniform integrity properties of Consensus
hold.

LEMMA 6.2.1 (UNIFORM AGREEMENT). No two processes decide diflerent~.

PROOF. If no process ever decides, the lemma is trivially true. If any
process decides, it must have previously R-delivered a message of the type

(‘, ‘, –, decide). By the uniform integrity property of Reliable Broadcast and
the algorithm, a coordinator previously R-broadcast this message. This coordina-
tor must have received @ + 1)/21 messages of the type –, -, ack) in Phase 4.

\Let r be the smallest round number in which F(n + 1)/2 messages of the type
(-, r, ack) are sent to a coordinator in Phase 3. Let c denote the coordinator of
round r, that is, c = (r mod n) + 1. Let estimate= denote c‘s estimate at the end
of Phase 2 of round r. We claim that for all rounds r’ > r, if a coordinator c‘
sends estimate=, in Phase 2 of round r’, then estimateC, = estimate=.

The proof is by induction on the round number. The claim trivially holds for
r ‘ = r. Now assume that the claim holds for all r’, r s r’ < k. Let Ck be the
coordinator of round k, that is, Ck = (k mod n) + 1. We will show that the
claim holds for r’ = k, that is, if Ck sends estimateCk in Phase 2 of round k, then
estimate=, = estimate=.

From the algorithm it is clear that if Ck sends estimate=, in Phase 2 of round k
then it must have received estimates from at least @ + 1)/21 processes. Thus,
there is some process p such that (1) p sent a (p, r, ack) message to c in Phase
3 of round r, and (2) (p, k, estimateP, tsP) is in msgsc,[k] in Phase 2 of round k.

~TManY con~en~us algorithms in the literature have the property that a value gets locked before

processes decide, see, for example, Reischuk [1982] and Dwork et al. [1988].

Unreliable Failure Detectors for Reliable Distributed Systems 245

Since p sent (p, r, ack) to c in Phase 3 of round r, tsP = r at the end of Phase
3 of round r. Since tsP is nondecreasing, tsP a r in Phase 1 of round k. Thus, in
Phase 2 of round k, (p, k, estimateP, tsP) is in rnsgsc,[k] with tsP > r. It is
easy to see that there is no message (q, k, estimate~, ts~) in msgsc,[k] for which
tsq2 k. Let t be the largest ts~ such that (q, k, estimate~, tsq) is in msgsc, [k].
Thus, r = t < k.

In Phase 2 of round k, c~ executes estimate,, e estimateq where
(q, k, estimateq, t) is in msgsC,[k]. From Figure 6, it is clear that q adopted
estimuteq as its estimate in Phase 3 of round t.Thus, the coordinator of round t

sent estimateq to q in Phase 2 of round t.Since r 5 t < k, by the induction
hypothesis, estimateq = estimateC. Thus, Ck sets estimate=, - estimate= in Phase 2
of round k. This concludes the proof of the claim.

We now show that if a process decides a value, then it decides estimateC.
Suppose that some process p R-delivers (q, r~, estimate~, decide), and thus
decides estimateq. By the uniform integrity property of Reliable Broadcast and
the algorithm, process q must have R-broadcast (q, r~, estimate~, decide) in
Phase 4 of round r~. From Figure 6, q must have received r (n + 1)/27 messages
of the type (–, rq, ack) in Phase 4 of round rq. By the definition of r, r s rq.
From the above claim, estimace~ = estimateC. •!

LEMMA 6.2.2 (TERMINATION). Eve~ correct process eventually decides some
value.

PROOF. There are two possible cases:

(1) Some correct process decides. It must have R-delivered some message of the
type (–, –, –, decide). By the agreement property of Reliable Broadcast, all
correct processes eventually R-deliver this message and decide.

(2) No correct process decides. We claim that no correct process remains
blocked forever at one of the wait statements. The proof is by contradiction.
Let r be the smallest round number in which some correct process blocks
forever at one of the wait statements. Thus, all correct processes reach
the end of Phase 1 of round r: they all send a message of the type
(-, r, estimate, –) to the current coordinator c = (r mod n) + 1. Since a
majority of the processes are correct, at least r(n + 1)/21 such messages are
sent to c. There are two cases to consider:

(a) Eventually, c receives those messages and replies by sending
(c, r, estimate). Thus, c does not block forever at the wait statement in
Phase 2.

(b) c crashes.

In the first case, every correct process eventually receives (c, r, estimalec). In
the second case, since !21satisfies strong completeness, for every correct
process p there is a time after which c is permanently suspected by p, that is,
c G ‘3P. Thus in either case, no correct process blocks at the second wait
statement (Phase 3). So every correct process sends a message of the type

/ \
–, r, ack or (–, r, nack) to c in Phase 3. Since there are at least
(n + 1)/2 correct processes, c cannot block at the wait statement of Phase

4. This shows that all correct processes complete round r—a contradiction
that completes the proof of our claim.

246 T. D. CHANDRAAND S. TOUEG

Since $3 satisfies eventual weak accuracy, there is a correct process q and a
time t such that no correct process suspects q after t.Let t‘z t be a time
such that all faulty processes crash. Note that after time t‘ no process
suspects q. From this and the above claim, there must be a round r such that:

(a) All correct processes reach round r after time t’ (when no process
suspects q).

(b) q is the coordinator of round r (i.e., q = (r mod n) + 1).

In Phase 1 of round r, all correct processes send their estimates to q. In
Phase 2, q receives T(n + 1)/21 such estimates, and sends (q, r, estimateg)
to all processes. In Phase 3, since q is not suspected by any correct process
after time t, every correct process waits for q‘s estimate, eventually receives
it, and replies with an ack to q. Furthermore, no process sends a nack to q
(that can only happen when a process suspects q). Thus, in Phase 4, q
receives r(n + 1)/21 messages of the type (–, r, ack) (and no messages of
the type (–, r, nack)), and q R-broadcasts (q, r, estimateq, decide). By the
validity and agreement properties of Reliable Broadcast, eventually all
correct processes R-deliver q‘s message and decide—a contradiction. Thus,
case 2 is impossible, and this concludes the proof of the lemma. •l

THEOREM 6.2.3. The algorithm in Figure 6 solves Consensus using 09’ in
asynchronous tystems with f < rn/21.

PROOF. Lemma 6.2.1 and Lemma 6.2.2 show that the algorithm in Figure 6
satisfies the (uniform) agreement and termination properties of Consensus,
respectively. From the algorithm, it is clear that no process decides more than
once, and hence the uniform integrity property holds. From the algorithm it is
also clear that all the estimates that a coordinator receives in Phase 2 are
proposed values. Therefore, the decision value that a coordinator selects from
these estimates must be the value proposed by some process. Thus, uniform
validity of Consensus is also satisfied. •l

By Theorems 3,4 and 6.2.3, we have:

COROLLARY6.2.4. Consensus is so fvable using OW in asynchronous systems
with f < Tn/21.

Thus, Consensus can be solved in asynchronous systems using any failure
detector in OW, the weakest class of failure detectors considered in this paper.
This leads to the following question: What is the weakest failure detector for
solving Consensus? The answer to this question, given in a companion paper
[Chandra et al. 1992], is summarised below.

Let OWO be the “weakest” failure detector in OW. Roughly speaking, OWO is
the failure detector that exhibits all the failure detector behaviors allowed by
the properties that define OW. More precisely, OWO consists of all the failure
detector histories that satisfy weak completeness and eventual weak accuracy (for
a formal definition see Chandra et al. [1992]). Chandra et al. [1992] show that
O’WO is the weakest failure detector for solving Consensus in asynchronous
systems with a majority of correct processes.

Unreliable Failure Detectors for Reliable Distributed Systems 247

THEOREM 6.2.5 [CHANDRAET AL. 1992]. If a faihzre detector 9 can be used
to solve Consensus in an asynchronous ~stem, then 9 2 OWO in that system.

By Corollary 6.2.4 and Theorem 6.2.5 we have:

COROLLARY6.2.6. OWO is the weakest failure detector for solving Consensus in
asynchronous ~stems with f < [n/21.

6.3. A LOWERBOUNDON FAULT-TOLERANCE. In Section 6.1, we showed that
failure detectors with pepetual accuracy (i.e., in 9, S2,Y, or W) can be used to
solve Consensus in asynchronous systems with any number of failures. In
contrast, with failure detectors with eventual accuracy (i.e., in 09, OQ, C&, or
OW), our Consensus algorithms require a majority of the processes to be correct,
It turns out that this requirement is necessary: Using 09 to solve Consensus
requires a majority of correct processes. Since 09 5 0S’, the algorithm in Figure
6 is optimal with respect to fault-tolerance.

The proof of this result (Theorem 6.3.1) uses standard “partitioning” tech-
niques (e.g., Ben-Or [1983] and Bracha and Toueg [1985]). It is also a corollary
of Theorem 4.3 in Dwork et al. [1988] together with Theorem 9 in Section 9.1.

THEOREM 6.3.1. Consensus cannot be so!ved using 09 in asynchronous sys-
tems with f 2 rn/21.

PROOF. We give a failure detector QbE OW such that no algorithm can solve
Consensus using $2 in asynchronous systems with f a [n/21. Informally, $3 is the
weakest Eventually Perfect failure detector: it consists of all failure detector
histories that satisfy strong completeness and eventual strong accuracy. More
precisely, for every failure pattern F, 9(F) consists of all failure detector
histories H such that =t c 9, Vt’ = t, Vp G correct(F): q = crashed(F) =
q E H(p, t’).

The proof is by contradiction. Suppose algorithm A solves Consensus using ’21
in asynchronous systems with f z [n/21. Partition the processes into two sets Ho
and 111 such that II. contains [n/21 processes, and 111 contains the remaining
Ln/ 2] processes. Consider the following two runs of A using $3:

Run RO = (Fo, HO, l., So, TO). All processes propose O. All processes
in 110 are correct in FO, while those in 111 crash in FO at the beginning of the
run, that is, Vt G 9: FO(t) = 111 (this is possible since f > Tn/2~). Every process
in II. permanently suspects every process in II ~, that is, Vt E 9, Vp ~ II.:
Ho(p, t) = IIl. Clearly, HO G Qb(FO) as required.

Run R, = (Fl, Hl, 11, SI, 7’1). All processes propose 1. All processes in 111
are correct in F1, while those in 110crash in F’l at the beginning of the run, that
is, Vt E 9: F, (t) = 11O. Every process in 111permanently suspects every process
in 1’10,that is, Vr E 9, Vp G 111 :Hl(p, t) = 11O. Clearly, HI G ‘2b(F1) as
required.

Since RO and R, are runs of A using ~, these runs satisfy the specification of
Consensus—in particular, all correct processes decide O in RO, and 1 in R,. Let

q. E IIo,q ~ E 111, tO be the time at which qO decides O in Ro, and tl be the time
at which q ~ decides 1 in R,. We now construct a run R~ = (F~, HA, IA, SA, TA)
of algorithm A using !3 such that R~ violates the specification of Consensus—a
contradiction.

248 T. D. CHANDRAAND S. TOUEG

In R~ all processes in 110 propose O and all processes in 111 propose 1. No
process crashes in F~, that is, Vt E 9: F~ (t) = 0. All messages from processes
in 110to those in 111and vice-versa, are delayed until time max(ro, t ~). Until time
max(to, t ~), every process in II. suspects every process in ill, and every process
in 111 suspects every process in IIo. After time max(ro, t ~), no process suspects
any other process. More precisely:

Vt S max(rO, t,):

Vp E rIo:HA(p, t) = rI~

Vp G rI,:z-l~(p, t) = 1-1o

Vf > max(tO, tl), Vp G II: H~(p, t) = 0.

Note that HA E $?b(FA) as required.
Until time max(ro, tl), R~ is indistinguishable from I?. for processes in Ho, and R~

is indistinguishable from R ~ for processes in 111.Thus, in R~, q. decides O at time to,
while q, decides 1 at time t~.This violates the agreement property of Consensus. ❑

In the appendix, we refine the result of Theorem 6.3.1: We first define an
infinite hierarchy of failure detector classes ordered by the maximum number of
mistakes that failure detectors can make, and then we show exactly where in this
hierarchy the majority requirement becomes necessary for solving Consensus
(this hierarchy contains all the eight failure detector classes defined in Figure 1).

7. On Atomic Broadcast

We now consider Atomic Broadcast, another fundamental problem in fault
tolerant distributed computing, and show that our results on Consensus also
apply to Atomic Broadcast. Informally, Atomic Broadcast requires that all
correct processes deliver the same messages in the same order. Formally, Atomic
Broadcast is a Reliable Broadcast that satisfies:

Total order. If two correct processes p and q deliver two messages m and m‘,
then p delivers m before m‘ if and only if q delivers m before m‘.

The total order and agreement properties of Atomic Broadcast ensure that all
correct processes deliver the same sequence of messages. Atomic Broadcast is a
powerful communication paradigm for fault-tolerant distributed computing.18

We now show that Consensus and Atomic Broadcast are equivalent in asyn-
chronous systems with crash failures. This is shown by reducing each to the
other.19 In other words, a solution for one automatically yields a solution for the
other. Both reductions apply to any asynchronous system (in particular, they do
not require the assumption of a failure detector). This equivalence has important
consequences regarding the solvability of Atomic Broadcast in asynchronous
systems:

MFor ~xample, see Chang and Mmemchuk [1984], Cristian et al. [1985/1989], Birmmtand Joseph
[1987], Pittelli and Garcia-Molina [1989], Budhiraja et al. [1990], Gopal et al. [1990], and Schneider
[1990].
19They are actually quiva]ent even in asynchronous systems with arbitrary failures. However, the

reduction is more complex and is omitted here.

Unreliable Failure Detectors for Reliable Distributed Systems 249

Every process p executes the following

Initialisation:

R-delivered + 0
A.delivered G 0
ktO

To execute A-broadmst(m):

R-broadcast(m)

A-deliver(–) occurs as follows:

when R-deliver(m)
Redelivered t Rdeliuered u {m)

when Redelivered – A-detivered # 0
k+k+l
A-undelivered + Redelivered – Adelivered

propose(k, A.undelivered)
wait until decide(k, msgSetk)

Adeliverk 6 msgSetk – A-delivered

atomically deliver at] messages in A_&liverk in some deterministic order

Adelivered t Adelivered U Adeliverk

FtG.7. Using Consensus to solve Atomic Broadcast.

{ Task 1 }

{ Task 2 }

{ Task 3 }

(1) Atomic Broadcast cannot be solved with a deterministic algorithm in asyn-
chronous systems, even if we assume that at most one process may fail, and it
may only fail by crashing. This is because Consensus has no deterministic
solution in such systems [Fischer et al. 1985].

(2) Atomic Broadcast can be solved using randomization or unreliable failure
detectors in asynchronous systems. This is because Consensus is solvable
using these techniques in such systems (for a survey of randomised Consen-
sus algorithms, see [Chor and Dwork 1989]).

Consensus can be easily reduced to Atomic Broadcast as follows [Dolev et al.
1987], To propose a value, a process atomically broadcasts it. To decide a value,
a process picks the value of the first message that it atomically delivers.20 By total
order of Atomic Broadcast, all correct processes deliver the same first message.
Hence, they choose the same value and agreement of Consensus is satisfied. The
other properties of Consensus are also easy to verify. In the next section, we
reduce Atomic Broadcast to Consensus.

7.1. REDUCING ATOMIC BROADCAST TO CONSENSUS. In Figure 7, we show
how to transform any Consensus algorithm into an Atomic Broadcast algorithm
in asynchronous systems. The resulting Atomic Broadcast algorithm tolerates as
many faulty processes as the given Consensus algorithm.

Our Atomic Broadcast algorithm uses repeated (possibly concurrent, but
completely independent) executions of Consensus. Intuitively, the kth execution
of Consensus is used to decide on the kth batch of messages to be atomically

1~1Note that thj~ reduction does nor require the assumption of a failure detector.

250 T. D, CHANDRAAND S. TOUEG

delivered. Processes disambiguate between these executions by tagging all the
messages pertaining to the kth execution of Consensus with the counter k.
Tagging each message with this counter constitutes a minor modification to any
given Consensus algorithm. The propose and decide primitives corresponding to
the kth execution of Consensus are denoted by propose(k, –) and decide(k, –).

Our Atomic Broadcast algorithm also uses the R-fvoadcast(m) and R-deliv-
er(m) primitives of Reliable Broadcast. To avoid possible ambiguities between
Atomic Broadcast and Reliable Broadcast, we say that a process A-broadcasts or
A-delivers to refer to a broadcast or a delivery associated with Atomic Broadcast;
and R-broadcasts or R-delivers to refer to a broadcast or delivery associated with
Reliable Broadcast.

The Atomic Broadcast algorithm described in Figure 7 consists of three tasks,
Task 1, Task 2, and Task 3, such that: (1) any task that is enabled is eventually
executed, and (2) Task i can execute concurrently with Task j’ provided i # j.

When a process wishes to A-broadcast a message M, it R-broadcasts m
(Task 1). When a process p R-delivers m, it adds m to the set R_deliveredP
(Task 2). When p A-delivers a message m, it adds m to the set A_de/iveredP
(Task 3). Thus, R_deliveredP – A _deliveredP, denoted A _undeliveredP, is the set
of messages that p R-delivered but not yet A-delivered. Intuitively, these are the
messages that were submitted for Atomic Broadcast but are not yet A-delivered,
according top.

In Task 3, process p periodically checks whether A _unde/iveredP contains
messages. If so, p enters its next execution of Consensus, say the kth one, by
proposing A _undeliveredP as the next batch of messages to be A-delivered.
Process p then waits for the kth Consensus decision, denoted nngSet ‘. Finally, p
A-delivers all the messages in msgSetk except those it already A-delivered. More
precisely, p A-delivers all the messages in the set A _deliver~ = msgSetk –
A _deliveredP, and it does so in some deterministic order that was agreed a priori
by all processes, for example, in lexicographical order.

LEMMA 7.1.1. For any two correct processes p and q, and any message m, if
m E R_deliveredP, then eventually m E R_delivered~.

PROOF. If m G R_deliveredP, then p R-delivered m (in Task 2). Since p is
correct, by the agreement property of Reliable Broadcast q eventually R-delivers
m, and inserts m into R_delivered~. •l

LEMMA 7.1.2. For any two correct processes p and q, and all k z 1:

(1) Ifp executes propose(k, –), then q eventually executes propose(k, -).

k then q eventually A -delivers messages in(2) If p A-delivers messages in A _deliverP,
A _deliver$ and A _deliver~ = A _deliver~.

PROOF. The proof is by simultaneous induction on (1) and (2). Fork = 1, we
first show that if p executes propose(l, –), then q eventually executes
propose(l, –). When p executes propose(l, -), R_de/iveredP must contain some
message m. By Lemma 7.1.1, m is eventually in R_delivered~. Since A_de/iveredg
is initially empty, eventually R_delivered~ - A _deliveredq # 0. Thus, q eventu-
ally executes Task 3 and propose(l, –).

We now show that if p A-delivers messages in A _deliver~, then q eventually
A-delivers messages in A_deliver& and A _deliver~ = A _deliver~. From the

Unreliable Failure Detectors for Reliable Distributed Systems 251

algorithm, if p A-delivers messages in A _de/iver~, it previously executed pro-
pose(1, –). From part (1) of the lemma, all correct processes eventually execute
propose(1, –). By termination and uniform integrity of Consensus, every correct
process eventually executes decide(l, -) and it does so exactly once. By
agreement of Consensus, all correct processes eventually execute
decide(1, msgSet]) with the same msgSet 1. Since A _deiiveredP and A _delivered~
are initially empty, and msgSet~ = msgSet~, we have A _deliver~ = A _de!iver~.

Now assume that the lemma holds for all k, 1 < k < /. We first show that if
p executes propose(l, -), then q eventually executes propose(l, -). When p
executes propose(l, –), R_de/ivered must contain some message m that is not in
A _deliveredP. Thus, m is not in U~l]l A _deliver~. By the induction hypothesis,
A _deliver~ = A _deliver$ for all 1 s k s 1 – 1. So m is not in U~j*l A _deliver~.
Since m is in R_deliveredP, by Lemma 7.1.1, m is eventually in R_deliveredq.
Thus, there is a time after q A-delivers A _deliver&-] such that there is a mes-
sage in R _delivered~ – A _deliveredq. So q eventually executes Task 3 and
propose(l, –).

We now show that if p A-delivers messages in A _deliver~, then q A-delivers
messages in A _deliver~, and A _deliver~ = A _deliver~. Since p A-delivers
messages in A _deliver~, itmust have executed propose(l, –). By part (1) of this
lemma, all correct processes eventually execute propose(l, –). By termination
and uniform integrity of Consensus, every correct process eventually executes
decide(l, –) and it does so exactly once. By agreement of Consensus, all correct
processes eventually execute decide(l, msgSet~) with the same msgSet’. Note
that A _deliver~ = msgSet~ – U jL1l A _deliver~, and A _deliver~ = msgSet~ –
U~~’l A _deliver~. By the induction hypothesis, A _deliver~ = A _deliver~ for all
1 s k s i – 1. Since msgSet~ = msgSet~, A_deliver~ = A_deliver~. ❑

LEMMA 7.1.3. The algorithm in Figure 7 satisfies the agreement and total order
properties of A-broadcast.

PROOF. Immediate from Lemma 7.1.2 and the fact that correct processes
A-deliver messages in each batch in the same deterministic order. ❑

LEMMA 7.1.4 (VALIDITY). If a correct process A-broadcasts m, then it eventu-
ally A-delivers m.

PROOF. The proof is by contradiction. Suppose a correct process p A-broad-
casts m but never A-delivers m, By Lemma 7.1.3, no correct process A-delivers
m.

By Task 1 of Figure 7, p R-broadcasts m. By the validity and agreement
properties of Reliable Broadcast, every correct process q eventually R-delivers
m, and inserts m in R_deliveredq (Task 2). Since correct processes never
A-deliver m, they never insert m in A _delivered. Thus, for every correct process
q, there is a time after which m is permanently in R_deliveredq-A _deiivered~.
From Figure 7 and Lemma 7.1.2, there is a kl, such that for all 1> kl, all correct
processes execute propose(l, –), and they do so with sets that always include m.

Since all faulty processes eventually crash, there is a k2 such that no faulty
process executes propose(l, –) with 1 a kz. Let k = max(k ~, k2). Since all
correct processes execute propose(k, –), by termination and agreement of
Consensus, all correct processes execute decide(k, msgSet~) with the same
msgSetk. By uniform validity of Consensus, some process q executed

252 T. D. CHANDRAAND S. TOUEG

propose(k, msgSetk). From our definition of k, q is correct and msgSetk
contains m. Thus, all correct processes, including p, A-deliver m—a contradic-
tion that concludes the proof. ❑

LEMMA 7.1.5 (UNIFORM INTEGRITY). For any nzessuge nz, each process A-
delivers m at most once, and only if m was previously A-broadcast by sender(m).

PROOF. Suppose a process p A-delivers m. After p A-delivers m, itinserts m
in A _deliveredP. From the algorithm, it is clear that p cannot A-deliver m again.

From the algorithm, p executed decide(k, msgSetk) for some k and some
msgSefk that contains m. By uniform validity of Consensus, some process q must
have executed propose(k, msgSetk). So q previously R-delivered all the mes-
sages in msgSetk, including m. By the uniform integrity property of Reliable
Broadcast, process sender(m) R-broadcast m. So, sender(m) A-broadcast m. ❑

THEOREM 7.1.6. Consider any system (synchronous or asynchronous) subject to
crash failures and where Reliable Broadcast can be implemented. The algorithm in
Figure 7 transfomrs any algorithm for Consensus into an Atomic Broadcast
algorithm.

PROOF. Immediate from Lemmata 7.1.3, 7.1.4, and 7.1.5. •!

Since Reliable Broadcast can be implemented in asynchronous systems with
crash failures (Section 4), the above theorem shows that Atomic Broadcast is
reducible to Consensus in such systems. As we showed earlier, the converse is
also true. Thus:zl

COROLLARY7.1.7. Consensus and Atomic Broadcast are equivalent in asyn-
chronous systems,

This equivalence immediately implies that our results regarding Consensus (in
particular Corollaries 6.1.9 and 6.2.6, and Theorem 6.3.1) also hold for Atomic
Broadcast:

COROLLARY7.1.8. Atomic Broadcast is solvable u.ring W in a~nchronous
systems with f < n, and using OW in asynchronous systems with f < rn/21.

COROLLARY7.1.9. OWO b the weakest failure detector for solving Atomic
Broadcast in asynchronous systems with f < rn/21.

COROLLARY 7.1.10. Atomic Broadcast cannot be solved using 09 in asynchro-
nous systems with f z [n/21.

Furthermore, Theorem 7.1.6 shows that by “plugging in” any randomued
Consensus algorithm (such as the ones in Chor and Dwork [1989]) into the
algorithm of Figure 7, we automatically get a randomized algorithm for Atomic
Broadcast in asynchronous systems.

COROLLARY7.1.11. Atomic Broadcast can be solved by randomized algorithms
in asynchronous systems with f < rn/21.

21 ~] ~h~ ~e~ult~ stated hencefofih in this section are for systems with crash failures.

Unreliable Failure Detectors for Reliable Distributed Systems 253

8. Comparing Faiiure Detector Classes

We already saw some relations between the eight failure detector classes that we
defined in this paper (Figure 1). In particular, in Section 3 (Corollary 3.5), we
determined that @ = !2, Y’s W, 0!?? = 09, and 09 = OW, This result allowed
us to focus on four classes of failure detectors, namely 9, 9’, O@, and 09, rather
than all eight. It is natural to ask whether these four classes (which require
Strong Completeness and span the four different types of accuracy) are really
distinct or whether some pairs are actually equivalent. More generally, how are
Q1’,9’, OQ, and 09’ related under the 5 relation? This section answers these
questions.22

Clearly, Q > Y’, 0!2? ? 09’, 9’ 5 09, Y’ z 09’, and 9 > 09’. Are these
relations “strict”? For example, it is conceivable that Y 5 !?. If this was true, !7
would be equivalent to Y’(and the relation $9 5 Y’would not be strict). Also, how
are Y and 0’2? related? Is Y 5 09 or 09 5 .9’?

To answer these questions, we begin with some simple definitions. Let % and
%‘ be two classes of failure detectors. If % Z %‘, and % is not equivalent to %”,
we say that ‘%’is strictly weaker than %, and write % > %‘. The following holds:

THEOREM 8.1. P> Y,O$P>OY, L??> 09, 9> OY, and9> 09.
Furthermore, 9 and 09 are incomparable, that is, neither Y ? 09 nor 09 ? 9.

The above theorem and Corollary 3.5 completely characterize the relationship
between the eight failure detector classes (defined in Figure 1) under the
reducibility relation. Figure 8 illustrates these relations as follows: there is an
undirected edge between equivalent failure detector classes, and there is a directed
edge from failure detector class C to class C‘ if C‘ is strictly weaker than C.

Even though 0$ is strictly weaker than 9, Y, and 09, it is “strong enough” to
solve Consensus and Atomic Broadcast, two powerful paradigms of fault-tolerant
computing. This raises an interesting question: Are there any “natural” problems
that require classes of failure detectors that are stronger than 09’?

To answer this question, consider the problem of Terminating Reliable Broad-
cast, abbreviated here as TRB [Hadzilacos and Toueg 1994]. With TRB there is a
distinguished process, the senders, that is supposed to broadcast a single message
from a set 4 of possible messages. TRB is similar to Reliable Broadcast, except
that it requires that every correct process always deliver a message—even if the
sender s is faulty and, say, crashes before broadcasting. For this requirement to
be satisfiable, processes must be allowed to deliver a message that was not
actually broadcast. Thus, TRB allows the delivery of a special message F, @ W,
which states that the senders is faulty (by convention, .render(F,) = s).

With TRB for sender s, s can broadcast any message m E M, processes can
deliver any message m E M U {F,}, and the following hold:

Termination. Every correct process eventually delivers exactly one message.

Validi&. If s is correct and broadcasts a message m, then it eventually
delivers m.

Agreement. If a correct process delivers a message m, then all correct
processes eventually deliver m.

22The results presented here are not central to this paper, hence the proofs are omitted.

254 T. D. CHANDRAAND S. TOUEG

I 1 I 1

I t I I

I 1 I

eight failure detector

9’ 09

C ----> C’: C’ is strictly weaker than C’

c — C’: C is equivalent to C’

lnte~”~. If a correct process delivers a message m then sender(m) = s.
Furthermore, if m # F,, then m was previously broadcast bys.

The reader should verify that the specification of TRB for senders implies that a
correct process delivers the special message F. only ifs is indeed faulty.

TRB is a well-known and studied problem, usually known under the name of
the Byzantine Generals’ Problem [Pease et al. 1980; Lamport et al. 1982].x It
turns out that in order to solve TRB in asynchronous systems one needs to use
the strongest class of failure detectors that we defined in this paper. Specifically:

THEOREM 8.2

(1)

(2)

TRB can be solved using 9 in asynchronous ~stems with any number of
crashes.

TR3 cannot be solved using either 9, 09, or 09 in asynchronous systems. This
impossibility result holds even under the assumption that at most one crash may
occur.

In fact, 9 is the weakest failure detector class that can be used to solve
repeated instances of TRB (multiple instances for each process as the distin-
guished sender).

TRB is not the only “natural” problem that can be solved using $!?’but cannot
be solved using OW. Other examples include the non-blocking atomic conzmit-
ment problem [Chandra and Larrea 1994; Guerraoui 19951, and a form of leader
electi& [Sahel-and Marzullo 1995]. Figure 9 summarises t“hese results.

23we ~efra~nfrom usingthisname because it is often associated with @z@rtine~ai~ures,
consider only crash failures here.

while we

Unreliable Failure Detectors for Reliable Distributed Systems 255

non-blocking atomic commit

Set of problems solvable in:

Synchronous systems

Asynchronous systems using 9

Asynchronous systems using OW

Asynchronous systems

FIG.9. Problem solvability in different distributed computing models.

9. Related Work

9.1. PARTIAL SYNCHRONY. Fischer et al. [1985] showed that Consensus can-
not be solved in an asynchronous system subject to crash failures. The fundamen-
tal reason why Consensus cannot be solved in completely asynchronous systems is
the fact that, in such systems, it is impossible to reliably distinguish a process that
has crashed from one that is merely very slow. In other words, Consensus is
unsolvable because accurate failure detection is impossible. On the other hand, it
is well-known that Consensus is solvable (deterministically) in completely syn-
chronous systems —that is, systems where clocks are perfectly synchronised, all
processes take steps at the same rate and each message arrives at its destination
a fixed and known amount of time after it is sent. In such a system we can use
timeouts to implement a “perfect” failure detector—that is, one in which no
process is ever wrongly suspected, and every faulty process is eventually sus-
pected. Thus, the ability to solve Consensus in a given system is intimately
related to the failure detection capabilities of that system. This realisation led us
to augment the asynchronous model of computation with unreliable failure
detectors as described in this paper.

A different tack on circumventing the unsolvability of Consensus is pursued in
Dolev et al. [1987] and Dwork et al. [1988]. The approach of those papers is
based on the observation that between the completely synchronous and com-
pletely asynchronous models of distributed systems there lie a variety of interme-
diate “partially synchronous” models.

In particular, Dolev et al. [1987] define a space of 32 models by considering
five key parameters, each of which admits a “favorable” and an “unfavorable”
setting. For instance, one of the parameters is whether the maximum message
delay is bounded and known (favorable setting) or unbounded (unfavorable
setting), Each of the 32 models corresponds to a particular setting of the 5
parameters. Dolev et al. [1987] identify four “minimal” models in which Consen-
sus is solvable. These are minimal in the sense that the weakening of any
parameter from favorable to unfavorable would yield a model of partial syn-
chrony where Consensus is unsolvable. Thus within the space of the models

256 T. D, CHANDRAAND S. TOUEG

Every process p executes the foJJowing

outputp t 0
foratlq EfI {AP(q) denotes the duration of p‘s time-out interuai for q}

AP(q) t default time-out interval

cobegin
II Task 1: repeat periodically

aend “p-is-alive” to all

II Task 2: repeat periodically
for all g C f’f

if q $! Outputp and
p did not receive “q-is-aJive” during the last AP(9) ticks of p’s clock
Outputp t Outputp u {q} {p times-out on q: it now suspects q has cmshd}

II Tad 3: when receive “q-is-alive” for some q
if q E Outputp {p knows that it prematurel~ timed-out on q}

ou~Pu~p- ou~Pu~p- {q} {1. p repents on q, and}
AP(q) t AP(g) + I {2. p incrwwes its time-out period for q)

coend

FIG.10. A time-out based implementation of ‘2bE 09 in models of partial synchrony.

considered, Dolev et al. [1987] delineate precisely the boundary between solv-
ability and unsolvability of Consensus, and provides an answer to the question
“What is the least amount of synchrony sufficient to solve Consensus?”.

Dwork et al. [1988] consider two models of partial synchrony. Roughly
speaking, the first model (denoted .& here) stipulates that in every execution
there are bounds on relative process speeds and on message transmission times,
but these bounds are not known. In the second model (denoted .&) these bounds
are known, but they hold only after some unknown time (called GST for Globs/
Stabilization Time). In each one of these two models (with crash failures), it is
easy to implement an Eventually Perfect failure detector ~ E Of??.In fact, we can
implement such a failure detector in a weaker model of partial synchrony
(denoted .M3): one in which bounds exist but they are not known and they hold

24 Since OQ?’> OW, by Corollaries 6,2.4 andonly after some unknown time GST.
7.1.8, this implementation immediately gives Consensus and Atomic Broadcast
solutions for J4&and, a fortiori, for Ml and d.42.

The implementation of $3 ~ W for .M3,which uses an idea found in Dwork et
al. [1988], works as follows (see Figure 10). To measure elapsed time, each
process p maintains a local clock, say by counting the number of steps that it
takes. Each process p periodically sends a “p-is-alive” message to all the
processes. If p does not receive a “q-is-alive” message from some process q for
AP(q) time units on its clock, p adds q to its list of suspects. If p receives
“q-is-alive” from some process q that it currently suspects, p knows that its
previous time-out on q was premature. In this case, p removes q from its list of
suspects and increases its time-out period AP(q).

THEOREM9.1. Consider a partially synchronous system S that conforms to M.3,
that is, for every run of S there is a Global Stabilization Time (GST) after which

24 Note that every system that conforms to Ml or.% also conforms ‘0 ‘3.

Unreliable Failure Detectors for Reliable Distributed Systems 257

some bounds on relative process speeds and message transmission times hold (the
values of G.ST and these bounds are not known). The algorithm in Figure 10
implements an Eventually Perjec~ failure detector !2 G 09? in S.

PROOF (SKETCH). We first show that strong completeness holds, that is,
eventually every process that crashes is permanently suspected by every correct
process. Suppose a process q crashes. Clearly, q eventually stops sending
“q-is-alive” messages, and there is a time after which no correct process receives
such a message. Thus, there is a time t‘ after which: (1) all correct processes
time-out on q (Task 2), and (2) they do not receive any message from q after this
time-out. From the algorithm, it is clear that after time t‘, all correct processes
will permanently suspect q. Thus, strong completeness is satisfied.

We now show that eventual strong accuracy is satisfied. That is, for any correct
processes p and q, there is a time after which p will not suspect q. There are two
possible cases:

(1) Process p times-out on q finitely often (in Task 2). Since q is correct and
keeps sending “q-is-alive” messages forever, eventually p receives one such
message after its last time-out on q. At this point, q is permanently removed
from p’s list of suspects (Task 3).

(2) Process p times-out on q infinitely often (in Task 2). Note that p times-out

on q (and so p adds q to outputP) only if q is not already in outputP. Thus, q
is added to and removed from outputP infinitely often. Process q is removed
from outpu[,, only inTask 3,and every time this occurs p’s time-out period
A,}(q) is increased. Since this occurs infinitely often, AP(q) grows un-
bounded. Thus, eventually (1) the bounds on relative process speeds and
message transmission times hold, and (2) AP(q) is larger than the correct
time-out based on these bounds. After this point, p cannot time-out on q any
more—a contradiction to our assumption that p times-out on q infinitely
often. Thus, Case 2 cannot occur. •l

[n this paper, we have not considered communication failures. In the second
model of partial synchrony of Dwork et al. [1988], where bounds are known but
hold only after GST, messages sent before GST can be lost. We now re-define
.4tz and Ats analogously—messages that are sent before GST can be lost—and

25 The failure detector algorithm inexamine how this affects our results so far.
Figure 10 still implements an Eventually Perfect failure detector Qt E O@ in .tlJ,
despite initial message losses now allowed by this model. On the other hand,
these initial message losses invalidate the Consensus algorithm in Figure 6. It is
easy to modify this algorithm, however, so that it does work in -MS:One can
adopt the techniques used in Dwork et al. [1988] to mask the loss of messages
that are sent before GST.

Failure detectors can be viewed as a more abstract and modular way of
incorporating partial synchrony assumptions into the model of computation.
Instead of focusing on the operational features of partial synchrony (such as the
parameters that define .ttl, Mz, and m~, or the five parameters considered in
Dolev et al. [1987]). we can consider the axiomatic properties that failure

‘5 Note that model .44, is now so-icrly weaker than models M, and AZ: there exist systems thai conform
to .tl ~but not to .44, or .442.

258 T. D. CHANDRA AND S. TOUEG

detectors must have in order to solve Consensus. The problem of implementing a
certain type of failure detector in a specific model of partial synchrony becomes
a separate issue; this separation affords greater modularity.

Studying failure detectors rather than various models of partial synchrony has
other advantages as well. By showing that Consensus is solvable using a certain
type of failure detector we show that Consensus is solvable in all systems in which
this type of failure detector can be implemented. An algorithm that relies on the
axiomatic properties of a failure detector is more general, more modular, and
simpler to understand than one that relies directly on specific operational
features of partial synchrony (that can be used to implement this failure
detector).

From this more abstract point of view, the question “What is the least amount
of synchrony sufficient to solve Consensus?” translates to “What is the weakest
failure detector sufficient to solve Consensus?”. In contrast to Dolev et al.
[1987], which identified a set of minimal models of partial synchrony in which
Consensus is solvable, Chandra et al. [1992] exhibit a single minimum failure
detector, OWO, that can be used to solve Consensus. The technical device that
makes this possible is the notion of reduction between failure detectors.

9.2. UNRELIABLE FAILURE DETECTION IN SHARED MEMORY SYSTEMS. Loui
and Abu-Amara [1987] showed that in asynchronous shared memory systems
with atomic read/write registers, Consensus cannot be solved even if at most one
process may crash.26 This raises the following question: Can we use unreliable
failure detectors to circumvent this impossibility result?

Lo and Hadzilacos [1994J showed that this is indeed possible: They gave an
algorithm that solves Consensus using OW (in shared memory systems with
registers). This algorithm tolerates any number of faulty processes-in contrast to
our result showing that in message-passing systems OW can be used to solve
Consensus only if there is a majority of correct processes. Recently, Neiger [1995]
extended the work of Lo and Hadzilacos by studying the conditions under which
unreliable failure detectors boost the Consensus power of shared objects.

9.3. THE 1s[s TOOLKIT. With our approach, even if a correct process p is
repeatedly suspected to have crashed by the other processes, it is still required to
behave like every other correct process in the system. For example, with Atomic
Broadcast, p is still required to A-deliver the same messages, in the same order,
as all the other correct processes. Furthermore, p is not prevented from
A-broadcasting messages, and these messages must eventually be A-delivered by
all correct processes (including those processes whose local failure detector
modules permanently suspect p to have crashed). In summary, application
programs that use unreliable failure detection are aware that the information
they get from the failure detector may be incorrect: they only take this
information as an imperfect “hint” about which processes have really crashed.
Furthermore, processes are never “discriminated against” if they are falsely
suspected to have crashed.

26me proof in ~ui and Abrs.Arnara [1987] is similar to the proof that COnSenW5 Is impossiblein
message-passing systems when send and receive are not part of the same atomic step [Dolev et al,
1987],

Unreliable Failure Detectors for Reliable Distributed Systems 259

Isis takes an alternative approach based on the assumption that failure
detectors rarely make mistakes [Ricciardi and Birman 1991]. In those cases in
which a correct process p is falsely suspected by the failure detector, p is

effectively forced “to crash” (via a group membership protocol that removes p
from all the groups that it belongs to). An application using such a failure
detector cannot distinguish between a faulty process that really crashed, and a
correct one that was forced to do so. Essentially, the Isis failure detector forces
the system to conform to its view. From the application’s point of view, this
failure detector looks “perfect”: it never makes visible mistakes.

For the Isis approach to work, the low-level time-outs used to detect crashes
must be set ve~ conservatively: Premature time-outs are costly (each results in
the removal of a process), and too many of them can lead to system shutdown.27
In contrast, with our approach, premature time-outs (e.g., failure detector
mistakes) are not so deleterious: they can only delay an application. In other
words, premature time-outs can affect the iiveness but not the safety of an
application. For example, consider the Atomic Broadcast algorithm that uses
OW. If the given failure detector “malfunctions”, some messages maybe delayed,
but no message is ever delivered out of order, and no correct process is forced to
crash. If the failure detector stops malfunctioning, outstanding messages are
eventually delivered. Thus, we can set time-out periods more aggressively than a
system like Isis: in practice, we would set our failure detector time-out periods
closer to the average case, while systems like Isis must set time-outs closer to the
worst-case.

9.4, OTHER WORK. Several works in fault-tolerant computing used time-outs
primarily or exclusively for the purpose of failure detection. An example of this
approach is given by an algorithm in Attiya et al. [1991], which, as pointed out by
the authors, “can be viewed as an asynchronous algorithm that uses a fault
detection (e.g., timeout) mechanism.”

Recent work shows that the Group Membership problem cannot be solved in
asynchronous systems with crash failures, even if one adopts the Isis approach of
crashing processes that are suspected to be faulty but are actually correct
[Chandra et al. 1995]. As with Consensus and Atomic Broadcast, this impossibil-
ity result can be circumvented by the addition of unreliable failure detectors.

Appendix A. A Hierarchy of Failure Detector Classes and Bounds on
Fault- Tolerance

In the preceding sections, we introduced the concept of unreliable failure
detectors that could make mistakes, and showed how to use them to solve
Consensus despite such mistakes. Informally, a mistake occurs when a correct
process is erroneously added to the list of processes that are suspected to have
crashed. In this appendix, we formalize this concept and study a related property
that we call repentance. Informally, if a process p learns that its failure detector
module QIP made a mistake, repentance requires $3P to take corrective action.
Based on mistakes and repentance, we define a hierarchy of failure detector
classes that will be used to unify some of our results, and to refine the lower
bound on fault-tolerance given in Section 6.3. This infinite hierarchy consists of a

m For ~xamplc, the timeout period in the current version of 1S1Sis greater than lo seconds

260 T. D. CIMNDRA AND S, TOUEG

continuum of repentant failure detectors ordered by the maximum number of
mistakes that each one can make.

Al, Mistakes and Repentance

We now define a mistake. Let R = (F, H, I, S, T) be any run using a
failure detector $3.$3 makes a mistake in Rat time tat process p about process q if
at time r, p begins to suspect that q has crashed even though q @ F(t). Formally:

[q@ ~(~), q E ff(p, t)] and [q @ II(P, t - l)].

Such a mistake is denoted by the tuple (R, p, q, t). The set of mistakes made
by ’23in R is denoted by M(R).

Note that only the erroneous addition of q into $3P is counted as a mistake at
p. The continuous retentwn of q into QilPdoes not count as additional mistakes.
Thus, a failure detector can make multiple mistakes at a processp about another
process q onIy by repeatedly adding and then removing q from the set 9P. In
practice, mistakes are caused by premature time-outs.

We define the following four types of accuracy properties for a failure detector
!3 based on the mistakes made by $3:

Strongly k-mistaken. Q makes at most k mistakes. Formally, $3 is strongly
k-mistaken ifi

VR using Q: IM(R)I s k.

Weakly k-mistaken. There is a correct process p such that 9 makes at most k
mistakes about p. Formally, ~ is weakly k-mistaken it

VR = (F, H, I, S, T) using ~, 3p G correct(F):

I{(R, f?>P, 1):(R, q, p, t) C M(R)} I s k

Strongly finitely mistaken. Qllmakes a finite number of mistakes. Formally, !3 is
strongly finitely mistaken ifi

VR using 9: M(R) is finite.

In this case, it is clear that there is a time t after which $3 stops making mistakes
(it may, however, continue to give incorrect information).

Weakly finitely mistaken. There is a correct process p such that 9 makes a
finite number of mistakes about p. Formally, Qilis weakly finitely mistaken if

VR = (F, H, 1, S, T) using Q, 3p G correct(F):

{(R, q, p, t): (R, q, p, t) G M(R)} is finite.

In this case, there is a time t after which ~ stops making mistakes about p (it

may, however, continue to give incorrect information even about p).

For most values of k, the properties mentioned above are not powerful enough
to be useful. For example, suppose every process permanently suspects every
other process. In this case, the failure detector makes at most n (n – 1)
mistakes, but it is clearly useless since it does not provide any information.

Unreliable Failure Detectors for Reliable Distributed Systems 261

The core of this problem is that such failure detectors are not forced to reverse
a mistake, even when a mistake becomes “obvious” (say, after a process q replies
to an inquiry that was sent to q after q was suspected to have crashed). However,
we can impose a natural requirement to circumvent this problem. Consider the
following scenario. The failure detector module at process p erroneously adds q
to $3P at time t.Subsequently, p sends a message to q and receives a reply. This
reply is a proof that q had not crashed at time t.Thus, p knows that its failure
detector module made a mistake about q. Itis reasonable to require that, given
such irrefutable evidence of a mistake, the failure detector module at p takes the
corrective action of removing q from 9P. In general, we can require the
following property:

Repentance, If a correct process p eventually knows that q @ F(t), then at
some time after t,q @ QbP. Formally, 9 is repentant if

VR = (F, H, I, S, T) using~, Vt, Vp, q G II:

[3’ :(R, t’) != K,(q @ F(t))] ~ [Y= [:q @ H(p, d’)].

The knowledge theoretic operator KP can be defined formally [Halpern and
Moses 1990]. Informally, (R, t) + I#Jiff in run R at time t, predicate @holds. We
say (R, t) -P (R’, r’) iff the run R at time t and the run R’ at time t’ are
indistinguishable top. Finally,

(R,t)kKP(@)@ [V (R’,r’) -P(R,t) :(R’,t’)i=@].

For a detailed treatment of Knowledge Theory as applied to distributed systems,
the reader should refer to the seminal work done in Moses et al. [1986] and
Halpern and Moses [1990].

Recall that in Section 2.2 we defined a failure detector to be a function that
maps each failure pattern to a set of failure detector histories. Thus, the
specification of a failure detector depends solely on the failure pattern actually
encountered. In contrast, the definition of repentance depends on the knowledge
(about mistakes) at each process. This in turn depends on the algorithm being
executed, and the communication pattern actually encountered. Thus, repentant
failure detectors cannot be specified solely in terms of the failure pattern actually
encountered. Nevertheless, repentance is an important property that we would
like many failure detectors to satis@.

We now informally define a hierarchy of repentant failure detectors that differ
by the maximum number of mistakes they can make. As we just noted, such
failure detectors cannot be specified solely in terms of the failure pattern actually
encountered, and thus they do not fit the formal definition of failure detectors
given in Section 2.2.

A2. A Hierarchy of Repentant Failure Detectors

Consider the failure detectors that satisfy weak completeness, one of the four
types of accuracy that we defined in the previous section, and repentance. These

262 T. D. CHANDRAAND S. TOUEG

failure detectors can be grouped into four classes according to the actual
accuracy property that they satisfy:

$fW(k): the class of Strong@ lc-Mists/cen failure detectors,

Y’S: the class of Strongly Finitely Mistaken failure detectors,

W g(k): the class of WeaMy k-MMaken failure detectors, and

W%: the class of Weakly Finite~ Mistaken failure detectors.

Clearly, 9’9(0) > 9W(1) > “. .2 !Y~(k) > Y%(k + 1) >. .-2 9’9. A
similar order holds for the W%. Consider a system of n processes of which at
most f may crash. In this system, there are at least n – f correct processes. Since
any failure detector !3 E 9’%((n – f) – 1) makes fewer mistakes than
the number of correct processes, there is at least one correct process that
$3 never suspects. Thus, $3 is also weakly O-mistaken, and we conclude that
Y%((n – f) – 1) > WW(0). Furthermore, it is clear that $% > W~.

These classes of repentant failure detectors can be ordered by reducibility into
an infinite hierarchy, which is illustrated in Figure Al (an edge - represents the
5 relation). Each failure detector class defined in Section 2.4 is equivalent to
some class in this hierarchy. In particular, it is easy to show that:

For example, it is easy to see that the algorithm in Figure 3 transforms any
failure detector in W9 into one in OW. Other conversions are similar or
straightforward and are therefore omitted. Note that V and OW are the strongest
and weakest failure detector classes in this hierarchy, respectively. From Corol-
laries 6.1.9 and 7.1.8, and Observation A2.1, we have:

COROLLARY A2.2. Consensus and Atomic Broadcast are solvable using %%(0)
in asynchronous systems with f < n.

Similarly, from Corollaries 6.2.4 and 7.1.8, and Observation A2. 1, we have:

COROLLARY A2.3. Consensus and Atomic Broadcast are solvable using W% in
asynchronous systems with f < (n/21.

A3. Tight Bouna3 on Fault-Tolerance

Since Consensus and Atomic Broadcast are equivalent in asynchronous systems
with any number of faulty processes (Corollary 7.1.7), we can focus on establish-
ing fault-tolerance bounds for Consensus. In Section 6, we showed that failure
detectors with perpetual accuracy (i.e., in 9, $2.,Y’, or W) can be used to solve
Consensus in asynchronous systems with any number of failures. In contrast, with
failure detectors with eventual accuracy (i.e., in 0!7’, 09, OY, or OW), Consensus
can be solved if and only if a majority of the processes are correct. We now refine
this result by considering each failure detector class % in our infinite hierarchy,
and determining how many correct processes are necessary to solve Consensus
using %. The results are illustrated in Figure Al.

Unreliable Failure Detectors for Reliable Distributed Systems 263

.YW(0)~ ~ E $??(atron.srnt).....Con*nsuasolvable for all J < n

\

f#~(l)Consensus solvable ifT f < n

Yq(2).....Conaensus solvable ifl ~ < n - I
‘,

WWltJ - 1)-c0n*n8us ~l=ble ifl f < ~~1+‘2
Consensussnlvable

SW(LLjJ)...-c0n=n8us ~lvable iff f < ~~1 + 1
forall~<n

Consensus solvable

r’”

J

yge 09s? 0%‘,
iffj< [4jl ~$z O!j= Ow(weale)

FIG.Al. Classes of repentant failure detectors ordered by reducibility. For each class %, the
maximum number of faulty processes for which Consensus can be solved using % is given.

There are two cases depending on whether we assume that the system has a
majority of correct processes or not. If a majority of the processes are correct,
Consensus can be solved with OW, the weakest failure detector class in the
hierarchy. Thus:

Observation A3. 1. In asynchronous systems with f < [n/2], Consensus can
be solved using any failure detector class in the hierarchy of Figure Al.

We now consider the solvability of Consensus in systems that do not have a
majority of correct processes. For these systems, we determine the maximum m
for which Consensus is solvable using Y27(rn) or W%(m). We first show that
Consensus is solvable using Y~(m) if and only if m, the number of mistakes, is
less than or equal to n - f, the number of correct processes. We then show that
Consensus is solvable using ‘W~(m) if and only if M = O.

THEOREM A3.2. In asynchronous systems with f > rn/21, if m > n – f then
Consensus cannot be solved using Y%(m).

PROOF (SKETCH). Consider an asynchronous system with f a [n/21 and
assume m > n – f. We show that there is a failure detector 9 G ~~(m) such
that no algorithm solves Consensus using 9. We do so by describing the behavior
of a Strongly m-Mistaken failure detector Q such that for every algorithm A,
there is a run R~ of A usin 9 that violates the specification of Consensus.

7Since 1 s n – ~ s m/2 , we can partition the processes into three sets 110,
II, and IIc,a,h,d, such that HO and 111 are non-empty sets containing n – f
processes each, and I&h=d is a (possibly empty) set containing the remaining
n – 2(n – f) processes. Henceforth, we only consider runs in which all
processes in IIC,a,A,d crash at the beginning of the run. Let go E llo and
q ~ c II ~. Consider the following two runs of A using $2:

Run RO = (FO, Ho, l., SO, TO). All processes propose O. All processes
in 110 are correct in FO, while all the f processes in HI U llcr.$h=~ crash in

264 T. D. CHANDRA AND S. TOUEG

FO at the beginning of the run, that is, Vt G 9: FO(t) = II ~ U llcr.~h=d.Process
qO G 110 permanently suspects every process in ITl U l_IC~h,d, that is, Vt C 9:
HO(qO, t) = II ~ U llcr.~h,d = FO(t). No other process suspects any process,
that is, Vt E 9, Vq # qO: HO(q, t) = 0. Clearly, !3 satisfies the specification of
a Strongly m-Mistaken failure detector in Ro.

Run RI = (Fl, Z-ll,]1, Sl, Tl). All processes propose 1. All processes in 111
are correct in F1, while all the ~ processes in II. U IIcr.,~,d crash in F1 at the
beginning of the run, that is, Vt ~ 9: Fl(t) = II. U IIc,.,hcd. Process q, E II ~

permanently suspects every process in II. U Ilc,a$k,d, and no other process
suspects any process. Q satisfies the specification of a Strongly m-Mistaken
failure detector in R ~.

If R. or R ~violates the specification of Consensus, A does not solve Consensus
using $3, as we wanted to show. Now assume that both R. and R ~ satisfy the
specification of Consensus. In this case, all correct processes decide O in R. and
1 in R1. Let tobe the time at which go decides O in Ro, and let tlbe the time at
which q ~ decides 1 in R ~. We now describe the behaviour of $3 and a run R~ =

(F~, HA, IA, S~, T~) of A using Q that violates the specification of Consensus.
In R~ all processes in II. propose O and all processes in 111 U IIC,a$hed

propose 1. All processes in Ilc,a,A.d crash in F~ at the beginning of the run. All
messages from processes in lTOto those in 111 and vice-versa, are delayed until
time to + tl. Until time to,(i) 9 behaves as in Ro, and (ii) all the processes in 111
are “very slow”: they do not take any steps. Thus, until time fO, no process in 110
can distinguish between R. and RA, and all processes in II. execute exactly as in
RO. In particular, q. decides O at time to in R~ (as it did in Ro). Note that by time
to,9 made n – f mistakes in RA: go erroneously suspected that all processes in
111crashed (while they were only slow). From time to,the behavior of !9 and run
R~ continue as follows:

(1) At time to, all processes in IIo, except go, crash in FA.

(2) From time to to time to + tl, ql suspects all processes in II. U llC,@Agd,that
is, Vt, to s t S to + t~:HA (ql, t) = no U ~cra,h,d, and no other process
suspects any process. By suspecting all the processes in 110, including go, QI

makes one mistake at process q ~ (about go). Thus, by time to + t~,9) has
made a total of (n – f) + 1 mistakes in R~. Since m > n - f, Qbhas made
at most m mistakes in R~ until time to + t~.

(3) At time tO, processes in 111 “wake up.” From time ?0 to time to + fl they
execute exactly as they did in R ~ from time O to time t~ (they cannot perceive
this real-time shift of ro). Thus, at time to + t~ in run RA, q ~ decides 1 (as it
did at time t~ in RI). Since go previously decided O, R~ violates the
agreement property of Consensus.

(4) From time to + t~ onwards, no more processes crash and every correct
process suspects exactly all the processes that have crashed. Thus, S3satisfies
weak completeness, repentance, and makes no further mistakes.

By (2) and (4), &3 satisfies the specification of a Strongly m-Mistaken failure
detector, that is, !3 E SW(m). From (3), A does not solve Consensus using 9. •l

Unreliable Failure Detectors for Reliable Distributed Systems 265

We now show that the above lower bound is tight:

THEOREM A3.3. In asynchronous systems with m 5 n – f, Consensus can be

solved using Y@(m).

PROOF. Suppose m < n - f, and consider any failure detector QilE SPW(m).
Since m, the number of mistakes made by ‘3, is less than the number of correct
processes, there is at least one correct process that ~ never suspects. Thus, ~
satisfies weak accuracy. By the definition of Y9(m), Q also satisfies weak
completeness. So ‘2 E W, and it can be used to solve Consensus (Corollary
6.1.9).

Suppose m = n - f. Even though $3 can now make a mistake about every
correct process, it can still be used to solve Consensus (even if a majority of the
processes are faulty). The corresponding algorithm uses rotating coordinators,
and is similar to the one for OW given in Figure 6. Because of this similarity, we
omit the details, ❑

From the above two theorems:

COROLLARY A3.4. in asynchronous systems with f z [n/21, Consensus can be
solved using X%(m) if and only if m s n – f.

We now turn our attention to solving Consensus using W ~(m).

THEOREM A3.5. In asynchronous ~stems with f ? rn/21, Consensus cannot be
solved using W%(m) with m > 0.

PROOF. In Theorem A3,2, we described a failure detector ~ that cannot
be used to solve Consensus in asynchronous systems with f = rn / 21. It is easy
to verify that ~ makes at most one mistake about each correct process, and thus
!2 E w%(l). ❑

From Corollary A2.2, and the above theorem, we have:

COROLLARY A3.6. In asynchronous systems with f ? [n/21, Consensus can be
solved using W%(m) if and only if m = O.

ACKNOWLEDGMENTS. We are deeply grateful to Vassos Hadzilacos for his
crucial help in revising this paper. The comments and suggestions of the
anonymous referees, Navin Budhiraja, and Bernadette Charron-Best, were also
instrumental in improving the paper. Finally, we would like to thank Prasad
Jayanti for greatly simplifying the algorithm in Figure 3.

REFERENCES

AMIR, Y., DOLEV, D,, KRAMER, S., ANDMALKI,D. 1991. Transis: A communication sub-system for
high availability. Tech. Rep. CS91-13 (Nov.), Computer Science Department, The Hebrew
University of .Ierusalem, Jerusalem, Israel.

ATrIYA, H., BAR-N• Y, A., DOLEV, D., KOLLER, D., PELEG, D., AND REISCHUK, R. 1987. Achiev-
able cases in an asynchronous environment. In Proceedings of the 28rh Symposium on Foundations
of Compufer Science (Oct.), IEEE Computer Society Press, Washington, D.C., pp. 337-346.

ATTIYA, H,, DWORK, C., LYNCH, N., AND STOCKMEYER,L. 1991. Bounds on the time to reach
agreement in the presence of timing uncertainty. Irr Proceedings of rhe 23rd ACM Symposium CM

Theory of Computing (New Orleans, La,, May 6-8). ACM, New York, pp. 359-369.
BEN-OR, M, 1983. Another advantage of free choice: Completely asynchronous agreement proto-

cols. 1n Proceedings of the 2nd ACM Symposium on Principles of Distributed Compuring (Montreal,

Que.. Canada, Aug. 17-19). ACM, New York, pp. 27-30.

266 T. D. CHANDRA AND S. TOUEG

BERMAN, P.,GARAY, J. A., AND PERRY, K. J. 1989. Towards optimal distributed consensus. In
Proceedings of the 30th Symposium on Foundations of Computer Science (Oct.). IEEE Computer
Society Press, Washington, D.C., pp. 410-415.

BiRAN,O., MORAN,S., AND~rcs, S. 1988. A combinatorialcharacterizationof the distributed
tasks which are solvable in the presence of one faulty processor. In Proceedingsof the 7th ACM
Symposium on Principlesof Distributed Computing (Toronto, Ont., Canada, Aug. 15-17). ACM,
New York, pp. 263-275.

BIRMAN, K. P., COOPER, R., JOSEPH, T. A., KANE, K. P., AND SCHMUCK,F. B. 1990. lsis-A

Dism”buted Programming Environment.

BIRMAN, K. P., AND JOSEPH,T. A. 1987. Reliable communication in the presence of failures. ACM

Trans. Compur. Sysf. 5, 1 (Feb.), 47-76.
BRACHA, G., ANDTOUEG,S. 1985. Asynchronous consensus and broadcast protocols. J. ACM 32,4

(Oct.), 824-840.
BRIDGLAND,M. F., ANDWATRO,R. J. 1987. Fault-tolerant decision making in totally asynchronous

distributed systems. In Proceedings of the 6th ACIU Symposium on Principles of Distributed

Computing (Vancouver, B.C., Canada, Aug. 10-12). ACM, New York, pp. 52-63.
BUDHIRAJA,N., GOPAL, A., AND TOUEG, S. 1990. Early-stopping distributed bidding and applica-

tions. In Proceedings of the 4th International Workshop on Distributed Algon’thms (Sept.). Springer-
Verlag, New York, pp. 301-320.

CHANDRA, T. D., HADZILACOS, V., AND TOUEG, S. 1992. The weakest failure detector for solving
consensus. Technical Report 92-1293 (July), Department of Computer Science, Cornell University.
Available from ftp://ftp.cs.cornell. edu/pub/chandra/failure. detectom.weakest. dvi.Z. A preliminary
version appeared in the Proceedings of the 1 lth ACM Symposium on Principles of Distn”buted

Computing (Vancouver, B.C., Canada, Aug. 10-12). ACM, New York, pp. 147-158.
CHANDRA, T. D., HADZILACOS, V., ANDTOUEG, S. 1995. Impossibility of group membership in

asynchronous systems. Tech. Rep. 95-1533. Computer Science Department, Cornell University,
Ithaca, New York.

CHANDRA,T. D., ANDLARREA,M. 1994. E-mail correspondence. Showed that OW cannot be used
to solve non-blocking atomic commit.

CHANDRA, T. D., AND TOUEG, S. 1990. Time and message efficient reliable broadcasts. In
Proceedings of the Fourth International Workshop on Distributed Algorithms (Sept.). Springer-Verlag,
New York, pp. 289-300.

CHANG, J., ANDMAXEMCHUK,N. 1984. ReliabIe broadcast protocols. ACM Trans. Comput. Syst. 2,

3 (Aug.), 251-273.
CHOR, B., AND DWORK, C. 1989. Randomization in byzantine agreement. Adv. Compur. Res. 5,

443-497.

CRISTIAN, F. 1987. Issues in the design of highly available computing setvices. In Annual Sympo-

sium of the Canadian information Processing Society (July), pp. 9 –16. Also IBM Res. Rep. RJ5856.
Thomas J. Watson Research Center, Hawthorne, N.Y,

CRIST~AN,F., AGHILI, H., STRONG,R., ANDDOLEV, D. 1985/1989. Atomic broadcast: From simple
message diffusion to Byzantine agreement. In Proceedings of the 15th international Symposium on

Fault- Tolemnt Computing (June 1985), pp. 200-206. A revised version appears as IBM Research
Laboratory Technical Report RJ5244 (April 1989). Thomas J. Watson Research Center, Haw-
thorne, N.Y.

CRtSTLAN,F., DANCEY,R. D., AND DEHN, J. 1990. Fault-tolerance in the advanced automation
system. Tech. Rep. RJ 7424 (April), IBM Research Laboratory, Thomas J. Watson Research
Center, Hawthorne, N.Y.

DOLEV, D., DWORK, C., ANCISTOCKMEYER,L. 1987. On the minimal synchronism needed for
distributed consensus. J. ACM 34, 1 (Jan.), 77-97.

DOLEV, D., LYNCH, N. A., PINTER, S. S., STARK, E. W., AND WEIHL, W. E. 1986. Reaching
approximate agreement in the presence of faults. J. ACM 33, 3 (July), 499-516.

DWORK, C., LYNCH, N. A., AND STOCKMEYER,L. 1988. Consensus in the presence of partial
synchrony. J. ACM 35, 2 (Apr.), 288-323.

FISCHER,M. J. 1983. The consensus problem in unreliable distributed systems (a brief survey).
Tech. Rep. 273 (June), Department of Computer WIence, Yale University, New Haven, Corm.

FISCHER,M. J., LYNCH,N. A., ANDPATERSON,M. S. 1985. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 2 (Apr.), 374–382,

Unreliable Failure Detectors for Reliable Distributed Systems 267

GOPAL, A., STRONG,R., TOUEG, S., AND CRISTIAN,F. 1990. Early-delivery atomic broadcast. In
Proceedings of the 9th ACM Symposium on Principles of Distributed Computing (Quebec City, Que,,
Canada, Aug. 22-24). ACM, New York, pp. 297-310.

GUERRAOUI,R. 1995. Revisiting the relationship between non blocking atomic commitment and
consensus. [n Proceedings of the 9th International Workshop on Distributed Algorithms (Sept.).
Springer-Verlag, New York, pp. 87-100.

HADZILACOS, V.,AND TOUEG, S, 1993. Fault-tolerant broadcasts and related problems. In Distrib-

uted Sysrerns, Chap. 5, S. J, MULLENDER,Ed,, Addison-Wesley, Reading, Mass., pp. 97–145,
HADZILACOS, V,, AND TOUEG, S. 1994. A modular approach to fault-tolerant broadcasts and

related problems. Tech. Rep. 94-1425 (May), Computer Science Department, Cornell University,
Ithaca. NY. Available by anonymous ftp from ftp://ftp.db.toronto. edu/pub/vassos/fault. tolerant.
broadcasts. dvi.Z. (An earlier version is also available in Hadzilacos and Toueg [1993]),

HALPERN, J. Y., AND MOSES, Y. 1990. Knowledge and common knowledge in a distributed
environment. J. ACM 37, 3 (July), 549–587,

LAMPORT, L. 1978. The implementation of reliable distributed multiprocess systems. Comput.

Netw, 2, 95-114.
LAMPORT, L., SHOSTAK,R., AND PEASE, M. 1982. The Byzantine generals problem. ACM Trans.

Prog. Lang. Syst, 4, 3 (July), 382-401.
Lo, W, K., AND HADZILACOS,V. 1994. Using failure detectors to solve consensus in asynchronous

shared-memory systems. In Proceedings of the 8th International Workshop on Distributed Algon”thms
(Sept.), Springer-Verlag, New York, pp. 280-295. Available from ftp://ftp,db.toronto. edu/pub/
vassos/failure. detectors. shared. memory, ps.Z.

LGUI, M., AND ABU-AMARA. 1987. Memory requirements for agreement among unreliable asyn-
chronous processes, Adv. Compur. Res. 4, 163–1 83.

MOSES,Y., DOLEV, D., AND HALPERN, J. Y. 1986. Cheating husbands and other stories: a case
study of knowledge, action, and communication. Dishib. Compur. 1, 3, 167-176,

MULLENDER.S. J., ED. 1987. The Amoeba Distributed Operating System. Seiected papers 1984-1987.
Centre for Mathematics and Computer Science.

NEIGER, G. 1995. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th ACM
Symposium on Principles of Diswibuted Computing (Ottawa, Ont. Canada, Aug.). ACM, New York,
pp. 10(-109.

NEIGER, G., AND TOUEG, S. 1990. Automatically increasing the fault-tolerance of distributed
algorithms. J. Algon”thms 11, 3 (Sept.), 374–419.

PEASE,M., SHOSTAK,R., AND LAMPORT, L. 1980. Reaching agreement in the presence of faults. J.
ACM 27, 2 (Apr.), 228-234.

PETERSON,L. L., BUCHOLZ, N. C., AND SCHLICHTING,R. D. 1989. Preserving and using context
information in interprocess communication. ACM Trans. Comput. Syst. 7, 3 (Aug.), 217–246.

PIITELLI, F., ANDGARCIA-M•LINA,H. 1989. Reliable scheduling in a tmr database system. ACM
Trans. Compur. Syst. 7, 1 (Feb.), 25-60.

POWELL, D., ED. 1991. Delta-4: A Generic Architecture for Dependable Distributed Computing.
Springer-Verlag, New York.

REISCHUK,R. 1982, A new solution for the Byzantine general’s problem. Tech. Rep. RJ 3673
(Nov.), IBM Research Laboratory, Thomas J, Watson Research Center, Hawthorne, N.Y,

RICCIARDI, A,, ANDBIRMAN,K. P. 1991. Using process groups to implement failure detection in
asynchronous environment ts. Jn Proceedings of the IOth ACM Symposium on Principles of Drktnbuted

Computing (Montreal, Que., Canada, Aug. 19-21). ACM, New York, pp. 341-354.
SABEL, L,, ANDMARZULLO,K. 1995. Election vs. consensus in asynchronous systems. Tech. Rep.

TR95-411 (Feb.). Univ. California at San Diego. San Diego, Calif. Available at ftp://ftp.cs.
cornell.edu/pub/sabel/tr94-1413.ps.

SCHNE]D~R,F. B. 1990. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Cornput. Surv. 22, 4 (Dec.), 299–319.

WENSLEY, J. H., LAMPORT, L., GOLDBERG,J., GREEN, M. W., LEVITT, K. N., MELLIAR-SMITH, P.,
SHOSTAK, R. E., AND WEINSTOCK, C. B. 1978. SIFT Design and analysis of a fault-tolerant
computer for aircraft control. Proc. IEEE 66, 10 (Oct.), 1240–1255.

RECEIVEDJULY 1993; REVISEDMARCH1995; ACCEPTEDOCTOBER1995

Journal of the ACM, Vol. 43, No 2, March 1996.

