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April 14, 2023

1 Definition

1.1 Ω

There is a correct process c such that eventually Ωp = c forever for every correct process p.

1.2 ⋄W
Eventual Weak Accuracy + Weak Completeness :

Eventual weak accuracy: There is a time after which some correct process is never suspected by any correct
process.

Weak Completeness: Every faulty process is eventually permanently suspected by some correct process.

2 System Assumptions

1. Complete network topology.

2. Asynchronous identified processes: a process and its identifier are used equivalently.

3. Asynchronous reliable links (not necessarily FIFO).

3 Notations

• V : the set of processes

• Correct ⊆ V : the set of correct processes.

• Faulty ⊆ V : the set of faulty processes.

• Xp: the value of variable X of process p.

• Xt
p: the value of variable X of process p at time t.

4 TΩ→⋄W

Algorithm 1 TΩ→⋄W , code for every process p

1: Function TΩ→⋄W(p)
2: return V \ {Ωp}
3: End Function
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Question 1. Prove that TΩ→⋄W satisfies weak completeness.

Actually, TΩ→⋄W satisfies strong completeness (as shown below). Now, strong completeness implies weak
completeness.

By definition, V = Faulty ∪̇ Correct.
Let p be any correct process. By definition of Ω, there is a time after which Ωp ∈ Correct forever. So, there

is a time after {Ωp} ⊆ Correct. Hence, there is a time after which Faulty ⊆ V \ {Ωp}, i.e., there is a time after
which Faulty ⊆ TΩ→⋄W(p). 2

Question 2. Prove that TΩ→⋄W satisfies eventual weak accuracy.

By definition of Ω, there is a time after which Ωp = c for every correct process p where c ∈ Correct.
Hence, by definition of the algorithm, there is a time after which c /∈ TΩ→⋄W(p) for every correct process

p. In other words, there is a time after which the correct process c is never more suspected by every correct
process p. 2

5 T⋄W→Ω

Question 1. Following the principles presented in the lesson, propose an algorithm T⋄W→Ω.

Notations: Please use the following variables:

• Leader ∈ V , initialized to p.

• C[], array of integers indexed on V , every cell is initialized to 0.

Algorithm 2 T⋄W→Ω, code for every process p

1: Variables:
2: Leader ∈ V , initialized to p
3: C[], array of integers indexed on V , every cell is initialized to 0
4: End Variables

5: Function T⋄W→Ω(p)
6: return Leader
7: End Function

8: while true do /* Must be run into a separated thread */
9: broadcast ⟨C, p⟩ to V \ {p}

10: For all q ∈ V \ {p} do
11: If receive ⟨CN, q⟩ then
12: For all x ∈ V do
13: C[x]← max(C[x], CN [x])
14: End For
15: End If
16: End For
17: For all q ∈ ⋄W(p) do
18: C[q] + +
19: End For
20: Leader ← min{q ∈ V | ∀q′ ∈ V,C[q] ≤ C[q′]}
21: end while
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Question 2. Show the following lemma.

Lemma 1. ∀p ∈ Correct, ∀q ∈ Faulty, ∀t ∈ N, ∃t′ > t such that C[q]tp < C[q]t
′

p .

Proof. First, by definition of the algorithm, C[q]p is monotonically nondecreasing with time, i.e., C[q]tp ≤ C[q]t
′

p ,
∀t,∀t′ > t.

Then, since ⋄W satisfies weak completeness, there is a correct process r and a time t0 such that ∀t ≥ t0,
q /∈ ⋄W(r)t.

Since r is correct, r executes C[q]++ infinitely often, i.e., C[q]r regularly increases. Moreover, r broadcasts
Cr infinitely often and, as the links a reliable, every correct process p ̸= r receives Cr infinitely often. By Line
13, C[q]p also regularly increases and we are done.

Question 3. Show the following lemma.

Lemma 2. ∃p ∈ Correct such that ∃k, t ∈ N such that ∀q ∈ Correct, ∀t′ ≥ t, C[p]t
′

q ≤ k.

Proof. Since ⋄W satisfies eventual weak accuracy, ∃ℓ ∈ Correct, ∃tα ∈ N such that ∀p ∈ Correct, ∀t′ ≥ tα,
ℓ /∈ ⋄W(p).

Let tβ be the time from which every faulty process has crashed and every message sent by a faulty process
to a correct process has been received. Let t0 = max(tα, tβ). Let Max = maxp∈Correct C

t0
p [ℓ].

We now prove by induction on t that ∀t ≥ t0, ∀p ∈ Correct, Ct
p[ℓ] ≤ Max and every message ⟨CN, ⟩ in

transit to p at time t satisfies CN [ℓ] ≤Max.

Base Case: t = t0. By Definition, ∀p ∈ Correct, Ct0
p [ℓ] ≤ Max. Moreover, since Cp[ℓ] is monotonically

nondecreasing with time and no message in transit at time t0 has been sent by a faulty process (by
definition), every message ⟨CN, ⟩ in transit to p at time t0 satisfies CN [ℓ] ≤Max.

Induction Step: Consider the step from time t ≥ t0 to time t+ 1. Let p ∈ Correct.

If p does not receive any message in the step, then Cp[ℓ] stays unchanged since by definition p never more
execute Line 18. So, Ct+1

p [ℓ] ≤MAX by induction hypothesis.

Otherwise, Cp[ℓ] is assigned to the maximum value between Cp[ℓ]
t and the values CN [ℓ] of every received

message at time t. By induction hypothesis, all these values are less than or equal to Max. Hence,
Ct+1

p [ℓ] ≤MAX.

Finally, since every message in transit at time t+1 has been sent before t+1, from the induction hypothesis,
the previous claim and owing the fact that only correct processes can send messages during the step from
time t to time t + 1, we can deduce that every message ⟨CN, ⟩ in transit to any correct process at time
t+ 1 satisfies CN [ℓ] ≤Max.

Thus, the induction holds at time t+ 1 and we are done.

Hence, the lemma holds with p = ℓ.

Question 4. Show the following lemma.

Lemma 3. ∃t ∈ N such that ∀p ∈ Correct, ∀t′ ≥ t, Ct
p[Leader

t
p] = Ct′

p [Leader
t′

p ].
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Proof. Assume, by the contradiction, that ∀t ∈ N, ∃p ∈ Correct and ∃t′ ≥ t such that Ct
p[Leader

t
p] ̸=

Ct′

p [Leader
t′

p ].
First, since the number of correct process is finite, ∃p ∈ Correct such that ∀t ∈ N, ∃t′ ≥ t such that

Ct
p[Leader

t
p] ̸= Ct′

p [Leader
t′

p ].
Moreover, since Cp[q] is monotonically nondecreasing for all q ∈ V , we have: ∃p ∈ Correct such that ∀t ∈ N,

∃t′ ≥ t such that Ct
p[Leader

t
p] < Ct′

p [Leader
t′

p ].

By Line 20 and owing the fact that V is finite, we have ∀q ∈ V , ∀t ∈ N, ∃t′ ≥ t such that Ct
p[q] < Ct′

p [q].
Now, since p is correct, p sends its counter array infinitely often to all processes. Moreover, since links are
reliable, all other correct processes receive infinitely many messages containing counter arrays from p. Hence,
by Line 13, ∀r ∈ Correct, ∀q ∈ V , ∀t ∈ N, ∃t′ ≥ t such that Ct

r[q] < Ct′

r [q], which contradicts Lemma 2.

Question 5. Show the following corollary.

Corollary 1. ∃t ∈ N such that ∀p ∈ Correct, ∀t′ ≥ t, Leadertp = Leadert
′

p .

Proof. Assume, by the contradiction that ∀t ∈ N, ∃p ∈ Correct, ∃t′ ≥ t such that Leadertp ̸= Leadert
′

p .
Since the number of correct processes is finite, we have:

Claim 1: ∃ℓ ∈ Correct such that ∀t ∈ N, ∃t′ ≥ t such that Leadertℓ ̸= Leadert
′

ℓ .

Let t0 ∈ N such that ∀p ∈ Correct, ∀t′ ≥ t0, C
t0
p [Leadert0p ] = Ct′

p [Leader
t′

p ]. By Lemma 3, t0 is well-defined.

Let n = |V |. By Claim 1, ∃t1, t2, . . . , tn such that ∀i ∈ [1..n], ti > ti−1 and Leader
ti−1

ℓ ̸= Leadertiℓ .

By Line 20, and owing the fact that counters are monotonically nondecreasing, ∀i ∈ [0..n−1], Cti+1

ℓ [Leadertiℓ ]

> Ct0
ℓ [Leadert0ℓ ]. Hence, by definition of t0, ∀i ∈ [0..n− 1], ∀j ∈ [i+ 1..n], Leadertiℓ ̸= Leader

tj
ℓ .

Hence, there are at least n+ 1 distinct processes, a contradiction.

Question 6. Show the following lemma.

Lemma 4. ∃ℓ ∈ Correct and ∃t ∈ N such that ∀t′ ≥ t, ∀p ∈ Correct, Leadert
′

p = ℓ.

Proof. Let tz ∈ N such that ∀p ∈ Correct, ∀t′ ≥ tz, Leader
tz
p = Leadert

′

p ∧ Ctz
p [Leadertzp ] = Ct′

p [Leader
t′

p ]. By
Lemma 3 and Corollary 1, tz is well-defined.

By Lemma 1, ∀p ∈ Correct, Leadertzp ∈ Correct.
Assume now, by the contradiction, that ∃p1, p2 ∈ Correct such that Leadertzp1

̸= Leadertzp2
.

Without the loss of generality, assume that Ctz
p1
[Leadertzp ] < Ctz

p2
[Leadertzp2

]∨(Ctz
p1
[Leadertzp1

] = Ctz
p2
[Leadertzp2

]∧
p1 < p2).

Then, Ctz
p2
[Leadertzp1

] > Ctz
p2
[Leadertzp2

] ≥ Ctz
p1
[Leadertzp1

].
Since p2 is correct and the counters are monotonically nondecreasing, p2 sends infinitely many ⟨CN, p2⟩

messages to p1 with CN [Leadertzp1
] > Ctz

p1
[Leadertzp1

]. Since the link are reliable and p1 is correct, by Line 13,

∃t′ > tz such that Ctz
p1
[Leadertzp1

] < Ct′

p1
[Leadertzp1

] = Ct′

p1
[Leadert

′

p1
] (by definition of tz), a contradiction.

Hence, ∀p, q ∈ Correct, Leadertzp = Leadertzq , and by definition of tz, the lemma holds.
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