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ABSTRACT
In this paper, we present a self-stabilizing algorithm for finding cut-nodes and bridges in arbitrary

rooted networks with a low memory requirement ( � ( ����� ( � )) bits per processor where � is the number
of processors). Our algorithm is silent and must be composed with a silent self-stabilizing algorithm
computing a Depth-First Search ( 	�

� ) Spanning Tree of the network. So, in the paper, we will prove
that the composition of our algorithm with any silent self-stabilizing 	�

� algorithm is self-stabilizing.
Finally, we will show that our algorithm needs � ( ��� ) moves to reach a terminal configuration once
the 	�

� spanning tree is computed. Note that this time complexity is equivalent to the best proposed
solutions.
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Consider a connected undirected graph &(' ( ) , * ) where ) is the set of + nodes and
* is the set of , edges. A node -/.0) is a cut-node (or an articulation point) of & if
the removal of - disconnects & . In the same way, an edge (- , 1 ) .2* is a bridge if the
removal of (- , 1 ) disconnects & . When the graph represents a communication network
then the existence of cut-nodes or bridges can become the potential cause for congestion
in the network. Thus, from the fault tolerance point of view, the identification of cut-nodes
and bridges of a network is crucial.

In this paper, we are interested into finding cut-nodes and bridges in distributed systems.
Another desirable property for a distributed system is to withstand transient failures. The
concept of self-stabilization [1] is the most general technique to design a system to tolerate
arbitrary transient faults. A self-stabilizing system, regarless of the initial states of the
processors and messages initialy in the links, is guaranteed to converge to the intented
behavior in finite time. In such systems, a silent algorithm is an algorithm which, from any
arbitrary initial configuration, reaches, in a finite number of steps, a terminal configuration
where no processor can execute any action; this configuration must satisfy some properties
for all possible executions.

1.1. Related Work

Some algorithms for finding cut-nodes and bridges have been proposed in the graph



theory, e.g., by Paton [2] and Tarjan [3], the latter has a linear time complexity. This prob-
lem has also been investigated in the context of parallel and distributed computing [4,5,6].
In self-stabilizing systems, Chaudhuri and Karaata present silent algorithms in [7,8,9,10]
for finding cut-nodes and bridges. All these solutions work with an underlying spanning
tree construction algorithm. The solutions proposed in [9,10] use a ����� spanning tree of
the network while a ������� spanning tree is required in [7,8]. Algorithms from [9,10] offer
the best time complexity: they need 	 ( +�
 ) moves to stabilize once the ����� spanning tree
is computed (instead of 	 ( +�
�
 , ) moves for [7,8]). However, for all these solutions, the
memory requirement is � ( ,�
������ ( , )) bits per processor (without taking account of vari-
ables used for the spanning tree computing). Indeed, in these algorithms, every processor
must locally maintain a set of edges.

1.2. Contributions

In this paper, we present a new silent self-stabilizing distributed algorithm for finding
cut-nodes and bridges. This algorithm must be composed with a silent self-stabilizing
algorithm computing a ����� spanning tree of the network. Until now, our protocol is the
best algorithm solving this problem in term of memory requirement, i.e., 	 ( ����� ( + )) bits
per processor (without taking account of variables used for the spanning tree computing).
Moreover, once the ����� spanning tree is computed, our algorithm reaches a terminal
configuration in 	 ( +�
 ) moves and 	 ( � ) rounds where � is the height of the spanning
tree. This time complexity corresponds to the best proposed solutions.

1.3. Outline of the paper

In the next section (Section 2), we describe the distributed system and the model in
which our protocol is written. We present and prove our solution in Sections 3 and 4. In
Section 5, we discuss about some complexity results. Finally, we make concluding remarks
in Section 6.

��������� �%#"!0#%�$# ��#%� &

2.1. Distributed System

We consider a distributed system as an undirected connected graph & ' ( ) , * ) where
) is a set of processors ( ' )�' ' + ) and * is the set of bidirectional communication links.
We consider networks which are asynchronous and rooted, i.e., all processors, except the
root, are anonymous. We denote the root processor by r. A communication link between
two processors - and 1 will be denoted by (- , 1 ). Every processor - can distinguish all its
links. To simplify the presentation, we refer to a link (- , 1 ) of a processor - by the label
1 . We assume that the labels of - are stored in the set (*),+"-/.�0 . We assume that (*),+"-�. is a
constant ( (*),+"-�. is shown as an input from the system).

2.2. Computational Model

In the computation model that we use each processor executes the same program except
1
Breath-First Search.2
Every variable or constant 3 of a processor 4 will be noted 365 .



r. We consider the local shared memory model of communication. The program of every
processor consists of a set of shared variables (henceforth, referred to as variables) and a
finite set of actions. A processor can only write to its own variables, and read its own vari-
ables and variables owned by the neighboring processors. Each action is of the following
form: � ����� ) ���	�
� � -�� ��
������ � ��� � � ) , ) + � ���
The guard of an action in the program of - is a boolean expression involving the variables of
- and its neighbors. The statement of an action of - updates one or more variables of - . An
action can be executed only if its guard is satisfied. We assume that the actions are atomi-
cally executed, meaning, the evaluation of a guard and the execution of the corresponding
statement of an action, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of a system
is the product of the states of all processors ( . ) ). We will refer to the state of a processor
and system as a (local) state and (global) configuration, respectively. Let � , the set of all
possible configurations of the system. An action � is said to be enabled in � .�� at - if the
guard of � is true at - in � . A processor - is said to be enabled in � ( � .�� ) if there exists
an enabled action � in the program of - in � .

Let a distributed protocol � be a collection of binary transition relations denoted by�� , on � . A computation of a protocol � is a maximal sequence of configurations ) '� � �"!#�%$�! �&�
� !'��()!'��(
*�$+! �&�&� , , such that for +.-0/1!'��( �� ��(&*�$ (called a single computation step
or move) if ��(
*2$ exists, else ��( is a terminal configuration. Maximality means that the
sequence is either finite (and no action of � is enabled in the terminal configuration) or
infinite. All computations considered in this paper are assumed to be maximal. The set of
all possible computations of � in the system 3 is denoted as 4 .

In a step of computation, first, all processors check the guards of their actions. Then,
some enabled processors are chosen by a daemon. Finally, the “elected” processors execute
one or more of theirs enabled actions. There exists several kinds of daemon. Here, we use
a central daemon, i.e., during a computation step, if one or more processors are enabled,
the daemon chooses one of these enabled processors to execute an action. Furthermore,
we assume that the daemon is unfair, i.e., it can forever prevent a processor to execute
an action except if it is the only enabled processor. The unfair daemon is the weakest
scheduling assumption.

We consider that any processor - executed a disable action in the computation step� ( �� � (
*�$ if - was enabled in � ( and not enabled in � (&*�$ , but did not execute any action
between these two configurations (the disable action represents the following situation: at
least one neighbor of - changes its state between � ( and � (&*�$ , and this change effectively
made the guard of all actions of - false).

In order to compute the time complexity, we use the definition of round [12]. This
definition captures the execution rate of the slowest processor in any computation. Given
a computation ) ( ) .54 ), the first round of ) (let us call it )+6 ) is the minimal prefix of
) containing the execution of one action (an action of the protocol or the disable action)
of every enabled processor in the first configuration. Let ) 6 6 be the suffix of ) such that
) ' )76�)76 6 . Then second round of ) is the first round of )&6 6 , and so on.

2.3. Self-Stabilizing System



Let ����* be a predicate defined over � . The protocol � running on the distributed
system 3 is said to be self-stabilizing with respect to ��� * if it satisfies:

� Closure: If a configuration � satisfies ����* , then any configuration that is reachable
from � using � also satisfies ����* .

� Convergence: Starting from an arbitrary configuration, the distributed system 3 is
guaranteed to reach a configuration satisfying ����* in a finite number of steps of � .

Configurations satisfying ��� * are said to be legitimate. Similary, a configuration that
does not satisfy ����* is referred to as an illegitimate state. To show that an algorithm is
self-stabilizing with respect to ����* , we need to show the satisfiability of both closure and
convergence conditions. In the case of silent algorithms, we have just to show the conver-
gence to a terminal configuration that satisfies ����* . After, because this configuration is
terminal, the closure is trivially satisfied.

2.4. Definitions and Notations

Definition 1 (Path) The sequence of nodes - $ , ..., -�� is a path of G if and only if � + . [1,
..., k � 1], (- ( ,- (&*�$ ) . E (the set of edges of G).

Definition 2 (Length of a Path) The length of a path � , noted
� ) + - �	� � � , , is the number

of edges which compose � .

Definition 3 (Connected Graph) An undirected graph G 
 is connected if and only if, for
each pair of distinct nodes (- , 1 ), there exists a path in G 
 between - and 1 .

Definition 4 (Partial Graph) The graph G � ' (V, A) is a partial graph of G ' (V, E) if
and only if A � E.

Definition 5 (Subgraph) The subgraph of G ' (V, E) induced by S (S � V) is the graph
G 
�' (S, E 
 ) such that E 
�' E � S 
 .
Definition 6 (Spanning Tree) A graph T ' (V, *�� ) is a spanning tree of G if and only if
T is a partial connected graph of G where ' *��6'�' +���� .
In a rooted spanning tree � (r) ' ( ) , * 6 ), we distinguish a node r called root. We define
the height of a node - in � (r) (noted � (- )) as the length of the simple (loopless) path from
r to - in � (r). � ' max .�� �������	� � (- ) � represents the height of � (r). For a node -! ' r, a
node 1 . ) is said to be the parent of - in � (r), noted � ��
 ) + � � - , , if and only if 1 is the
neighbor of - such that � (- ) ' � ( 1 ) " 1, conversely, - is said to be the child of 1 in � (r).# � + � �"
 ) + (- ) denotes the set of children of a node - in � (r). A node - $ is said to be an
ancestor of another node -�� in � (r) (with $ � � ) if there exists a sequence of nodes - $ , ...,
-%� such that ��& , with 1 '(&

�
$ , -*) is the parent of -*) *�$ in � (r), conversely -+� is said to be

a descendant of - $ . We note � (- ) the subtree of � (r) rooted at - ( . ) ), i.e., the subgraph
of � (r) induced by - and its descendants in � (r). We call tree edges, the edges of * 6 and
non-tree edges, the edges of *-, * 6 . A non-tree neighbor of - is a node linked to - by a



non-tree edge. Finally, ���0. ) , � is a non-tree neighbor of a subtree � (- ) if and only if��� . � (- ) such that
� � ,

�%, . *�,�* 6 (i.e., ( � ,
�

) is a non-tree edge of � r)). For instance, in
figure 1, Node 1 is a non-tree neighbor of � (8).

Definition 7 (DFS Spanning Tree � ) T(r) is a DFS spanning tree of G if and only if T(r)
is a spanning tree of G and � (- , 1 ) . ) 
 if - is a neighbor of 1 in G then - is either an
ancestor or a descendant of 1 in T(r).

From Definition 7, we can deduce this useful property about the ����� spanning trees.

Property 1 Let -0.0) . Let T(r) be a DFS Spanning Tree of G (rooted at r). � 1 . � � - , ,
every non-tree neighbor of 1 is either an ancestor or a descendant of - in T(r).

Now, we give the formal definitions of cut-nodes and bridges.

Definition 8 (Cut-node) A node - . ) is a cut-node (or an articulation point) of & if and
only if the subgraph of & induced by ) , � - � is disconnected.

Definition 9 (Bridge) An edge (- , 1 ) . * is a bridge of & if and only if the partial graph
& 6 ' ( ) , * , � (- , 1 ) � ) is disconnected.

� ��� �
	�����#%���$!
In this section, we present a silent self-stabilizing algorithm called Algorithm 
���� 3�� .

Algorithms 1 and 2 formally describe Algorithm 
���� 3 . Our approach (Subsection 3.1)
is mainly based on two results of Tarjan. These results concern the ����� spannning trees
and their properties. Algorithm 
���� 3 is informally describe in Subsection 3.3. This
algorithm assumes that a ����� spanning tree of & (rooted at r) is available. We note
� (r) ' ( ) , * 6 ) this tree � . � (r) can be obtained by applying any silent self-stabilizing �����
algorithm. Thus, in Subsection 3.2, we also discuss about the different silent self-stabilizing
����� algorithms of the literature. Finally, Algorithm 
���� 3 runs concurrently with any
silent self-stabilizing ����� algorithm following the collateral composition rules (as defined
in [13]). So, in Subsection 3.4, we also recall the definition of this composition. In addition,
we propose a general scheme for proving the correctness of a such composite algorithm
(Theorem 3).

3.1. Approach

To implement our algorithm, we use two theorems established by Tarjan in [3]:

Theorem 1 r (root of G) is a cut-node if and only if 'Children(r) '+- 2.

Theorem 2 � - . ) , � r � , - is a cut-node if and only if there exists a node 1 . # � + ��� 
 ) + � - ,
for which no node in T( 1 ) is linked by a non-tree edge to an ancestor of - in T(r).
�
This definition holds for undirected graphs only.�
Uppermost Non-tree Neighbor of each Subtree.�
The notations related to � (r) introduced in Subsection 2.4 apply in this case as well.



These theorems can be deduced from Definition 7. Figure 1 depicts a ����� spanning tree
� (r) of a connected undirected graph & . The root r has exactly two children in � (r). We can
remark that the removal of r would disconnect the graph into two connected components:
the subgraph induced by 2 and its descendants and the subgraph induced by 1 and its
descendants, therefore r is a cut-node. In the same way, the removal of the node 3 would
disconnect the subgraph induced by 7 and its descendants from the rest of the graph because
no node of � (7) is linked by a non-tree edge to an ancestor of 3.
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Fig. 1 	�

� spanning tree in a connected undirected graph.

The following remark shows that cut-nodes and bridges have close relations.

Remark 1 If an edge (- , 1 ) .2* is a bridge of & then each of its both incident nodes is
either a cut-node or a pendent-node (i.e., a node of degree one).

From Theorem 2 and Remark 1, we know that the notion of non-tree neighbor is fonda-
mental to determine cut-nodes and then bridges. So, in order to implement these ideas, we
now introduce a new value � � - , :

� - . ) , � r � , � (- ) ' min � � � � . � ( � � (
�

)
�
�

( � ,
�

) . * �0* 6 � � � � ( � ) � ),
where * 6 is the edge set of � � r , .

Informally, � � - , corresponds to the minimal value among the height of each node of � (- )
and the height of the non-tree neighbors of � (- ). For example, in Figure 2, � (4) has two
non-tree neighbors: 4 and 6. Indeed, Node 4 is a non-tree neighbor of � (4) because (4,6)
is a non-tree edge of � (r) and Node 6 . � (4). Conversely, Node 6 is a non-tree neighbor
of � (4) because (4,6) is a non-tree edge of � (r) and Node 4 . � (4). Moreover, 4, 5, and 6
are the nodes of � (4). Thus, � (4) ' min( � � (4), � (6) � � � � (4), � (5), � (6) � ' min( � 3, 5,
3, 4, 6 � ) ' 3.
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Fig. 2 Example on an arbitrary network.
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We now show the formal relation between the Tarjan’s approach and � (- ). Roughly

speaking, if � - ./) , we know � � - , , � � - , , � � 
 ) + � � - , (for -  ' r), and
# � + ��� 
 )$+ (- ) then

we can easily detect all the cut-nodes and the bridges of & .

Proposition 1 A node - . ) is a cut-node if and only if - satisfies one of the following
two conditions:

1. (- ' r) ! ( ' # � + � �"
 ) + (- ) '+- 2);

2. (-( ' r) ! (
� 1 . # � + � �"
 ) + (- )

�&� � � 1 , - � � - , ).
Proof. First, from Theorem 1, we can trivially deduce that � � is equivalent to the proposi-
tion “r is a cut-node”. Then, for " � , by definition, � � - , is equal to the lowest height among
the height of each node of � (- ) and the height of the non-tree neighbors of � (- ). Now,
assume that a node - . ) , � r � is a cut-node. From Theorem 2, we know that there exists
a child 1 of - in � (r) such that no node in � ( 1 ) are linked to an ancestor of - by a non-tree
edge, i.e., each non-tree neighbor of � ( 1 ) has a height in � (r) greater or equal to the height
of - (From Property 1, each non-tree neighbor of � � 1 , is a descendant of - ). Thus, � � 1 , -� � - , . Hence, if - (-  ' r) is a cut-node then 2. is true. With the same arguments we can
trivially deduce the reciprocal. #

Proposition 2 � - . V , � r � , Edge (- , � � 
 ) + � � - , ) is a bridge if and only if � � - , ' � � - , .
Proof. First, we can assert that a bridge (- , 1 ) . * 6 (the set of edge of � (r)) because, by
definition, the bridge (- , 1 ) is the only way to go from - to 1 in & (respectively from 1 to
- ).

Now, assume that the edge (- , � � 
 ) + � � - , ) is a bridge and � � - ,  ' � � - , . Then, � � - , is
strictly lower than � � - , because � (- ) ' min � � ��� . � ( � � (

�
)
�&�

( � ,
�

) . * � * 6 � � � � ( � ) � ).



Now, if � � - , is strictly lower than � � - , that means that there exists a non-tree edge between
an ancestor of - and a node of � (- ) (by definition of � � - , and Property 1). Thus, the
removal of (- , � ��
 ) + � � - , ) does not disconnect & . Contradiction.

Finally, assume that the edge (- , � ��
 ) + � � - , ) is not a bridge and � � - , ' � � - , . In this
case, there exists, at least, one cycle in & including the edge (- , � ��
 )$+ � � - , ). As � (r)
is a ����� spanning tree of & , this cycle is composed with tree edges and one non-tree
edge. This non-tree edge links a node of � (- ) to an ancestor of - . Thus, � � - ,

�
� � - , (by

definition of � � - , ). Contradiction. #
��� � � " ����������� � �

We now illustrated Propositions 1 and 2 with these following examples.

Cut-nodes. In Figure 2, r has only one child so r is not a cut-node. Node 4 satisfies � �	� ,- � � " , so its parent (Node 2) is a cut-node, in the same way, Node 4 is a cut-node. On the
other hand, no child - of Node 1 satisfies � � - , - � � � , so Node 1 is not a cut-node.

Bridges. In Figure 2, Node 4 satisfies � �	� , ' � �	� , so Edge (4,2) is a bridge. On the other
hand, node 5 satisfies � ��
 , ' 3 and � ��
 , ' 4 so Edge (5,4) is not a bridge.

3.2. Algorithm ��
 3
Obviously, to apply these concepts, we first need to computes a ����� spanning tree

of the network. Several silent self-stabilizing ����� algorithms have been proposed in the
literature, e.g., [14,15,16,17]. In particular, [17] have been proved assuming an unfair dae-
mon. These Algorithms (e.g, [14,15,16,17]) have been written in different computation
model but they can be easily adapted to our model because our computation model is sim-
pler (As example, the adaptation of [15] is provided in the appendix). Moreover, using the
scheme of proofs of [17], it is easy to prove that any adaptation of these algorithms in our
computation model runs assuming an unfair daemon.

All these papers (e.g., [14,15,16,17]) are based on the same idea: each processor com-
putes and stores a representation (using link index or ids) of the path of the ����� spanning
tree leading to the root. Once the algorithm is stabilized, using this path, it is easy for
all processor - to locally deduce several useful parameters � : � ��
 ) + � (- ) (only if -  ' r),# � + � �"
 ) + (- ), and � � - , without using any additionnal variable (i.e., without increasing the
memory requirement of the ����� algorithm).

Thus, in the rest of the paper, we assume the existence of a silent ����� algorithm run-
ning under an unfair daemon and called Algorithm ��
 3 . Moreover, we assume that Algo-
rithm ��
 3 provides three macros � ��
 . (only for -( ' r),

# . , and �*),+ - �1� . . These macros
computes � ��
 ) + � (- ),

# � + � �"
 ) + (- ), and � � - , respectively. Obviously, these macros guar-
antee the expected result, i.e., � ��
 . ' � ��
 ) + � (- ),

# . ' # � + ��� 
 )$+ (- ), and �*),+ - �1� . '� � - , , only when Algorithm ��
 3 is stabilized. During the stabilization, we only assume
that � ��
 .0. (*),+ - . � ��� � , # . � (*),+"- . , and �*),+"- �1� . .�� . � ��
 . ' � means that -
cannot currently distinguish any neighbor as its parent in the ����� spanning tree.
�
See Algorithms 3 and 4 of the appendix



3.3. Algorithm 
���� 3
Roughly speaking, Algorithm 
���� 3 is a self-stabilizing distributed protocol for com-

puting two predicates: Predicates
# � � (�� � ) . ( � -2./) ) and � � 
 ) + ��� + +�$ + � � � 
 + � - ) � .

( � - . ) , � r � ). For the root, using Theorem 1, it is easy to deduce if it is a cut-node
since Algorithm ��
 3 is stabilized. For the other processors (-  ' r), Algorithm 
���� 3
only consists to computes � (- ) in � ��� $ . . With � (- ) and using Propositions 1 and 2, we
can easily deduce

� � , all the non-root cut-nodes of & and
� " , all bridges of & . To that

goal, in our algorithm, we use Macros � � 
 . (for -� ' r),
# . , and �*),+ - �1� . as inputs from

Algorithm ��
 3 to know the parent of each node in � (r), as well as their children, and� (- ) respectively. Macro (�� + � 
 ) ) � ),+ - �1� . collects the currently estimated height of each
non-tree neighbor of - . Macro

# � + � �"
 ) + � ��� $ . collects the currently estimated value of� � 1 , for each children 1 of - in � (r). So, if Macros (�� + � 
 ),) � ) + - �%� . ,
# � + ��� 
 ) + � ��� $ . ,

and �*),+ - �%� . contain the expected values, then, by definition, � (- ) ' min(
# � + ��� 
 )$+ � ��� $ .

� (�� + � 
 ) ) � ),+ - �%� . � � � ),+"- �1� . � ). Hence, Algorithm 
���� 3 has only one action called# � , -1� � ) � ��� $�. : if � ��� $�.  ' min(
# � + � �"
 ) + � ��� $ . � (�� + � 
 ) ) � ),+ - �%� . � � � ),+ - �1� . � ),

then - executes � ��� $ . � ' min(
# � + ��� 
 ) + � ��� $ . � (�� + � 
 ) ) � ) + - �%� . � � � ),+"- �1� . � ). Fi-

nally, once the system is stabilized, according to Propositions 1 and 2, the predicates# � � (�� � ) . (� - . ) ) and � ��
 ) + ��� + +�$ + � � � 
 + � - ) � . (� - . ) , � r � ) allow to deter-
mine cut-nodes and bridges of the network, respectively.

As a consequence, in Section 4, we will simply prove that, for all possible executions,
Algorithm 
���� 3 reaches a terminal configuration and satifies the following predicate in
this configuration:

����*	��
�
 
�
 ( � - . ) , � r � , � ��� $�. '�� (- )).

Algorithm 1 Algorithm 
���� 3 for - ' r
Input:� 5 , ����������� 5 : macros from ����� ;� � ��� 5 : set of neighbors;
Predicate:�"! � �	#%$ � 5'& ( ( � 5 (*),+ )

Algorithm 2 Algorithm 
���� 3 for -( ' r
Input:-/.10 5 ,

� 5 , ����������� 5 : macros from �'�2� ;� � ��� 5 : set of neighbors;
Variable: 3 .�4�5 57678 ;

Macro:� ���:9 $ 0 � � ; .*4�5 5�<>=�? 6@8BACA ( D*E26 � 5 ACAF3 .�4�5�G <>? ) H ;�	# ��� 0 ��� �I� �����I� 5�<J=�? 678KACA ( DLE'6 � � ��� 5 ACA�E	M6 � 5�N -/.�0 5PO< E N ����������� G <Q? ) H ;
Predicates:R 4 $ . �S� ; .*4�5 (4 ) & ( 3 .�4�5 5 O< min(

� �I��9 $ 0 � � ; .�4�5 5/T �	# �U� 0 �F� �I��������� 5/T = �	� �����I� 5�H ))�"! � �	#%$ � 5'& ( D*E26 � 5 ACAF3 .�4�5�G )>�	���V�*��� 5 )-/.10 � �U�SWX� � 5 �SY . 3 0 � $ ��� 5 & ( 3 .*4�5 5 < ����������� 5 )
Actions:� #FZ 4 ! �S� ; .�4 5 (4 ) ACA R 4 $ . �S� ; .*4�5 (4 ) [\3 .*4�5 57A < min(

� ���:9 $ 0 � � ; .*4�5 5/T �	# �U� 0 �F� �I��������� 5T = ����������� 5 H );



3.4. Protocol Composition

Algorithm 
���� 3 and Algorithm ��
 3 run concurrently. For Algorithm 
���� 3 ,
Algorithm ��
 3 is shown as a black box providing several outputs: Macros � ��
 . ,

# . , and
�*),+ - �1� . . Algorithm 
���� 3 access to these macros in read only. So, Algorithm 
���� 3
and Algorithm ��
 3 are composed following collateral composition which defined in [13]
as follows:

Definition 10 (Collateral Composition) Let S $ and S 
 be programs such that no variables
written by S 
 appears in S $ . The collateral composition of S $ and S 
 , denoted S 
�� S $ , is
the program that has all the variables and all the actions of S $ and S 
 .
From now on, we note Algorithm 
���� 3 � ��
 3 the collateral composition of Algorithm

���� 3 and Algorithm ��
 3 . The next definitions and theorem give the general scheme
for the proof of self-stabilization of Algorithm 
���� 3 � ��
 3 .

Let � $ and � 
 be predicate over the variables of � $ and � 
 , respectively. In the composite
algorithm, � $ will be established by � $ , and subsequently, � 
 will be established by � 
 .
We now define a fair composition with respect to both programs, and define what it means
for a composite algorithm to be self-stabilizing.

Definition 11 (Fair Execution) An execution e of S $ � S 
 is fair with respect to S ( (i .
� 1,2 � ) if one of these conditions holds:

1. e is finite;

2. e contains infinitely steps of S ( , or contains an infinite suffix in which no action of S (
is enabled.

Definition 12 (Fair Composition) The composition S 
�� S $ is fair with respect to S ( (i .
� 1,2 � ) if every execution of S 
�� S $ is fair with respect to S ( .
Theorem 3 S 
�� S $ stabilizes to � 
 if the following four conditions hold:

1. Program S $ stabilizes to � $ ;
2. Program S 
 stabilizes to � 
 if � $ holds;

3. Program S $ does not change variables read by S 
 once � $ holds;

4. The composition is fair with respect to both S $ and S 
 .
�!����������� ����� ��� ���  �$�$� & &

In this section, we prove that the composite algorithm 
���� 3 � ��
 3 is self-stabili-
zing for the predicate ��� * � 
7
 
 . Thus, we first recall that the daemon is assumed to be
unfair. Moreover, we assume that Algorithm ��
 3 is silent and self-stabilizing, tolerates
an unfair daemon, and outputs three macros: � ��
 . (for -( ' r only), � ) + - �%� . , and

# . .

Lemma 1 Every execution of Algorithm 
���� 3 � ��
 3 has a finite number of moves.



Proof. We have assumed that Algorithm ��
 3 is silent and runs assuming an unfair
daemon. So, every execution of Algorithm ��
 3 has a finite number of moves. Hence, we
have just to prove that, between two configurations of Algorithm ��
 3 , Algorithm 
���� 3
can execute a finite number of steps only.

By hypothesis, we consider that Algorithm ��
 3 does not make any action. Then, we
can assume that � - . ) the values returned by the macros � ��
 . (for -( ' r),

# . , �*),+"- �1� .
are set. Let & � ' ( ) , * � ) be the partial directed graph of & where * � ' � (- , 1 ) .2* �
�
-  ' r ! � ��
 . ' 1 � for an arbitrary configuration of Algorithm ��
 3 . Thus, & � is the
partial directed graph of & computed by Algorithm ��
 3 . We focus on & � because, from
Predicate � - ��� � ) � ��� $ , we know that the updating of � ��� $ . for a processor - can only
cause the execution of

# � , -1� � ) � ��� $ of the processor pointed out by the macro � ��
 . , if
it exists (remember that � ��
 . may be equal to � ).
In any “system” & � , we are interested in the causes of the moves. Thus, a move can be
caused by:

� An initial configuration.

� A change in the state of a neighbor.

We call an initial move a move caused by an initial configuration. By definition, the number
of initial moves is bounded (by + �(� , since r has no action in Algorithm 
���� 3 ). So, we
have to show that the number of the other moves is also bounded.
For each connected component

#�# ( ' ( ) ( , * ( ) of & � two cases are possible:

1.
#�# ( is a tree. Then, in the worst case, each processor - . ) ( , � r � can execute# � , -1� � ) � ��� $ (- ) as an initial move (the program of r contains no action in Al-
gorithm 
���� 3 ). Moreover, the updating of � ��� $ . can only cause the execution
of
# � , - � � ) � ��� $ of the processor pointed out by the macro � � 
 . , if it exists (see

Predicate � - � � � ) � ��� $ ). Now, we can remark that, for the nodes of ) ( , the cause
relationship of the action

# � , -1� � ) � ��� $ is acyclic (indeed, the � ��� $ s’ updatings
go up in � (r) following the � ��
 variables) and the source of all chains of � ��� $/.
updating are always initial moves. Thus, the length each chain of � ��� $ . updating
in
#�# ( is bounded by the height of

#�# ( . Thus, if
#�# ( is a tree, the number of# � , -1� � ) � ��� $ moves in

#�# ( is finite.

2.
#�# ( is not a tree. First, as � - . ) ( , � � 
 . pointed out, at most, one processor and#�# ( is connected, we can remark that:

(a)
#�# ( contains one cycle only. We note

#
this cycle and

�
its number of proces-

sors.

(b) � - . ) ( , - is not a sink, i.e., a processor with no outgoing edge. In particular,
that means that -( ' r ! � ��
 .� ' � .

In the worst case, each processor - . ) ( can execute
# � , -1� � ) � ��� $ (- ) as an initial

move.

Consider a enabled processor 1 . ) ( which does not belong to
#

. The execution of# � , -1� � ) � ��� $ ( 1 ) can only cause the execution of the action
# � , - � � ) � ��� $ of the

processor pointed out by the macro � � 
�� (see Predicate � - � � � ) � ��� $ ) and so on. In
the worst case, these executions follow a path from 1 to a processor of

#
.



Now, consider the case where the action
# � , -1� � ) � ��� $ of a processor 1 in

#
is

or becomes enabled. The execution of
# � , - � � ) � ��� $ ( 1 ) can only activate the pro-

cessor pointed out by � ��
 � (see Predicate � - � � � ) � ��� $ ) and follows
#

. However,
these executions propagate the same value in the � ��� $ variables. Thus, in the worst
case, the processor 1 can, at most, induce

� � � executions of
# � , -1� � ) � ��� $ actions

(one for each other node of
#

). Indeed, a processor becomes enabled in order to
assign a new value to its � ��� $ variable only. Thus, even if

#�# ( is not a tree, the
number of

# � , - � � ) � ��� $ moves in
#�# ( is also finite.

#
Let - . ) . Let � be the leaf with the upper height in � (- ).We define

�
(- ) as follows:�

(- ) ' � ( � ) � � (- ).
Thus,

�
(- ) represents the distance between - and the upper height leaf of its induced sub-

tree.

Lemma 2 Algorithm 
���� 3 stabilizes to ����* ��
�
 
 if ����*���� 
 holds.

Proof. We begin the proof with some claims. First, by Lemma 1, we know that 
���� 3 ���
 3 reaches a terminal configuration in a finite number of moves and, in this configura-
tion, ����* ��� 
 holds. Assuming ����* ��� 
 holds, all the edges (- , � ��
 . ) such that - .
) , � r � shape a ����� spanning tree � (r) of & , the macro

# . equals
# � + � �"
 ) + (- ), and the

macro �*),+"- �1� . returns � (- ). Since the system reaches a configuration where no action is
enabled, the predicate � - � � � ) � ��� $ (- ) is false for each - . ) , � r � .

Thus, we have to prove that, in this configuration, � - ./) , � r � , Back. ' � (- ). We
prove that by induction on

�
( � ) in � (r).

Let � (r) the set of leaves of � (r). In the terminal configuration, ��� . � (r) (
�
( � ) ' 0),

because
# � + ��� 
 ) + � ��� $ � '�� , � ��� $ � ' min ( (�� + � 
 ) ) � ),+"- �1� � � � �*),+"- �1� � � ). Now,

(�� + � 
 ) ) � ),+ - �1� � '	��
 � 
 � (
��������� � ����� � � (
�

) � , # � + ��� 
 )$+ ( � ) '�� , and � ( � ) ' � � � . Then,
� ��� $ � ' min � � ��� � � ( � � (

�
)
�&�

( � ,
�

) . * �2* 6 � � � � ( � ) � ) '�� ( � ).
Now, assume that for each node - . ) , � r � , such that

�
(- ) '�$ ( $ - 0), we have � ��� $/.

'�� (- ).
Consider the nodes 1 . ) , � r � , such that

�
( 1 ) ' $ " � . In the terminal configuration,

� ��� $ � ' min (
# � + ��� 
 )$+ � ��� $ � � (�� + � 
 ),) � ),+"- �1� � � � �*),+ - �1� � � ). By induction as-

sumption,
# � + � �"
 ) + � ��� $ � ' ��� � 
�� (�� � � � � �

� � � � ( ! ) � ' ��� � 
"� (�� � � � � �
� � � min � � ��� � � ( � � (

�
)�&�

( � ,
�

) . * � * 6 � � � � ( � ) � ) � . (�� + � 
 ) ) � ),+ - �%� � ' ( � 
 � 
 � (
�$#$� 
�� (
� � � �%� �
� �&����� � ��#�� �

� (
�

) � )
' � � (

�
)
�
�

( 1 , � ) . *-� * 6 � . Thus, � ��� $ � ' min( � � � 
�� (
� � � � � �
� � � min � � � � � � ( � � (

�
)
�&�

( � ,�
) . * �0* 6 � � � � ( � ) � ) � � � � (

�
)
�&�

( 1 , � ) . * � * 6 � � � � ( 1 ) � ) ' min( �'� � 
"� (
� � � � � �
� �

( � � � ��� � � ( � � (
�

)
�
�

( � ,
�

) . * � * 6 � � � � ( � ) � )) � � � (
�

)
�&�

( 1 , � ) . * � * 6 � � � � ( 1 ) � ).
Now, � ( 1 ) ' ( ��� � 
"� (�� � � � � �

� � � � ( ! ) � ) � � 1 � . Hence, � ��� $ � ' min � � � � � � ( � � (
�

)
�
�

( � ,
�

)
.0* � * 6 � � � � ( � ) � ) ' � ( 1 ). Thus, � 1 . ) , � r � , such that

�
( 1 ) ' $ " � , � ��� $ � '� ( 1 ). Hence, this property is true for each processor - such

�
(- ) ' $ + 1. With $ ' � - 1

(because
# � , - � � ) � ��� $ does not exist in the program of r) the lemma holds. #

Theorem 4 Algorithm 
���� 3 � ��
 3 stabilizes to ��� * � 
7
 
 under the unfair daemon.

Proof. From the following four observations and Theorem 3, the result holds.



1. By assumption, Algorithm ��
 3 stabilizes to ��� * ��� 
 .

2. By Lemma 2, Algorithm 
���� 3 stabilizes to ��� * ��
�
 
 if ����*�� � 
 holds.

3. Because Algorithm ��
 3 is silent, trivially, we can claim that Algorithm ��
 3 does
not change variables read by ��� * � 
7
 
 once ����*���� 
 holds.

4. From Lemma 1, we know that every execution of 
���� 3 � ��
 3 is finite. Thus, the
composition 
���� 3 � ��
 3 is fair with respect to both ����* ��� 
 and ����* � 
7
 

(see Definition 11).

#
Finally, from Theorem 4, Propositions 1 and 2, we can claim the following theorem.

Theorem 5 Algorithm 
���� 3 � ��
 3 is self-stabilizing and detects all cut-nodes and
bridges of & .

Corollary 1 After Algorithm 
���� 3 � ��
 3 terminates, a node - . ) is a cut-node if
and only if - satisfies

# � � (�� � ) . .

Corollary 2 After Algorithm 
���� 3 � ��
 3 terminates, � - . V , � r � , (- , � ��
 . ) is a
bridge if and only if - satisfies � ��
 )$+ ��� + +�$ + � � � 
 + � - ) . .

��� � � !�� �%����# ���
In order to compare our algorithm with solutions proposed in the literature, we compute

the time complexity of Algorithm 
���� 3 after Algorithm ��
 3 terminates. Thus, in this
section, we assume the presence of a ����� spanning tree of & , � (r). We also presented
the space complexity of our solution.

5.1. Time Complexity

Theorem 6 Algorithm 
���� 3 needs 	 ( � ) rounds to reach a terminal configuration after
Algorithm ��
 3 terminates.

Proof. Since we assume that Algorithm ��
 3 is terminated, a ����� tree of & , � (r), has
been computed:

# . , and �*),+"- �1� . are constant (� - . ) ) and � ��
 . too (� - . ) , � r � ).
Hence, � - . ) , � r � , if

# � , -1� � ) � ��� $ (- ) is disabled then it can become enabled if and
only if at least one of its children 1 in � (r) has modified its variable � ��� $ � (see Predicate
� - � � � ) � ��� $ (- )).

We prove this lemma by induction on
�
( � ) (distance from � to its farther leaf) in � (r).

Let � . � (r), the set of leaves of � (r) (
�
( � ) ' 0), Action

# � , - � � ) � ��� $ ( � ) depends
on �*),+"- �1� variables only, so after one round,

# � , - � � ) � ��� $ ( � ) is disabled forever.
Now, assume that � - . ) , � r � , such that

�
(- ) '($ ( $�- / ), we have

# � , - � � ) � ��� $ (- )
disabled forever and � ��� $ . is now constant after, at most,

�
(- ) " 1 rounds.

For each 1 . ) , � r � , � - � � � ) � ��� $ ( 1 ) uses only � ��� $ values of its children and
�*),+ - �1� variables (which are constant). So, during the round $ " " , each 1 . ) , � r � such



that
�
( 1 ) ' $ " � reads � ��� $ and � ) + - �%� values which are constant from now on. If

# � , -
-1� � ) � ��� $ ( 1 ) is disabled, it will remain forever. Otherwise

# � , - � � ) � ��� $ ( 1 ) is continu-
ously enabled until 1 executes it. So, after the round $ " " ,

# � , -1� � ) � ��� $ ( 1 ) is disabled
forever. At the end of the round � ( � 1 . ) , � r � , � ( 1 )

�
� ) no

# � , - � � ) � ��� $ action is
enabled in the system. #

Theorem 7 Algorithm 
���� 3 needs 	 ( +�
 ) moves to reach a terminal configuration after
Algorithm ��
 3 terminates.

Proof. In order to prove this time complexity, we use the notions of causes of the moves
again. We recall that a move can be caused by:

� An initial configuration.

� A change in the state of a neighbor.

We call an initial move: a move caused by an initial configuration. As we assume Algo-
rithm ��
 3 is terminated, we can consider that, � - , the values returned by the macros
� ��
 . (for -  ' r),

# . , and �*),+"- �1� . are also set. Hence, there exists a ����� spanning tree
of & rooted at r, � (r) ' ( ) , * 6 ) such that * 6�' � (- , � ��
 . )

�&� -/.0) , � r � � . In the worst
case, each processor - . )!, � r � can execute

# � , -1� � ) � ��� $ (- ) as an initial move. So, the
total number of execution of initial

# � , -1� � ) � ��� $ is in 	 ( + ) moves. Then, the updating of
the variable � ��� $ . of a processor - can only cause the execution of

# � , -1� � ) � ��� $ of its
parent in � (r), i.e., � ��
 . (see Predicate � - � � � ) � ��� $ ). Moreover, we can remark that the
cause relationship of the action

# � , -1� � ) � ��� $ is acyclic (indeed, the � ��� $ s’ updatings
go up in � (r) following the � ��
 variables) and the source of all chains of � ��� $ s’ updating
is always an initial move. Thus, the length of each chain of � ��� $ s’ updating is bounded
by � , the height of � (r) ( � ' + ). Hence, the number of executions of

# � , -1� � ) � ��� $ is
in 	 ( +�
 ) after Algorithm ��
 3 terminates. #

5.2. Space Complexity

Algorithm 1 contains no variable. Algorithm 2 contains on variable only: � ��� $ . � - .
) , � r � , � ��� $ . is used to store the height of - or the height of one of its ancestor. So, the
value of � ��� $ . can be bounded by + and the following theorem is obvious.

Theorem 8 The memory requirement of Algorithm 
���� 3 is 	 ( � �/� ( + )) bits per processor
where + is the number of processors.

� � � ���! ��%�$&$# � �
We have presented a silent, distributed, and self-stabilizing algorithm which detects

cut-nodes and bridges in arbitrary rooted networks. This algorithm must be composed
with a silent self-stabilizing algorithm computing a ����� spanning tree of the network like
[16,17]. Once the ����� spanning tree is computed, our algorithm needs only 	 ( � ) rounds
and 	 ( + 
 ) moves to reach a terminal configuration. This time complexity is equivalent to
the best already proposed solutions. We have shown that our solution works under an unfair



daemon, i.e., the weakest scheduling assumption. Moreover, the memory requirement of
our algorithm is 	 ( � �/� ( + )) bits per processor (without taking account of variables used
for the spanning tree computing). Until now, this is the protocol with the lowest memory
requirement solving this problem.
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Algorithm 3 Algorithm ��
 3 for - =r
Input:

� � ��� 5 : set of neighbors (locally ordered);

Constant:
-/. �S� 5 = � ;

Macro:�	� ������� 5 < ( -/. �S�,5�(
� 1;� 5'<J= E26 � � ��� 5 ACA (
-/. �S� 5�����5 ( E )) < -/. �S� G H ;

Algorithm 4 Algorithm ��
 3 for -  ' r
Input:

� � ��� 5 : set of neighbors (locally ordered);

Constant:
� ) � ;

Variable:
-/. �S�,5 : list of, at most,

�
ordered items 6 = �'H�T	8 ;

Macro:� � . $ 4 . �S� 5 < S

G
��� ������� = right
�

(
-/. �S� G ��� G (4 )) H ;

�	� ������� 5�< ( -/. �S� 5 (
� 1;-/.10 5 < E if ( D��%E"6 � ���V� 5�ACA (
-/. �S� G ��� G (4 )) < -/. �S�,5 ), � otherwise;� 5 <J= E26 � � ��� 5 ACA (

-/. �S�,5 ��� 5 ( E )) < -/. �S� G H ;
Predicates:R 4 $ . �S� 4 . �S� (4 ) & (

-/. �S� 5 O< min �! #"%$ (
� � . $ 4 . �S� 5 ))

Action:� #FZ 4 ! �S� 4 . �S� (4 ) ACA R 4 $ . �S� 4 . �S� (4 ) [ -/. �S�,5�A < min �! #"%$ (
� � . $ 4 . �S�,5 );

First, in [15], authors assume that � - . ) , ��1 .*(*),+ -�. , - knows & � (- ), i.e., the index
of Edge (- , 1 ) in ( ) + - � (for details see [15]). Then, Algorithm ��
 3 works as follows:
the memory of any processor - consists of a path field denoted by � � �	� . . The root r has
its constant � � �	� � equal to � . Any other processor - computes its path field according to
the path fields of its neighbors. From the path � � �	� � , read by - from the neighbor 1 , -
derives a path by concatening � � �	� � with & � (- ) (noted � � �	� �(' & � (- )). Then, - chooses
its path to be the minimal path (according to the lexicographical order ) � � � ) among the
paths derived from its neighbors’ paths. For any processor - , Path . contains a sequence
of at most ( items ( ( - + ) where an item is � or an edge index. Indeed, � � �	� . may
describe the longuest elementary path that is possible in & . Thus, the notation right � ( * )
refers to the sequence of the $ least significant items of * .


