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Abstract. In the self-stabilizing model each node has only local infor-
mation about the system. Regardless of the initial state, the system must
achieve a desirable global state. We discuss the construction of a solution
to the spanning tree problem in this model. To our knowledge we give the
first self-stabilizing algorithm working in a polynomial number of moves,
without any fairness assumptions. Additionally we show that this ap-
proach can be applied under a distributed daemon. We briefly discuss
implementation aspects of the proposed algorithm and its application in
broadcast routing and in distributed computing.

1 Introduction

A distributed system consists of nodes that are pairwise connected by communi-
cation channels. Each node maintains variables which determine its local state.
The global state of the system is the union of all local states. Such a model is
seen to be a good abstraction for real objects such as peer-to-peer networks.

The system is constructed in such a way as to guarantee that it works cor-
rectly, i.e. persists in a legitimate state, even though some perturbations can
bring it to an illegitimate state. It is desirable that it returns to a legitimate
state without any external intervention. Self-stabilization, a concept introduced
by Dijkstra [4] in 1974, can be thought of as a technique for designing such
resilient systems. A self-stabilizing system is one which is able to achieve a le-
gitimate global state starting from any possible global state.

A distributed system can be modeled by a connected graph G = (V, E),
where vertex set V corresponds to system nodes and the set of edges E denotes
communication links between them. A vertex can change its local state by mak-
ing a move. The algorithm for each vertex v is given as a set of rules of the form
if p(v) then A, where p(v) is a predicate over local states of v and its neighbors,
and A is an action changing a local state of v (a move of v). A vertex v becomes
active when p(v) is true, otherwise v is stable. The execution of the algorithm is
controlled by a scheduler which allows some non-empty subset of active vertices
to perform a simultaneous move defined by the rules for the respective nodes;
this is referred to as a single action. If all vertices in a graph are stable, we
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say that the system is stable. In order to measure the time complexity of self-
stabilizing algorithms we often use the number of moves or, more commonly in
synchronized systems, the number of rounds.

Finding a spanning tree in such a system can be the basis of many complex
distributed protocols like broadcasting, token circulation or code assignment.
Predictably, many publications on the subject have appeared in recent years.
A self-stabilizing algorithm for a BFS spanning tree in a semi-uniform system
with a central daemon under read/write atomicity was described in [6]. Afek,
Kutten and Yung in [1] gave a similar algorithm but for a uniform network,
which stabilizes in O(n2) asynchronous rounds. Another algorithm was given by
Arora and Gouda in [3] as a part of a more complex algorithm. In this paper
authors assumed unique identifiers for vertices and a bound on the graph size
known to all nodes. A very simple algorithm was presented by Huang and Chan
in [8]. Yet another, which also needs a bound on n known to all vertices, was
invented by Sur and Srimani in [10].

Later on, many other papers appeared on the subject, describing various ap-
proaches, considering time effectiveness [2], memory requirements [5, 9] or com-
munication costs. But, to the best of our knowledge, no algorithm working in a
polynomial number of moves without any assumptions on scheduler fairness has
ever before been described in literature, even for the case when the scheduler
selects exactly one of the active nodes at a time to make a move. We give a
general solution to the considered problem for arbitrary schedulers.

2 An Algorithm for Finding a Spanning Tree in
O(n diam(G)) Moves

Let G = (V, E) be a system graph, where vertex set V corresponds to system
nodes and the set of edges E denotes communication links between them. By
n = |V | and m = |E| we denote the number of vertices and the number of edges,
respectively. In addition, let N(v) = {u : (u, v) ∈ E} be the open neighborhood
of v, and let deg(v) = |N(v)| be the degree of v. A spanning tree T = (V, E′) of
G = (V, E) is a subgraph of G consisting of the same set of nodes V , but only
a subset E′ ⊆ E of edges such that there exists exactly one path between every
pair of nodes in T . To ensure the existence of a spanning tree, graph G must be
connected, so in this paper we restrict our considerations to connected graphs
only.

In our first approach we provide a simple semi-uniform algorithm, in which
each node has only one local variable f , a non-negative integer. Semi-uniformity
means that exactly one of the nodes, called a root, needs to be distinguished. We
will denote it by r. The interpretation of state variable f is as follows. Consider
node v and let us choose u such that f(u) = minw∈N(v) f(w) and u is the first1

1 To be able to say “first” we must assume that the neighbors are somehow ordered.
This is not a strong assumption as long as a node is able to distinguish between its
neighbors. For example, if the neighbors of v are stored in the form of a list, the
order can be given according to the list sequence.
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vertex among the neighbors of v with such a property. If f(u) < f(v) then we
say that u is the parent of v. For the distinguished vertex f(r) is permanently
equal to 0.

We now proceed to show an algorithm which will guarantee that the parent
of each vertex (with the exception of the root) is uniquely defined, thus implying
an ordering of the vertices equivalent to a spanning tree.

Algorithm 1:

R: if v �= r ∧ f(v) ≤ minu∈N(v) f(u)
then f(v) = maxu∈N(v) f(u) + 1

Let T = (V, ET ) be an arbitrary spanning tree of G. Consider an edge e =
{u, v} ∈ ET , where vertex u is closer to root r in tree T than vertex v, dT (u, r) <
dT (v, r) (dT (u, v) is the length of path [u, v]T ). We will call edge e correctly
directed if f(u) < f(v). When analyzing Algorithm 1 it is useful to bear in mind
the following observation.

Corollary 1. If for a given state of the system running Algorithm 1 there exists
a spanning tree T such that all its edges are correctly directed, then the system
is stable.

Theorem 2. Algorithm 1 stabilizes in O(n diam(G)) moves.

Proof. We now select an arbitrary spanning tree T of G and define the following
function:

ST (v) =
∑

(w,w′)∈E([r,v]T )

max{f(w) − f(w′), 0} (1)

Intuitively, ST (v) can be thought of as the number of edges lying on the path
[r, v]T which are correctly directed. Obviously:

0 ≤ ST (v) ≤ dT (r, v) (2)

Let us consider the effect of a parallel action of a set of vertices X = {x1, . . . , xk}
⊂ V on the values ST (v). As the root r cannot make any move, thus r �∈ X . With-
out loss of generality we can assume that the subgraph H of G induced by X is
connected, since otherwise the same actions can be performed by the scheduler in
several successive actions, without any time gain. The structure of Algorithm 1
implies that before the action, for all i we have f(xi) ≤ minu∈N(x) f(u), and
consequently f(xi) = f(xj) for all i, j. Consider an arbitrary connected com-
ponent P of the forest T ∩ H . The change of values of f within component P
affects which edges of T are correctly directed. Notice that this operation does
not affect the edges of T \ P . Let eP be the edge connecting P with the compo-
nent of T \ P containing root r. Before the action, no edge of P was correctly
directed, and edge eP was not correctly directed either. After the action, edge
eP is correctly directed. Taking into account the fact that for any vertex v ∈ V
the value ST (v) depends only on which edges of the path [r, v]T are correctly
directed, we immediately obtain that the value ST (x) increases by at least 1 for
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every vertex x ∈ P , and does not decrease for any other vertex of T . Since this
reasoning can be repeated for all other connected components of T ∩ H , it is
evident that the value ST (x) increases by at least 1 for every vertex which is
making a move, and does not decrease for any other vertex.

Thus, by inequality (2) and Corollary 1 we obtain that a vertex v may make at
most dT (r, v) moves while the algorithm is stabilizing. Since the above reasoning
holds for any tree T , it is also correct for the BFS spanning tree TB of graph G
rooted at vertex r. The following inequality is true for any vertex v: dTB (r, v) ≤
diam(G). All vertices become stable after making at most diam(G) moves each,
which completes the proof. �

Theorem 3. Algorithm 1 finds a spanning tree.

Proof. Suppose that the system is stable, so each node is stable. Hence accord-
ing to our definition of the parenthood relation every vertex except root r has a
unique parent node (otherwise, such a vertex would have a locally minimal value
and rule R would be active for it). By including all edges {u, v} such that v is a
parent of u we obtain graph T , a subgraph of G = (V, E). It is easy to observe
that r is a vertex of T , thus T has n vertices and n−1 edges. Moreover, by defini-
tion of parenthood, T may not contain any cycles, so T is a spanning tree of G. �

The algorithm given above is extremely simple and fast. However, at this point
we can observe certain inconveniences. First, we cannot give an upper bound on
the value of f(v) and secondly, we do not provide sufficient local state information
to allow a vertex to recognize its child nodes in the tree (only its parent). The
former problem is addressed in detail in Section 4. The latter may be easily solved
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by adding a simple rule to Algorithm 1, which has no effect on its polynomial
pessimistic stabilization time.

2.1 Example

In Figure 1 each of the pictures illustrates the states of the vertices in successive
moves. The root vertex r is distinguished by a bold circle and active vertices
are marked with double circles. The state value f of each vertex is given inside
the circle, while the value ST , used in the proof of theorem 2, is marked close to
the circle. An exemplary chosen spanning tree T is denoted by bold lines, while
additional arcs show the parenthood relation between vertices. A small pointer
indicates the vertices to perform the next action. Symbols P and ep have the
same meaning as in the proof. The algorithm computes a spanning tree in three
actions, and the result is visible (in the form of the parenthood relation) in
Figure 1(d).

3 Fault Containment for Limited Perturbations

In practical applications of spanning tree construction it is often desirable for
the stabilization time of the algorithm to be dependent on the severity of the
faults which appeared in the system, i.e. a minor perturbation ought to result in
quicker stabilization. This notion is referred to as fault-containing spanning tree
construction, and was studied in the round-based model by Ghosh, Gupta and
Pemmaraju [7]. We say that the system starts in a k-faulty state if the initial
state can be transformed into a state representing some valid spanning tree of
G (rooted at r) by changing local vertex states of not more than k vertices.

Algorithm 1 proves extremely stable when considered from the point of view
of fault containment.

Property 4. If the system starts in a k-faulty state, then Algorithm 1 stabilizes
in O(kn) moves.

Proof. The proof is based on a similar method as that applied in the proof of
Theorem 2. Suppose that the system starts in a k-faulty state with tree T used
as the reference solution. It suffices to notice that the introduction of a single
fault results in a change of values ST (v) by no more than 1 for all vertices.
Consequently, in a k-faulty state the initial value of ST (v) is never smaller than
the final value of ST (v) by more than k. Since every move of a vertex increases
its current value ST (v) by at least 1, no vertex will ever move more than k
times while Algorithm 1 is stabilizing. Of course, the solution obtained by the
algorithm need not be the same as the reference tree T . �

Finally, it is interesting to observe the way in which Algorithm 1 builds its
spanning tree. At every stage of execution, each vertex of the graph is capable
of indicating its direct parent or stating that in the current arrangement it has
no parent (at the end of the process the only vertex left without a parent is the
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root r). This feature is of some importance in networking applications, since it
guarantees that at every stage of execution the temporary solution is a directed
spanning forest, and is always acyclic.

4 Memory Usage for Local States

The local state of Algorithm 1 consists of one local variable f and one implied
pointer, indicating the parent of the vertex. The values f(v) are non-negative
in the initial state and increase throughout the operation of the algorithm. It
is easy to show that if their initial value is polynomial with respect to n, then
their final value is also polynomial with respect to n. Indeed, let Ft denote the
maximum of f(v) taken over all vertices, for the state of the system after exactly
t actions. Initially, Ft = F0 and with every action Ft increases by at most 1. Since
by Theorem 2 the algorithm stabilizes after f actions, for some f ≤ n diam(G),
the final value Ff fulfills the inequality Ff ≤ F0 + n2.

However, in practical applications it is often useful to give up the classical
model of a local state understood as a memory cell of dynamically expandable
size, and assume that the size of the local state is limited by physical storage
constraints. In order to achieve this, we propose the following modification of
Algorithm 1, in which the local state variable f(v) is understood as a memory
cell capable of storing any integer from the range [0, N ], for some known constant
value N ≥ n. The only exception is the local state of the root, as the value f(r)
is always fixed and equal to 0 (as in the case of Algorithm 1).

Algorithm 2:

R: if v �= r ∧ f(v) ≤ minu∈N(v) f(u) ∧ maxu∈N(v) f(u) < N
then f(v) = maxu∈N(v) f(u) + 1

R1: if v �= r ∧ f(v) > maxu∈N(v) : f(u)<f(v)(f(u) + 1)
then f(v) = maxu∈N(v) : f(u)<f(v)(f(u) + 1)

Theorem 5. Algorithm 2 stabilizes in O(Nn diam(G))moves and uses O(log N)
storage space per vertex.

Proof. The O(log N) storage space required by the algorithm is an obvious con-
sequence of the structure of the local state. We will concentrate on proving the
bound on the number of moves required by the algorithm.

Rule R of Algorithm 2 is a copy of rule R of Algorithm 1, with the constraint
that the rule will only activate provided the resultant value f(v) does not exceed
the imposed upper bound N . Rule R1 reduces the value f(v) for the active vertex
v to the smallest possible value which does not make any correctly directed edge
in graph G (with respect to any spanning tree) lose its correct direction (consult
the proof of Theorem 2), even if such a rule is executed in parallel with rule R
on other vertices.

It suffices to show that before the algorithm stabilizes rule R activates in at
most n diam(G) moves, and rule R1 activates in at most O(Nn diam(G)) moves.



A Self-stabilizing Algorithm for Finding a Spanning Tree 81

The first part of the statement is true by Theorem 2, since the bound on the
number of activations of rule R is only dependent on the correct directions of
edges in some spanning tree (proof of Theorem 2), and the number of such moves
made by a single vertex is bounded by diam(G). To prove the second part of
the statement, we consider the sum Σt of values f(v) taken over all vertices, in
the state of the system after exactly t actions. The change of value Σt from Σ0
in the first considered state to Σf in the last considered state is the result of
the total change ∆ΣR caused by moves using rule R and the total change ∆ΣR1

caused by activations of rule R1, i.e.:

Σf = Σ0 + ∆ΣR + ∆ΣR1 (3)

Since at every stage of the algorithm all values f(v) are bounded (0 ≤ f(v) ≤ N),
we have 0 ≤ Σ0 ≤ Nn and 0 ≤ Σf ≤ Nn. A single move using rule R increases
Σt by not more than N , and the number of activations of rule R is bounded by
n diam(G), hence 0 ≤ ∆ΣR ≤ Nn diam(G). From (3) and the above observations
we have:

|∆ΣR1| ≤ |Σf | + |Σ0| + |∆ΣR| ≤ Nn(diam(G) + 2) ∈ O(Nn diam(G)) (4)

By studying rule R1 it is easy to observe that any activation of this rule strictly
decreases the value Σ, and consequently the number of activations of this rule
does not exceed |∆ΣR1|. By applying (4) we obtain the desired bound on the
number of moves. �

Theorem 6. Algorithm 2 finds a spanning tree.

Proof. By studying the proof of Theorem 3, we observe that rule R is inactive
for all vertices in one of two cases: (1) the current state is already stable, or
(2) there is a vertex v with all edges directed towards it which has a neighbor
u such that f(u) = N . It suffices to prove that the latter case is not a final
state of Algorithm 2. The proof proceeds by contradiction. Suppose that rule
R1 is also inactive for all vertices. This means that for any vertex w we either
have f(w) = 0, or there exists a neighbor x of w such that f(w) = f(x) + 1.
Consequently, for any vertex w the inequality f(w) < n holds, a contradiction
with f(u) = N ≥ n. �

It is interesting to study the effect of the chosen bound N on the performance
of Algorithm 2. If N is polynomial with respect to n, N ∈ O(poly(n)), then the
memory required for storing a local state is O(log n), and the number of moves
made by Algorithm 2 is O(poly(n)). In particular, if N is a constant-factor bound
on the value of n, i.e. N ∈ O(n), then the number of moves of Algorithm 2 may
be written as O(n2 diam(G)). On the other hand, it has to be remembered that
the value N needs to be stored in all vertices, and consequently selecting a value
too close to n may decrease the scalability of the system.
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5 Final Remarks

When considering the model of self-stabilization without fairness guarantees,
the spanning tree algorithm presented in this paper has numerous and profound
implications.

First of all, the presented algorithm may be easily and efficiently applied in
a broadcasting protocol for a distributed network. In such a network, broadcast
packets may only be routed along edges of some spanning tree (to avoid infinite
transmission loops) and the spanning tree may need to be dynamically recreated
in case of temporary malfunction without the intervention of a central agent. A
spanning tree suitable for such a protocol can be constructed using an algorithm
based on Algorithm 2 with one additional rule (allowing a vertex to know not
only its parent, but also its children), whose polynomial stabilization time is
immediately evident.

Moreover, the existence of the discussed algorithm shows that it is possible
to use an algorithm stabilizing in a polynomial number of moves to determine a
structure defined by a global property in the graph, but using only local neighbor-
hood information. Such an approach opens up new possibilities for polynomial-
time self-stabilizing distributed computing without fairness assumptions when
solving problems related to code assignment.
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