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(Distributed) Failure Detector: an Oracle

Each process p can access a local failure detector module (an oracle
function) denoted by Dp.

Each module watches a subset of system processes (usually the
whole set of processes), and returns information about crashed:
usually a set of suspected processes.1

Precisely, the identifiers of processes that are suspected of being
crashed.

Unless otherwise mentioned, we will always assume that

each local failure detector module watches all processes and returns a
list of suspected processes.

1N.b., some failure detectors, such as Ω or Σ, do not return a list of suspected processes.
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The Failure Detector Approach [2]

In a software engineering spirit:

separate the necessary knowledge on crashes to solve the
problem (the definition of the failure detector)

from the way it can be obtained2 (the implementation of the failure
detector)

Advantages

Separation of concerns: modularity and simplicity

Possibility to compare and to have a necessary and
sufficient assumption (the minimum failure detector to solve a problem).

2In particular, the necessary assumptions on the system.
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Failure Detector Classes

The classes of failure detectors are distinguished by two important
properties:

Completeness: restrict the ability of the failure detector module to
detect crashes

Accuracy: qualify the possibility of the failure detector module to
wrongly suspect correct processes
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Some Classes of Failure Detectors

Completeness
Accuracy

Strong Weak Eventually Strong Eventually Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S ⋄P ⋄S

Weak Quasi-perfect Weak Eventually Quasi-perfect Eventually Weak
Q W ⋄Q ⋄W
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Motivation
In presence of arbitrary process crashes, consensus requires partial
synchrony assumptions to be solved [6].

However, the expressive power of two different partially synchronous
systems may be difficult to compare.

For example:

A system where all processes are synchronous and where there
is at least one source.

A source is a (synchronous) correct process with reliable and synchronous outgoing links.

A system where all processes are eventually synchronous and all
links are eventually reliable and synchronous.

Failure detectors can be compared by reduction!
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Definition [2]
Similar to reductions in NP-Completeness

Let D and D ′ be two failure detectors.

TD→D ′ is a reduction algorithm from D to D ′ if it emulates the output
of D ′ using only D .

In this case, D ′ is reductible to D and D ′ is weaker than D (D ′ ⪯D).

In this case, every problem solvable with D ′ can be also solved with D .
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≺

If there exists a reduction algorithm from D to D ′, but not vice versa,
then D ′ strictly weaker than D , denoted by

D ′ ≺D .
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∼=

If there are both reduction algorithms from D to D ′ and from D ′ to D ,
then D and D ′ are said to be equivalent, denoted by

D ′ ∼= D .
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Example of Reduction: Boosting Completeness

Strong Completeness: Every faulty process is eventually permanently
suspected by every correct process.

Weak Completeness: Every faulty process is eventually permanently
suspected by some correct process.

Idea: Spread suspicions using broadcast. However, to not break
accuracy, premature rumor should be undone.
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Boosting Completeness
Assumptions

1 Complete Network Topology

2 Asynchronous identified processes: a process and its identifier are
used equivalently (V is the set of processes)

3 Asynchronous reliable links (not necessarily FIFO)

4 Process failures: only crashes!

5 Any process p can broadcast a message to all processes (p included!)

6 D : a failure detector
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Boosting Completeness
Algorithm for every process p, output: Suspectedp

1: Suspectedp← /0

2: While true do
3: broadcast ⟨Dp,p⟩ to V
4: For all q ∈ V do
5: If receive ⟨S,q⟩ then
6: Suspectedp← (Suspectedp ∪S)\{q}
7: End If
8: Done
9: Done
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Example of Reduction
P ∼= Q

P : Strong Completeness + Strong Accuracy

Q : Weak Completeness + Strong Accuracy

By definition, Q ⪯ P .

We now let D = Q and show that the previous algorithm is a reduction
algorithm from Q to P , i.e., P ⪯ Q .

Cournier & Devismes Failure Detectors April 26, 2023 16 / 42



Introduction
Reduction
Minimality

References

General Algorithm for Boosting Completeness
First Example of Reduction: P ∼= Q
Second Example of Reduction: ⋄S ∼= ⋄W
Taxonomy

Example of Reduction
P ∼= Q

P : Strong Completeness + Strong Accuracy

Q : Weak Completeness + Strong Accuracy

By definition, Q ⪯ P .

We now let D = Q and show that the previous algorithm is a reduction
algorithm from Q to P , i.e., P ⪯ Q .

Cournier & Devismes Failure Detectors April 26, 2023 16 / 42



Introduction
Reduction
Minimality

References

General Algorithm for Boosting Completeness
First Example of Reduction: P ∼= Q
Second Example of Reduction: ⋄S ∼= ⋄W
Taxonomy

Example of Reduction
P ∼= Q

P : Strong Completeness + Strong Accuracy

Q : Weak Completeness + Strong Accuracy

By definition, Q ⪯ P .

We now let D = Q and show that the previous algorithm is a reduction
algorithm from Q to P , i.e., P ⪯ Q .

Cournier & Devismes Failure Detectors April 26, 2023 16 / 42



Introduction
Reduction
Minimality

References

General Algorithm for Boosting Completeness
First Example of Reduction: P ∼= Q
Second Example of Reduction: ⋄S ∼= ⋄W
Taxonomy

Strong Accuracy

Strong accuracy: no process is suspected before it
crashes

Since Q satisfies strong accuracy, broadcast
messages only contain IDs of crashed processes.

Every received ID in S is the ID of some crashed
process.

Every ID inserted into Suspectedp is an identifier of
some crashed process.

2

1: Suspectedp ← /0

2: While true do
3: broadcast ⟨Qp,p⟩ to V
4: For all q ∈ V do
5: If receive ⟨S,q⟩ then
6: Suspectedp ← (Suspectedp ∪S)\{q}
7: End If
8: Done
9: Done
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Strong Completeness

Crashed processes only sent finitely many messages
and every sent message is eventually received
(reliable links): IDs of crashed processes are
eventually no more removed from Suspectedp .

Let q be a faulty process.

Since Q satisfies weak completeness, q is eventually
permanently suspected by some correct process p:
eventually q ∈ Qp forever.

p correct + Link Reliability: Every correct process
received infinitely many messages with q ∈ S (from p).

Eventually q ∈ Suspectedc forever, for every correct
process c.

2
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From Weak to Strong Completeness

Since we have a reduction algorithm from Q to P , we have P ⪯ Q .

Now, by definition, Q ⪯ P .

Hence, P ∼= Q .

Using, the same reduction algorithm, we can also show that S ∼= W ,
⋄P ∼= ⋄Q , and ⋄S ∼= ⋄W .
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Example of Reduction
⋄S ∼= ⋄W

⋄S : Strong Completeness + Eventually Weak Accuracy

⋄W : Weak Completeness + Eventually Weak Accuracy

By definition, ⋄W ⪯ ⋄S .

We now let D = ⋄W and show that the previous algorithm is a
reduction algorithm from ⋄W to ⋄S , i.e., ⋄S ⪯ ⋄W .
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Eventually Weak Accuracy
Eventually Weak Accuracy: there is a time after which

some correct process is never
suspected by any correct process.

Since ⋄W satisfies eventually weak accuracy, there is
some correct process c that is eventually no more
suspected by all correct processes.

Hence, eventually no more broadcast message
contains c.

Eventually no received ID in S is the ID of c.

Eventually c is no more inserted into Suspectedp .

c is removed from Suspectedp infinitely often since
links are reliable and c is correct.

Eventually c /∈ Suspectedp forever. 2

1: Suspectedp ← /0

2: While true do
3: broadcast ⟨⋄Wp,p⟩ to V
4: For all q ∈ V do
5: If receive ⟨S,q⟩ then
6: Suspectedp ← (Suspectedp ∪S)\{q}
7: End If
8: Done
9: Done
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Strong Completeness

As previously ...

1: Suspectedp ← /0

2: While true do
3: broadcast ⟨⋄Wp,p⟩ to V
4: For all q ∈ V do
5: If receive ⟨S,q⟩ then
6: Suspectedp ← (Suspectedp ∪S)\{q}
7: End If
8: Done
9: Done
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From Weak to Strong Completeness

Since we have a reduction algorithm from ⋄W to ⋄S , we have
⋄S ⪯ ⋄W .

Now, by definition, ⋄W ⪯ ⋄S .

Hence, ⋄S ∼= ⋄W .
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Taxonomy [3] (1/2)

Theorem 1

P ∼= Q ,

S ∼= W ,

⋄P ∼= ⋄Q ,

⋄S ∼= ⋄W ,

S ≺ P ,

⋄S ≺ ⋄P ,

⋄P ≺ P ,

⋄S ≺ S ,

⋄S ≺ P , and

S and ⋄P are incomparable.
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Taxonomy [3] (2/2)

Q ⋄Q

W ⋄W

P ⋄P

S ⋄S

D 99K D ′: D ≻D ′
D D ′: D ∼= D ′
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The Weakest Failure Detector

The weakest failure detector to solve a problem P is the failure
detector D that is both necessary and sufficient to solve P, i.e., it is
weaker than any other failure detector that can solve P.

To that goal, it is sufficient to show the following two claims:

There exists an algorithm that solves P using D .

It is possible to emulate D with any failure detector D ′ that is
sufficient to solve P.

(In particular, we can use every algorithm that solves P using D ′
in the reduction.)
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Ω [1]

Eventual Leader Election:

There is a correct process c such that eventually Ωp = c forever for
every correct process p.
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Ω∼= ⋄W (∼= ⋄S )
TΩ→⋄W : return V \{Ω}.
Eventually Ωp = c forever for each correct process p, where c is a correct
process⇒ Eventual Weak Accuracy + Weak Completeness.

So, Ω⪯ ⋄W .

T⋄W→Ω:

Regularly evaluate ⋄Wp.

Local count the number of times each process is suspected.

Broadcast local counters + keep the max for each process.

Elect the less suspected (use IDs to break tees).

By eventually weak accuracy, at least one correct process has a bounded
counter. Counters of faulty processes are unbounded.

So, ⋄W ⪯ Ω.
Cournier & Devismes Failure Detectors April 26, 2023 29 / 42



Introduction
Reduction
Minimality

References

The Weakest Failure Detector
With a majority of correct process
Without a majority of correct process

Assumptions

1 Complete Network Topology

2 A majority of processes is correct: the maximal number of crashes f
satisfies n > 2f where n is the number of processes

3 Asynchronous identified processes: a process and its identifier are
used equivalently (V is the set of processes)

4 Asynchronous reliable links (not necessarily FIFO)

5 Any process p can broadcast a message to all processes (p included!)

6 Failure Detector: Ω

Cournier & Devismes Failure Detectors April 26, 2023 30 / 42
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Ω is necessary and sufficient

Under these assumptions, Ω is the weakest failure detector to solve
the consensus [1].

We admit the proof of necessity (which is quite complex ...)

Let see now the sufficient part of the proof, i.e., a consensus algorithm!
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The Ben-Or Algorithm (Recall)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done
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Derandomization of The Ben-Or Algorithm using Ω

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (V , r ,vp) to all processes (p included)

6: wait to receive (V , r ,y ) from Ωp

7: vp ← y

8: broadcast (R, r ,vp) to all processes (p included)

9: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
10: If more than n

2 received messages (R, r ,x) with the same value x then

11: broadcast (P, r ,x) to all processes (p included)
12: else
13: broadcast (P, r ,?) to all processes (p included)
14: End If
15: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
16: If at least f +1 received messages (P, r ,x) with x ̸=? then
17: If dp =⊥ then dp ← x

18: End If
19: If at least 1 received message (P, r ,x) with x ̸=? then
20: vp ← x

21: else
22: vp ← Random(0,1)

23: End If
24: Done
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Sketch of Proof

Agreement, Integrity, and Validity: like in the Ben-Or’s proof

Termination:

Eventually (at some round r ) all alive processes are correct and
agree on the same correct process.

They all wait for the same value from Ω.

They all report the same value.

They all decide the same value (as for Ben-Or)!
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Σ: the quorum failure detector [4]

Σ = list of trusted processes.

Eventual Strong Completeness + Quorum

Eventual Strong Completeness: for every correct process p,
eventually Σp forever outputs lists only containing correct processes.

Quorum:

∀p,q ∈ V ,

∀t, t ′,
if p is alive at time t and q is alive at time t ′, then

Σt
p ∩Σt ′

q ̸= /0.
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Assumptions

1 Complete Network Topology

2 Asynchronous identified processes: a process and its identifier are
used equivalently (V is the set of processes)

3 Asynchronous reliable links (not necessarily FIFO)

4 Any process p can broadcast a message to all processes (p included!)

5 Failure Detector: Σ×Ω
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Under these assumptions, Σ×Ω is the weakest failure detector to
solve the consensus [5].

We admit the proof of necessity (which is quite complex ...)

Let’s see now the sufficient part of the proof, i.e., a consensus
algorithm!
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Derandomization of the Ben-Or Algorithm using Σ×Ω

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (V , r ,vp) to all processes (p included)

6: wait to receive (V , r ,y ) from Ωp

7: vp ← y

8: broadcast (R, r ,vp) to all processes (p included)

9: wait to receive messages (R, r ,_) (where “_” is 0 or 1) from all processes in Σp

10: If all received messages (R, r ,x) with the same value x then
11: broadcast (P, r ,x) to all processes (p included)
12: else
13: broadcast (P, r ,?) to all processes (p included)
14: End If
15: wait to receive messages (P, r ,_) (where “_” is 0, 1, or ?) from all processes in Σp

16: If all received messages (P, r ,x) with the same value x ̸=? then
17: If dp =⊥ then dp ← x

18: End If
19: If at least 1 received message (P, r ,x) with x ̸=? then
20: vp ← x

21: End If
22: Done
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Sketch of Proof

The Quorum property guarantees that if a process decides x in Line
17 at Round r then

1 No process can decide differently during Round r ; and

2 all processes that will not decide on Round r will set their
v -variable to x on Lines 19-21 during Round r !

Hence, the proof arguments are similar to the Ben-Or’s proof!
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