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Abstract

A self-stabilizing algorithm, after transient faults hit the system and place it in some arbi-
trary global state, makes the system recovering in finite time without external (e.g., human)
intervention. In this paper, we propose a distributed asynchronous silent self-stabilizing algo-
rithm for finding a minimal k-dominating set of at most d n

k+1
e processes in an arbitrary identified

network of size n. We propose a transformer that allows our algorithm to work under an unfair
daemon, the weakest scheduling assumption. The complexity of our solution is O(n) rounds
and O(Dn3) steps using O(log k + logn + k log N

k
) bits per process, where D is the diameter of

the network and N is an upper bound on n.

Keywords: Distributed systems, self-stabilization, k-dominating sets, k-clustering

1 Introduction

Consider a simple undirected connected graph G = (V,E), where V is a set of nodes and E a set
of edges. For any process p and q, we define ‖p, q‖, the distance from p to q, to be the length of
the shortest path in G from p to q. Given a non-negative integer k, a subset of processes D is a
k-dominating set of G if every process that is not in D is at distance at most k from a process in D.

Building a k-dominating set in a graph is useful because it allows to split the graph into k-clusters.
A k-cluster of G is defined to be a set C ⊆ V , together with a designated node Clusterhead(C) ∈ C,
such that each member of C is within distance k of Clusterhead(C). We define a k-clustering of a
graph to be a partitioning of the graph into distinct k-clusters. The set of clusterheads of a given
k-clustering is a k-dominating set; conversely, if D is a k-dominating set, a k-clustering is obtained
by having every node choose its closest member in D as its clusterhead.

A major application of k-clustering is in implementing efficient routing scheme. For example,
we could use the rule that a process, that is not a clusterhead, communicates only with processes

0This work has been partially supported by the ANR project ARESA2.
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in its own cluster, and that clusterheads communicate with each other via virtual “super-edges,”
implemented as paths in the network.

Ideally, we would like to find a minimum k-dominating set, namely a k-dominating set of the
smallest possible cardinality. However, this problem is known to be NP-hard [19]. We can instead
consider the problem of finding a minimal k-dominating set, a k-dominating set D is minimal if
for all D′ ( D, D′ is not a k-dominating set. In other words, a k-dominating set has no proper
subset which is also k-dominating. However, the minimal property does not guarantee that the
k-dominating set is small. See, for example, Figure 1. The singleton {v0} is a minimal 1-dominating
set. However, the set of gray nodes is also a minimal 1-dominating set. To overcome this problem, we
propose a self-stabilizing algorithm that builds a minimal k-dominating set, whose size is bounded
by d n

k+1e, where n is the size of the network.

v0

v1
v2

v3

v4

v5
v6

v7

Figure 1: Example of minimal 1-dominating set

1.1 Related Work

Self-stabilization [15, 16] is a versatile property, enabling an algorithm to withstand transient faults
in a distributed system. A self-stabilizing algorithm, after transient faults hit the system and place
it in some arbitrary global state, makes the system recovering in finite time without external (e.g.,
human) intervention.

There exist several asynchronous self-stabilizing distributed algorithms for finding a k-dominating
set of a network, e.g., [11, 10, 6]. All these algorithms are proven assuming an unfair daemon.
The solution in [11] stabilizes in O(k) rounds using O(k log n) space per process. The one in [10]
stabilizes in O(n) rounds using O(log n) space per process. The algorithm proposed in [6] stabilizes
in O(kn) rounds using O(k log n) space per process. Note that only the algorithm in [10] builds a
k-dominating set that is minimal. Moreover, none of these solutions guarantees to output a small
k-dominating set. There are several self-stabilizing solutions that compute a minimal 1-dominating
set, e.g., [29, 22]. However, the generalization of 1-dominating set solutions to k-dominating set
solutions does not scale up, in particular it does not maintain interesting bounds on the size of the
computed dominating set.

There exist several non self-stabilizing distributed solutions for finding a k-dominating set of a
network [26, 25, 1, 18, 28]. Deterministic solutions proposed in [1, 18] are designed for asynchronous
mobile ad hoc networks, i.e., they assume networks with a Unit Disk Graph (UDG) topology. The
time and space complexities of the solution in [1] are O(k) and O(k log n), respectively. Solution
proposed in [18] is an approximation algorithm with O(k) worst case ratio over the optimal solution.
The time and space complexities of the distributed algorithm in [18] are not given. In [26], authors
consider the problem of deterministically finding a k-dominating set of at most d n

k+1e processes.

Their solution assumes a synchronous system and has a complexity in O(k log∗ n) time. However,
the authors missed one special case in the proof, which unfortunately can make the proof fail in

502



International Journal of Networking and Computing

some networks. The same flaw is present in some subsequent papers [25, 27]. Ravelomanana [28]
proposes a randomized algorithm designed for synchronous UDG networks whose time complexity
is O(D) rounds.

All previous non self-stabilizing solutions can be transformed into self-stabilizing ones using some
transformers [23, 9]. However, the transformed self-stabilizing solutions are expected to be inefficient,
both in time and space, because those transformers use some mechanisms like snapshots.

1.2 Contributions

In this paper, we propose a deterministic, distributed, asynchronous, silent, and self-stabilizing algo-
rithm for finding a minimal k-dominating set of at most d n

k+1e processes in any arbitrary identified
network.

We first consider the upper bound on the size of minimum k-dominating sets given in [26]. We
show that the proof given in [26] missed a case, and propose a correction that does not change the
bound.

Next, we propose an asynchronous silent self-stabilizing algorithm, called SMDS(k), for finding
a minimal k-dominating set of small size based on our proof of the bound. To simplify the design of
our algorithm, we make it as a composition of three layers. The first two layers together compute a
k-dominating set of at most d n

k+1e processes. As the resulting k-dominating set may not be minimal,
we apply the algorithm given in [10] as the last layer to remove nodes from D until we obtain a
minimal k-dominating set. The three layer composed algorithm is proven assuming a weakly fair
daemon. The solution stabilizes in O(n) rounds using O(log k + log n + k log N

k ) bits per process,
where N is an upper bound on n, the size of the network.

We then propose a general method to efficiently transform a self-stabilizing weakly fair algorithm
into a self-stabilizing algorithm working under an unfair daemon (the weakest scheduling assump-
tion). The proposed transformer has several advantages over the previous solutions. (1) It preserves
the silence property. (2) It does not degrade the round complexity or the memory requirement of
the input algorithm. (3) It builds efficient algorithms in terms of step complexity (O(Dn(R+ n2)),
where R is the stabilization time of the input algorithm in rounds). For example, using this method,
the transformed version of SMDS(k) stabilizes in O(Dn3) steps, where D is the diameter of the
network.

Finally, we analyze, using simulations, the size of the k-dominating set computed by our algo-
rithm. Simulation results show that the average size of the k-dominating sets we obtain from our
algorithm is significantly smaller than the upper bound. In particular, we observed a noticeable gain
in the size after the minimization performed by the last layer.

1.3 Roadmap

In the next section, we present the computational model used in this paper. In Section 3, we give a
counterexample for the proof of the upper bound given in [26], and propose a correction. In Section
4, we define a composition technique derived from the one of Herman, [20]. This technique is used to
build our self-stabilizing algorithm, Algorithm SMDS(k), which is presented and proven in Section
5. In Section 6, we show how to transform Algorithm SMDS(k) to obtain a solution that works
under an unfair daemon. Section 7 is used to report the simulation results. We make concluding
remarks in Section 8.

2 Preliminaries

2.1 Computational Model

We consider a network as an undirected simple connected graph G = (V,E), where V is a set of n
processes and E a set of bidirectional links. Processes are assumed to have distinct identifiers. In
the following, we make no distinction between a process and its identifier, that is, the identifier of
process p is simply denoted by p. If b bits are used to store each identifier, then the space complexity
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of our algorithm will be Ω(b) per process, but henceforth, as is commonly done in the literature, we
will assume that b = O(log n).

We assume the shared memory model of computation, introduced by Dijkstra [15]. In this
model, a process p can read its own variables and that of its neighbors, but can write only to its
own variables. Let Np denote the set of neighbors of p.

Each process operates according to its (local) program. We call (distributed) algorithm A a
collection of n programs, each operating on a single process. In the following, we will denote the
local program of process p in the distributed algorithm A by A(p). The program of each process is
a set of actions of the following form:

〈label〉 :: 〈guard〉 −→ 〈statement〉.

Labels are only used to identify actions in the reasoning. The guard of an action in the program of a
process p is a Boolean expression involving the variables of p and its neighbors. The statement of an
action of p updates one or more variables of p. An action can be executed only if it is enabled , i.e.,
its guard evaluates to true. A process is said to be enabled if at least one of its actions is enabled.
The state of a process in the (distributed) algorithm A is defined by the values of its variables in A.
A configuration of A is an instance of the states of processes in A. We denote by γ(p) the state of
process p in configuration γ.

Let 7→ be the binary relation over configurations of A such that γ 7→ γ′ if and only if it is
possible for the network to change from configuration γ to configuration γ′ in one step of A. An
execution of A is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that γi−1 7→ γi
for all i > 0. The term “maximal” means that the execution is either infinite, or ends at a terminal
configuration in which no action of A is enabled at any process. Each step γi 7→ γi+1 consists of
one or more enabled processes executing an action. The evaluations of all guards and executions of
all statements of those actions are presumed to take place in one atomic step; this model is called
composite atomicity [16].

We assume that each step from a configuration to another is driven by a scheduler , also called
a daemon. If one or more processes are enabled, the scheduler selects at least one of these enabled
processes to execute an action. A scheduler may have some fairness properties. Here, we consider
two kinds of fairness properties. A scheduler is weakly fair if it allows every continuously enabled
process to eventually execute an action. The unfair scheduler models designing of an algorithm with
the weakest fairness assumption: it can forever prevent a process to execute an action except if the
process is the only enabled process.

We say that a process p is neutralized in the step γi 7→ γi+1 if p is enabled in γi and not enabled
in γi+1, but does not execute any action between these two configurations. The neutralization of a
process represents the following situation: at least one neighbor of p changes its state between γi
and γi+1, and this change effectively makes the guard of all actions of p false.

To evaluate the time complexity, we use the notion of round. The first round of an execution e,
noted e′, is the minimum prefix of e in which every process that is enabled in the initial configuration
either executes an action or becomes neutralized. Let e′′ be the suffix of e starting from the last
configuration of e′. The second round of e is the first round of e′′, the third round of e is the second
round of e′′, and so forth.

2.2 Self-Stabilization and Silence

Let A be a distributed algorithm and P be a predicate over the configurations of A. A stabilizes to
P if there exists a non-empty subset S of configurations of A such that:

Correction: ∀γ ∈ S, P (γ).

Closure: For each possible step γ 7→ γ′ of A, γ ∈ S ⇒ γ′ ∈ S.

Convergence: Each execution of A (starting from an arbitrary configuration) contains a configu-
ration of S.
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The configurations of S are said to be legitimate, and other configurations are called illegitimate.
We say that an algorithm is silent [17] if each of its executions is finite. In other words, starting

from an arbitrary configuration, the network will eventually reach a configuration where none of its
actions is enabled at any process. In this paper, we are interested in silent self-stabilizing algorithms.
To show the stabilization to a predicate P of such an algorithm A, it is sufficient to show that (1)
every execution of A is finite and (2) every terminal configuration of A satisfies P .

3 Bound

In this section, we present an upper bound on the size of the minimum k-dominating set in any
connected network. This upper bound originally appeared in [26]. However, the proof proposed in
[26] overlooked a special case. The same case was overlooked in some other subsequent works as
well [25, 27]. Below, we exhibit a counterexample to show the special case where the proof of [26] is
not valid. We then show how to fix the problem without affecting the upper bound.

Let T be an arbitrary spanning tree of G = (V,E) rooted at some process r, that is, any
connected graph T = (VT , ET ) such that VT = V , ET ⊆ E, and |ET | = |VT | − 1, where the process
r is distinguished. In T , the height of process p, h(p), denotes its distance to the root r. The height
of T is equal to maxp∈VT

h(p). The height of T is denoted by H(T ) or simply H when it is clear
from the context. By extension, we denote by H(T (p)) the height of the subtree rooted at p, T (p).

The original proof consists in dividing the processes of V into levels T0, . . . , TH according to
their height in the tree, and assigning all the processes of height i to Ti. These sets are merged into
k + 1 disjoint sets D0, . . . , Dk by taking Di =

⋃
j≥0 Ti+j(k+1).

When k < H, the proof in [26] claims that (1) the size of the smallest set Di is at most d n
k+1e,

and (2) every Di (i ∈ [0..k]) is k-dominating. The upper bound is then obtained by considering the
set Di of smallest size.

Actually, this latter set is not always k-dominating. For example, consider the case k = 2 in the
tree network of Figure 2. Clearly, D2 is not a 2-dominating set, because u is not 2-dominated by
any process in D2; ‖u,w‖ = 3.

T0 ∈ D0

T1 =D1

T2 =D2

T3 ∈ D0

r

u v

w

x

Figure 2: Counterexample of the original proof

This mistake can be corrected without changing the bound. Actually, the mistake only appears
when the smallest Di (i ∈ [0..k]), say D`, is not D0. In this case, a leaf process whose height is
strictly less than ` may be not k-dominated by any process in D` (as in the previous example). To
correct this mistake we simply proceed as follows. When k ≥ H (in this case ‖D0‖ = 1) or every
Di (i ∈ [0..k]) has the same size (i.e., d n

k+1e), then we choose D = D0. Otherwise, the size of the
smallest Di (i ∈ [0..k]), say Dmin, is strictly less than d n

k+1e and we choose D = Dmin∪{r}. In both
cases, D is a k-dominating set of size at most d n

k+1e.

Theorem 1 For every connected network G = (V,E) of n processes and for every k ≥ 1, there
exists a k-dominating set D such that |D| ≤ d n

k+1e.

Proof. If n = 0, then d n
k+1e = 0 = |∅| and ∅ is a k-dominating set.

Assume now that n > 0. Let T be any rooted spanning tree of G rooted at some process r and
let D0, . . . , Dk be the k + 1 previously defined sets.
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• Assume that k ≥ H. Then, D0 only contains r, and every other process is within distance k
of r. So, D0 is a k-dominating set of size 1 ≤ d n

k+1e.

• Assume that k < H. Then, for every i ∈ [0..k], |Di| > 0.

1. Assume that ∀i ∈ [0..k − 1], |Di| = |Di+1|. Then, ∀i ∈ [0..k], |Di| = d n
k+1e. Let

v /∈ D0. The height of v, h(v), satisfies h(v) = x(k + 1) + y with x ≥ 0 and 0 < y ≤ k.
Let u be the ancestor of v such that h(u) = h(v) − y (such an ancestor exists because
y ≤ h(v)). By definition, u ∈ D0 and ‖u, v‖ ≤ k. Hence, D0 is a k-dominating set such
that |D0| = d n

k+1e.
2. Assume that there exists i ∈ [0..k − 1] such that |Di| 6= |Di+1|. Let min ∈ [0..k] such

that ∀i ∈ [0..k], |Dmin| ≤ |Di|. Then, |Dmin| < d n
k+1e. Let D = Dmin ∪ {r}. Then,

|D| ≤ d n
k+1e. Let v /∈ D.

(a) If h(v) ≤ k, then v is at distance at most k from r and r ∈ D.

(b) If h(v) > k, then h(v) = x(k+1)+y with x > 0, 0 ≤ y ≤ k, and y 6= min. If y > min,
then let u be the ancestor of v such that h(u) = x(k+ 1) + min. If y < min, let u be
the ancestor of v such that h(u) = (x− 1)(k + 1) + min. By definition, u ∈ D (more
precisely, u ∈ Dmin) and ‖u, v‖ ≤ k.

Hence, D is a k-dominating set such that |D| ≤ d n
k+1e.

�

4 Hierarchical Collateral Composition

Composition techniques are often used to simplify the design and the proofs of self-stabilizing algo-
rithms [30]. Lots of composition techniques have been proposed so far, among them, the collateral
composition introduced by Herman [20] and the fair composition introduced by Dolev [16]. These
two approaches are really closed. In the collateral composition, the composition of two algorithms
just consists of running the two algorithms concurrently, the second algorithm using the output of
the first one in its computations. Now, when two actions are enabled at the same process but in
two different composed algorithms, the process nondeterministically executes one or the other, if
activated by the daemon. This nondeterminism is solved in the fair composition as follows: each
process runs the composed algorithms in alternation.

Here, we use a slightly modified version of the collateral composition [20], in which we solve
the nondeterminism of the collateral composition as follows: When we compose two distributed
algorithms A and B, we modify the code of B(p) (for every process p) so that p executes an action
of B(p) only when it has no enabled action in A(p).

Definition 1 (Hierarchical Collateral Composition) Let A and B be two (distributed) algo-
rithms such that no variable written by B appears in A. In the hierarchical collateral composition
of A and B, noted B ◦ A, the (local) program of every process p, B(p) ◦ A(p), is defined as follows:

• B(p) ◦ A(p) contains all variables of A(p) and B(p).

• B(p) ◦ A(p) contains all actions of A(p).

• For every action Gi → Si of B(p), B(p) ◦ A(p) contains the action ¬Cp ∧ Gi → Si where Cp
is the disjunction of all guards of actions in A(p).

Below, we give two properties of the hierarchical collateral composition: Theorem 2 and Corollary
1. Corollary 1 states a sufficient condition to show the correctness of the composite algorithm. To
prove these properties, we need to first define the notions of minimal relevant subsequence and
projection.

506



International Journal of Networking and Computing

Definition 2 (MRS) Let s be a sequence of configurations. The minimal relevant subsequence
of s, noted MRS(s), is the maximal subsequence of s where no two consecutive configurations are
identical.

Definition 3 (Projection) Let γ be a configuration and A be an algorithm. The projection γ|A is
the configuration obtained by removing from γ the values of all variables that do not exist in A. Let
e = γ0 . . . γi be a sequence of configurations, the projection e|A is the sequence γ0|A . . . γi|A.

Roughly speaking, the following theorem shows that if A is a silent self-stabilizing algorithm in
the composite algorithm B ◦ A, and the daemon is weakly fair, then B cannot prevent A to reach a
legitimate terminal configuration.

Theorem 2 Let A be a silent algorithm that stabilizes to SPA under a weakly fair daemon. Let B
be an algorithm such that no variable written by B appears in A. B ◦ A satisfies the two following
claims:

1. It stabilizes to SPA under a weakly fair daemon.

2. It eventually reaches a configuration where no action of A is enabled ever.

Proof. Let an execution e of B ◦ A under the weakly fair daemon. Let e′ = MRS(e|A).
No variable in the configurations of e′ are written by B and all configurations of e′ are possible
configurations of A.

Consider any processor p continuously enabled w.r.t. algorithmA in a configuration γ of e′. Then,
by construction p is continuously enabled to execute an action of A from the first configuration of
e that generates γ, thus it eventually executes an action of A in e and consequently in e′. So, e′

is a possible execution of A under the weakly fair daemon. Consequently, e′ stabilizes to SPA and
is finite. Hence, e stabilizes to SPA and eventually reaches a configuration where no action of A is
enabled ever. �

From the previous theorem, we immediately deduce the following corollary:

Corollary 1 B ◦ A stabilizes to SP under a weakly fair daemon if the following conditions hold:

1. A is a silent (self-stabilizing) algorithm under a weakly fair daemon.

2. B stabilizes under a weakly fair daemon to SP from any configuration where no action of A
is enabled ever.1

Proof. By Theorem 2.(2) and (1), any execution of B ◦A assuming a weakly fair daemon reaches
a configuration γ from which no action of A is enabled ever. Then, from γ, B stabilizes to SP by
(2). �

5 Algorithm SMDS(k)
In this section, we present a silent self-stabilizing algorithm, called SMDS(k) (Small Minimal k-
Dominating Set), which builds a minimal k-dominating set of at most d n

k+1e processes in any identi-
fied network, assuming a weakly fair daemon. This algorithm is a hierarchical collateral composition
of three silent self-stabilizing algorithms, SMDS(k) =MIN (k) ◦ DS(k) ◦ ST , where:

• ST builds a rooted spanning tree.

• DS(k) computes a k-dominating set of at most d n
k+1e processes based on the spanning tree

built by ST .

• MIN (k) reduces the k-dominating set built by DS(k) to a minimal one.

We give more details about the three layers of SMDS(k) in Subsections 5.1 to 5.3. The complexity
of SMDS(k) is presented in Subsection 5.4.

1Recall that in such a configuration, the specification of A is satisfied.
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5.1 Algorithm ST
ST is any silent self-stabilizing spanning tree algorithm for arbitrary identified networks, assuming
a weakly fair daemon. The spanning tree built by ST is rooted, meaning that some node of the tree
is distinguished as the root and all other nodes distinguish some of their neighbors as their parent in
the tree, that is, the tree-neighbor that is the closest from the root. In the following, we assume that
the output of ST is a macro called Parentp, which is defined for all processes p. Parentp returns
⊥ if p believes to be the root of the spanning tree, otherwise Parentp designates a neighbor q as
the parent of p in the spanning tree. So, ST stabilizes to the predicate SPST defined as follows:
SPST holds if and only if the configuration is terminal, there exists a unique process r such that
Parentr =⊥, and the graph T = (V,ET ) where ET = {{p, Parentp},∀p ∈ V \ {r}} is a spanning
tree.

The silent self-stabilizing algorithm for identified networks given in [12] can be used to implement
ST . Actually, this algorithm is a leader election, however, as most of the existing silent self-
stabilizing leader election algorithms, it also builds a spanning tree that is rooted at the leader
node. This algorithm stabilizes in O(n) rounds using O(log n) bits per process, and does not require
processes to know any upper bound on the size n or the diameter D of the network.

From [12], we have:

Lemma 1 ST is a silent algorithm which stabilizes to SPST under a weakly fair daemon.

5.2 Algorithm DS(k)
DS(k) (see Algorithm 1 for the formal description) is also silent and uses the spanning tree T built
by ST to compute a k-dominating set of at most d n

k+1e processes. It is based on the construction
proposed in the proof of Theorem 1 (page 505). Informally, DS(k) uses the following three variables
at each process p:

• p.color ∈ [0..k]. In this variable, p computes h(p) mod (k+ 1) (that is its height in T modulus
k + 1) in a top-down fashion using Action FixColor. Hence, once DS(k) has stabilized, each
set Di, defined in Section 3, corresponds to the set {p ∈ V | p.color = i}.

• The integer array p.pop[i] is defined for all i ∈ [0..k]. In each cell p.pop[i], p computes the
number of processes in its subtree T (p) having color i, that is, processes q such that q.color = i.
This computation is performed in a bottom-up fashion using Action FixPop. Hence, once
DS(k) has stabilized, r knows the size of each set Di.

• p.min ∈ [0..k]. In this variable, p computes the smallest index of the smallest non-empty set
Di, that is, the least used value to color some processes of the network. This value is evaluated
in a top-down fashion using Action FixMin based on the values computed in the array r.pop.
Once the values of r.pop are correct, the root r can compute in r.min the least used color (in
case of equality, the smallest index is chosen). Then, the value of r.min is broadcast down in
the tree.

According to Theorem 1 (page 505), after DS(k) has stabilized, the set of processes p such that
p = r or p.color = p.min, i.e., the set {p ∈ V | IsDominatorp}, is a k-dominating set of at most
d n
k+1e processes. So, DS(k) ◦ ST stabilizes to the predicate SPDS(k) defined as follows: SPDS(k)

holds if and only if the configuration is terminal and the set {p ∈ V | IsDominatorp = true} is a
k-dominating set of at most d n

k+1e processes.
We now show the correctness of DS(k). In the following proofs, we always consider the system

starting from a configuration where no action of ST is enabled. Since DS(k) does not write into the
variables of ST , all variables of ST are fixed forever in such a configuration. Moreover, a spanning
tree is well-defined (using the input Parentp of every process p) by Lemma 1. We denote this
spanning tree by T and its root by r.

Lemma 2 Starting from any configuration where no action of ST is enabled, the variable p.color
of every process p is set forever to h(p) mod (k + 1) in at most n rounds.
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Proof. First, remark that:

(a) For every process p, Action FixColor, whose guard is ¬ColorOKp, is the only action of p that
modifies p.color.

We show the lemma by induction on the height of the processes in T .
Let γ be a configuration where no action of ST is enabled.

• Base Case: Let consider the root r (the only process of height 0).

(b) Predicate ColorOKr only depends on variable r.color and input Parentr which is set
forever to ⊥ from γ.

Assume that ColorOKr holds in γ. Then, r.color = 0. Moreover, by (a) and (b), ColorOKr

holds forever and, consequently, r.color = 0 holds forever.

Assume that ColorOKr does not hold in γ. Then, by (a) and (b), Action FixColor is continu-
ously enabled at r. As the daemon is weakly fair, Action FixColor is executed by r in at most
1 round. Hence, after at most 1 round from γ, ColorOKr becomes true and we retrieve the
previous case.

• Induction Assumption: Let j ∈ N∗. Assume that, for every process p such that h(p) < j,
the variable p.color is set forever to h(p) mod (k + 1) after at most h(p) + 1 rounds from γ.

• Inductive Step: Consider any process p such that h(p) = j.

(c) Predicate ColorOKp only depends on variable p.color, input Parentp which is fixed to
some value inNp from γ, and Parentp.color which is set forever to h(Parentp) mod (k+1)
after at most h(p) rounds from γ by induction assumption.

Assume that ColorOKp holds after h(p) rounds from γ. Then, p.color = (Parentp.color +
1) mod (k + 1) = (h(Parentp) mod (k + 1) + 1) mod (k + 1) = h(p) mod (k + 1). Moreover,
by (a) and (c), ColorOKp holds forever and, consequently, p.color = h(p) mod (k + 1) holds
forever.

Assume that ColorOKp does not hold after h(p) rounds from γ. Then by (a) and (c) Action
FixColor is continuously enabled at p from γ. As the daemon is weakly fair, Action FixColor
is executed by p in at most 1 additional round. Hence, in at most h(p) + 1 rounds from γ,
ColorOKp becomes true and we retrieve the previous case.

As the height of T is bounded by n− 1, the lemma holds. �

Lemma 3 Starting from any configuration where:

• no action of ST is enabled, and

• the variable q.color of every process q is set forever to h(q) mod (k + 1),

for every process p and every index i ∈ [0..k], the variable p.pop[i] is set forever to |{q ∈ T (p) | q.color =
i}| in at most n rounds.

Proof. First, remark that:

(a) For every process p, Action FixPop, whose guard is ColorOKp ∧¬PopOKp, is the only action
of p that modifies p.pop.

Let γ be a configuration where:

• no action of ST is enabled, and

• the variable q.color of every process q is set forever to h(q) mod (k + 1).
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Remark that:

(b) From γ, for every process p, ColorOKp holds forever and, consequently, Action FixPop is
enabled at p if and only if ¬PopOKp holds.

We now show the lemma by induction on the height of T (p) of every process p.

• Base Case: Consider any process p such that H(T (p)) = 0 (p is a leaf process).

(c) Predicate PopOKp only depends on variables p.pop and p.color, this latter being set
forever to h(p) mod (k + 1) from γ.

Assume that PopOKp holds in γ. Then, ∀i ∈ [0..k], p.pop[i] = SelfPopp(i) = |{q ∈
T (p) | q.color = i}|. Moreover, by (a)-(c), PopOKp holds forever and, and consequently,
∀i ∈ [0..k], p.pop[i] = |{q ∈ T (p) | q.color = i}| holds forever.

Assume that PopOKp does not hold in γ. Then by (a)-(c), Action FixPop is continuously
enabled. As the daemon is weakly fair, Action FixPop is executed by p in at most 1 round
from γ. Then, PopOKp becomes true and we retrieve the previous case.

• Induction Assumption: Let j ∈ N∗. Assume that for every process p such that H(T (p)) < j
and every index i ∈ [0..k], variable p.pop[i] is set to |{q ∈ T (p) | q.color = i}| after at most
H(T (p)) + 1 rounds from γ.

• Inductive Step: Consider any process p such that H(T (p)) = j.

(d) Predicate PopOKp only depends on variables p.pop, p.color (which is fixed by assump-
tion), and q.pop of every child q of p in T , these latter variables are fixed after H(T (p))
rounds from γ by induction assumption.

Assume that PopOKp holds after H(T (p)) rounds from γ. Then, ∀i ∈ [0..k], p.pop[i] =
EvalPopp(i), i.e., p.pop[i] = SelfPopp(i) +

∑
q∈Childrenp |{q

′ ∈ T (q) | q′.color = i}| = |{q ∈
T (p) | q.color = i}|, by induction assumption. Moreover, by (a), (b), and (d), PopOKp holds
forever and, consequently, ∀i ∈ [0..k], p.pop[i] = |{q ∈ T (p) | q.color = i}| holds forever.

Assume that PopOKp does not hold after H(T (p)) rounds from γ. Then, by (a), (b), and
(d), Action FixPop is continuously enabled at p. As the daemon is assumed to be weakly fair:
Action FixPop is executed by p in at most 1 round. Hence, in at most H(T (p)) + 1 rounds,
PopOKp becomes true and we retrieve the previous case.

As the height of T is bounded by n− 1, the lemma holds. �

The proof of the next lemma follows the same scheme as the one of Lemma 2.

Lemma 4 Starting from any configuration where:

• no action of ST is enabled,

• the variable p.color of every process p is set forever to h(p) mod (k + 1), and

• for every process p and every index i ∈ [0..k], the variable p.pop[i] is set forever to |{q ∈
T (p) | p.color = i}|

in at most n rounds, the variable p.min of every process p is set forever to the smallest index
imin ∈ [0..k] that satisfies |Cimin | = minj∈[0..k] | Cj 6=∅ |Cj | where for every j ∈ [0..k], Cj = {q ∈
T | q.color = j}.

From Lemmas 2 to 4, we deduce the following theorem:

Theorem 3 Starting from any configuration where no action of ST is enabled, DS(k)◦ST converges
in at most 3n rounds to a terminal configuration where for every process p:
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(a) p.color = h(p) mod (k + 1), and

(b) p.min = imin where imin is the smallest index in [0..k] that satisfies |Cimin | = minj∈[0..k] | Cj 6=∅ |Cj |
where for every j ∈ [0..k], Cj = {q ∈ T | q.color = j}.

We now consider any terminal configuration γt of DS(k) ◦ ST (such a configuration exists by
Corollary 1, Lemma 1 and Theorem 3). Let ct be the unique value in the variables min in γt
(ct is well-defined by Theorem 3). In γt, the output of DS(k) ◦ ST is the set DSout = {p ∈
V | IsDominatorp}.

From Theorem 3 and definition of predicate IsDominatorp, we can deduce the following lemma:

Lemma 5 In γt, DS
out = {r} ∪DSct where DSct = {p ∈ V | h(p) mod (k + 1) = ct}.

We now show that, in any case, DSout is the same set as the one obtained by applying the
constructive method given in the proof of Theorem 1.

To that goal, we recall some definitions: We divide the processes into sets T0, . . . , TH according
to their height in the tree, and assigning all the processes of height i to Ti. These sets are merged
into k + 1 sets D0, . . . , Dk by taking Di =

⋃
j≥0 Ti+j(k+1).

Remark 1 DSct = Dct .

Theorem 4 In γt, DS
out is a k-dominating set of G such that |DSout| ≤ d n

k+1e.

Proof. Let now consider the three following cases:

• k ≥ H. In this case, the proof of Theorem 1 states that D0 is a k-dominating set of size
at most d n

k+1e. By Theorem 3.(b), ct is the smallest index in [0..k] that satisfies |Cct | =
minj∈[0..k] | Cj 6=∅ |Cj | where for every j ∈ [0..k], Cj = {q ∈ T | q.color = j}. Moreover, by
Theorem 3.(a), for every j ∈ [0..k], Cj = Dj . So, ct is the smallest index in [0..k] that satisfies
|Dct | = minj∈[0..k] | Dj 6=∅ |Dj |. By definition, minj∈[0..k] | Dj 6=∅ |Dj | ≥ 1. Now, as k ≥ H, D0 =
{r}, i.e., |D0| = 1 and ct = 0. Hence, DSct = D0 by Remark 1 and DSout = {r} ∪D0 = D0,
and we are done.

• k < H and for every i ∈ [0..k − 1], |Di| = |Di+1|. The proof is similar to the previous one, so
we are done.

• k < H and there exists i ∈ [0..k − 1] such that |Di| 6= |Di+1|. Let imin the smallest index
such that |Dimin | = minj∈[0..k] | Dj 6=∅ |Dj |. In this case, the proof of Theorem 1 states that
{r} ∪Dimin

is a k-dominating set of size at most d n
k+1e. By Theorem 3.(b), ct is the smallest

index in [0..k] that satisfies |Cct | = minj∈[0..k] | Cj 6=∅ |Cj | where for every j ∈ [0..k], Cj =
{q ∈ T | q.color = j}. Moreover, by Theorem 3.(a), for every j ∈ [0..k], Cj = Dj . So, ct
is the smallest index in [0..k] that satisfies |Dct | = minj∈[0..k] | Dj 6=∅ |Dj |. Hence, ct = imin,
DSct = Dimin

by Remark 1, DSout = {r} ∪Dimin
, and we are done.

In all cases, DSout is the same set as the one obtained by applying the constructive method given
in the proof of Theorem 1. Hence, the theorem holds. �

From Theorems 3 and 4, we can deduce the following theorem:

Theorem 5 Starting from any configuration where no action of ST is enabled, algorithm DS(k)
converges in at most 3n rounds to a (terminal) configuration satisfying SPDS(k).

From Corollary 1, Lemma 1 and Theorem 5, we can deduce the following theorem:

Theorem 6 DS(k) ◦ ST is silent and stabilizes to SPDS(k) in O(n) rounds under a weakly fair
daemon.
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Figure 3: Example of 2-dominating set computed by our algorithm

Figure 3 shows an example of a 2-dominating set computed by DS(2) ◦ ST . In the figure, bold
lines represent tree-edges, and dashed lines indicate non-tree-edges. In this example, once DS(2)◦ST
has stabilized, r.pop[0] = 5, r.pop[1] = 5, and r.pop[2] = 3. Thus, r.min = 2, which means that the
smallest used color is 2. D2 = {p4, p9, p10} and |D2| = 3. In this case, the 2-dominating set that
DS(2) ◦ST eventually outputs is SD = {r}∪D2, i.e., {r, p4, p9, p10}. This 2-dominating set follows
the bound given in Theorem 1 (page 505), as the size of SD is 4, which is less than d 13

2+1e = 5.
However, SD is not minimal. For example, {r, p10} is a proper subset of SD that is 2-dominating.
Also, note that this latter set is minimal because none of its proper subsets is a 2-dominating set.

5.3 Algorithm MIN (k)

MIN (k) is also silent and computes a minimal k-dominating set which is a subset of the k-
dominating set computed by DS(k). In Section 7, we will see that the minimization performed
by MIN (k) provides a gain which is not negligible.

This last layer of our algorithm can be achieved using the silent self-stabilizing algorithmMIN (k)
given in [10]. This algorithm takes a k-dominating set I as input, and constructs a subset of I that
is a minimal k-dominating set. The knowledge of I is distributed meaning that every process p
uses only the input IsDominatorp to know whether it is in the k-dominating set or not. Based on
this input, MIN (k) assigns the output Boolean variable p.inD of every process p in such way that
eventually {p ∈ V | p.inD = true} is a minimal k-dominating set of the network.

Using the output of algorithm DS(k) ◦ ST as input for algorithm MIN (k), the size of the
resulting minimal k-dominating set remains bounded by d n

k+1e, because MIN (k) can only remove
nodes in the k-dominating set computed by DS(k). Hence, MIN (k) ◦ DS(k) ◦ ST stabilizes to
the predicate SPSMDS(k) defined as follows: SPSMDS(k) holds if and only if the configuration is
terminal and the set {p ∈ V | p.inD = true} is a minimal k-dominating set of at most d n

k+1e
processes.

As SMDS(k) = MIN (k) ◦ DS(k) ◦ ST , from Corollary 1 and Theorem 6, we can claim the
following result:

Theorem 7 (Overall Correctness) SMDS(k) is silent and stabilizes to SPSMDS(k) under a
weakly fair daemon.
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Algorithm 1 DS(k), code for each process p

Inputs:

Parentp ∈ Np ∪ {⊥} Parent process of p in the spanning tree, ⊥ for the root.

Variables:
p.color ∈ [0..k] Color of p.
p.pop[i] ∈ N,∀i ∈ [0..k] Population of color i in the subtree rooted at p.
p.min ∈ [0..k] Color with the smallest population.

Macros:
EvalColorp = 0 if (Parentp = ⊥) else (Parentp.color + 1) mod (k + 1)
SelfPopp(i) = 1 if (p.color = i) else 0
Childrenp = {q ∈ Np | Parentq = p}
EvalPopp(i) = SelfPopp(i) +

∑
q∈Childrenp q.pop[i]

MinPopp = mini∈[0..k] {p.pop[i] | p.pop[i] > 0}
MinColorp = mini∈[0..k] {i | p.pop[i] = MinPopp}
EvalMinp = MinColorp if (Parentp = ⊥) else Parentp.min

Predicates:
IsRootp ≡ Parentp = ⊥
ColorOKp ≡ p.color = EvalColorp
PopOKp ≡ ∀i ∈ [0..k], p.pop[i] = EvalPopp(i)
MinOKp ≡ p.min = EvalMinp
IsDominatorp ≡ IsRootp ∨ p.color = p.min

Actions:
FixColor :: ¬ColorOKp −→ p.color ← EvalColorp
FixPop :: ColorOKp ∧ ¬PopOKp −→ ∀i ∈ [0..k], p.pop[i]← EvalPopp(i)
FixMin :: ColorOKp ∧ PopOKp ∧ ¬MinOKp −→ p.min← EvalMinp

5.4 Complexity Analysis

We first consider the round complexity of SMDS(k). Using the algorithm of [12], the layer ST
stabilizes in O(n) rounds. Once the spanning tree is available, DS(k) stabilized in O(n) rounds, by
Theorem 6. Finally, the k-dominating set computed by the first two layers is minimized byMIN (k)
in O(n) rounds (see [10]).

Theorem 8 SMDS(k) stabilizes to SPSMDS(k) in O(n) rounds.

We now consider the space complexity of SMDS(k). ST and MIN (k) can be implemented
using O(log n) bits per process [12, 10]. DS(k) at each process is composed of two variables whose
domain has k + 1 elements, and an array of k + 1 integers. However, in the terminal configuration,
the minimum non-null value of a cell is at most d n

k+1e. So, the algorithm still works if we replace

any assignment of any value val to a cell by min(val, d N
k+1e + 1) where N is any upper bound on

n. In this case, each array can be implemented using O(k log N
k ) bits. Note that this bound can

be obtained only if we assume that each process knows the upper bound N . However, n can be
computed dynamically using the spanning tree.

Theorem 9 SMDS(k) can be implemented using O(log k+ log n+ k log N
k ) bits per process, where

N is any upper bound on n.
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6 Transformer

In the previous section, we showed that SMDS(k) stabilizes to SPSMDS(k) under a weakly fair
daemon. We now propose an automatic method to transform any self-stabilizing algorithm working
under a weakly fair daemon into a self-stabilizing algorithm working under an unfair daemon (for
the same specification). Our method preserves the silence property of the input algorithm.

There already exist several methods to transform a weakly fair algorithm into an unfair one. In
[2], authors propose the cross-over composition. Using this composition, a weakly fair algorithm can
be transformed by composing it with an algorithm that is fair under an unfair daemon.2 However,
this technique does not preserve the silence of the input algorithm. Moreover, no step complexity
analysis is given for the output unfair algorithm. In [24], authors propose a transformer that preserves
the silence of the input algorithm. Furthermore, the step complexity analysis of the transformed
algorithm is given: O(n4 × R) where R is the stabilization time of the input algorithm in rounds.
Finally, note that the round complexity of the transformed version is much higher than that of the
input algorithm (of the same order of the step complexity).

In contrast with the previous solutions, our transformer does not degrade the round complexity of
the algorithm. Moreover, the step complexity analysis of the transformed algorithm is O(Dn(R+n2))
where R is the stabilization time of the input algorithm in rounds.

Let A be an algorithm that stabilizes to SPA assuming a weakly fair daemon.3 Let p be a
process. We recall that A(p) denotes the local program of p in A. Assume that A(p) has x actions.
Actions of A(p) are indexed by [0..x− 1], and are of the following form:

Ai :: Gi −→ Si.

We denote by At the transformed version of A. Actually, At is obtained by composing A with a
self-stabilizing phase clock algorithm. This latter is treated as a black box, called U (U(p) denotes
the local program of p in U), with the following properties:

1. Every process p has an incrementing variable p.clock, a member of some cycling group Zα
where α is a positive integer.

2. The phase clock is self-stabilizing assuming an unfair daemon, i.e., after it has stabilized, there
exists an integer function f on processes such that:

• f(p) mod α = p.clock

• For all processes p and q, |f(p)− f(q)| ≤ ‖p, q‖.
• For every process p, f(p) increases by 1 infinitely often using statement Incrp.

3. Every process p has in its local program U(p) an action I :: Can Incrp → Incrp such that, once
U is stabilized, I is the only action that p can execute to increment its local clock. Moreover,
U does not require execution of action I during the stabilization phase.

An algorithm that matches all these requirements can be found in [5].
The local program of each process p in At is obtained as follows:

• At(p) contains all variables of A(p) and U(p).

• At(p) contains all actions of U(p) except I which is replaced by the following actions:

– A′i :: Can Incrp ∧Gi → Incrp, Si for every i ∈ [0..x− 1],

– L :: Can Incrp ∧ Stablep ∧ Latep → Incrp where Stablep ≡ (∀i ∈ [0..x − 1] | ¬Gi) and
Latep ≡ ¬(∀q ∈ Np | q.clock = p.clock)

2I.e., an algorithm which guarantees that every process executes an infinite number of steps under an unfair
daemon.

3In particular, if A is silent, any configuration of A satisfying SPA is terminal.
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Roughly speaking, our transformer enforces fairness among processes that are enabled in A
because they can only move once at each clock tick. Once A has stabilized, if A is silent, then every
process p eventually satisfies Stablep and, once all clocks have the same value, no further action is
enabled, hence the silence is preserved.

Theorem 10 At stabilizes to SPA under an unfair daemon.

Proof. By construction, any execution of At converges to a configuration γ′ that is legitimate
w.r.t. algorithm U . So, consider any configuration γ′′ reachable from γ′. Assume that

∨
i∈[0..x−1]Gi

continuously holds at process p from γ′′ but p never more execute any A′i. Then, Stablep is false
forever from γ′′ and, consequently, p.clock is never more incremented. As U works under an unfair
daemon, eventually every process q 6= p is disabled. In this case, f(p) is minimum in the system.
In particular, Can Incrp holds. So, p is enabled to execute some A′i. Hence, p is the only enabled
process and it executes one of its enabled action A′i in the next step. So, if

∨
i∈[0..x−1]Gi continuously

holds at p from γ′′, then p eventually executes one of its enabled action A′i in At. As A stabilizes
under a weakly fair daemon, At stabilizes to the same specification under an unfair daemon. �

Theorem 11 If A is silent, then At is silent.

Proof. First, by Theorem 10 (and its proof), At converges to a configuration γ from which both
the specification of algorithm U and the predicate Stablep (for every process p) hold forever. So,
from γ, only Action L can be executed by processes. Let M = maxp∈V f(p), and m = minp∈V f(p).
While M 6= m, only processes q such that f(q) 6= M can be enabled to execute Action L. Moreover,
when executing Action L, any q increases f(q) by 1. Hence, eventually, M = m and no action is
evermore enabled in the system. �

Below, we present the complexity of the transformed algorithm. These results assume that U is
the algorithm of Boulinier et al. in [5]. First, note that in [5] authors showed that 2n − 1 states
per process (actually the range of the phase clock) are sufficient to make U working in any topology
(the worst case being the cycle topology). Moreover, using 2n− 1 states, the stabilization time of U
is in O(n) rounds [4] and O(Dn3) steps [14], respectively. Hence, we have the following theorem:

Theorem 12 The memory requirement of At is O(log n) + MEM bits per process, where MEM
is the memory requirement of A.

Below, we prove an additional result about U :

Lemma 6 Once U is stabilized, every process advances its local clock of D ticks at most every 2D
rounds.

Proof. Let fmin
γ = minp∈V f(p) in some configuration γ after U stabilized. Let q be a process

and fqγ be the value of f(q) in γ. fmin
γ ≤ fqγ ≤ fmin

γ +D. 2D rounds after γ, f(q) ≥ fmin
γ + 2D. So,

f(q) − fqγ ≥ fmin
γ + 2D − (fmin

γ + D), i.e., f(q) − fqγ ≥ D. That is, q increments its phase clock at
least D times during that period. �

Theorem 13 At stabilizes to SPA in O(n + dRD e × 2D) rounds, where R is the stabilization time
of A in rounds, and if A is silent, then At reaches a terminal configuration in a round complexity
in the same order of magnitude.

Proof. First, At stabilizes to the specification of U in O(n) rounds. Then, At needs to emulate
at most R rounds of A to stabilize to SPA. By Lemma 6, this requires at most dRD e × 2D rounds.

Assume that A is silent. Then, consider the first configuration γ of At that is legitimate w.r.t.
SPA and the specification of U . Let M = maxp∈V f(p), and m = minp∈V f(p) in γ. Then, M −m ≤
D. Hence, by Lemma 6, after at most 2D additional rounds, At reaches a terminal configuration,
and we are done. �
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The next lemma gives a bound on the number of steps required to emulate a round of A, once
U has stabilized.

Lemma 7 Once U has stabilized, every continuously enabled process in At executes an action after
at most 2D(n− 1) steps.

Proof. Consider a configuration γ after U has stabilized, and a process p that is continuously
enabled from γ.

Then, every process q 6= p satisfies f(p)−‖p, q‖ ≤ f(q) ≤ f(p)+‖p, q‖. So, every process q 6= p can
increment q.clock at most 2‖p, q‖ times before p.clock is incremented. So, at most

∑
q∈V \{p} 2‖p, q‖

steps can occur before p executes an action. As
∑
q∈V \{p} 2‖p, q‖ ≤ (n− 1)× 2D, the lemma holds.

�

Theorem 14 At stabilizes to SPA in O(Dn(R+ n2)) steps, where R is the stabilization time of A
in rounds; and if A is silent, then At reaches a terminal configuration in a step complexity in the
same order of magnitude.

Proof. First, At stabilizes the specification of algorithm U in O(Dn3) steps. Then, R rounds of
A are emulated by At in O(DnR) steps by Lemma 7.

Assume that A is silent. Then, consider the first configuration γ of At that is legitimate w.r.t.
SPA and the specification of U . Let M = maxp∈V f(p), and m = minp∈V f(p) in γ. Then, M −m ≤
D. Hence, after O(Dn) additional steps, At reaches a terminal configuration, and we are done. �

As a case study, SMDS(k)
t

stabilizes to SPSMDS(k) in O(n) rounds and O(Dn3) steps using

O(log k+log n+k log N
k ) bits per process by Theorems 8-9 and 12-14. This shows that our transformer

does not degrade the round complexity and memory requirement while achieving an interesting step
complexity.

7 Simulations

7.1 Model and assumptions

All the results provided in this section are evaluated using WSNet [3]. WSNet is an event-driven
simulator for wireless networks. We adapt our algorithm from the shared memory model to the
message-passing model using techniques similar to those proposed in [13].

In this simulator, processes are randomly deployed on a square plane. Processes are motionless
and equipped with radio. Two processes u and v can communicate if and only if their Euclidean
distance is at most rad, where rad is the transmission range. In other words, the network topology
is a Unit Disk Graph (UDG). For simplicity, we consider physical and MAC layers to be ideal:
there are neither interferences nor collisions. However, as stated in in [13], our algorithm still works
assuming fair lossy links. Moreover, process executions are concurrent and asynchronous.

In our simulations, we consider connected UDG networks of size n between 50 and 400. They
are deployed using a uniform random distribution of processes on a 100m side square. We tune the
transmission range according to the number of nodes to control the average degree d of the network.
For example, by fixing n to 200 and tuning the transmission range between 14m and 26m, we obtain
an average degree d which varies between 10 and 50. Finally, k was varied between 1 and 6.

The performance of SMDS(k) may differ depending on the spanning tree construction we used.
Hence, we test our protocol using three different spanning tree constructions: depth-first spanning
tree (DFS tree) [8], breadth-first spanning tree (BFS tree) [21], and arbitrary spanning tree [7].

7.2 Motivations

In the context of sensors and ad-hoc networks, it is interesting to study average performance of
algorithms DS(k) and MIN (k) in random topologies, not just the worst case. In particular, does
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Figure 4: Average size of k-dominating set vs. k before minimization (n = 200 and d ∈]10, 20[)

the choice of spanning tree make a difference in terms of size of k-dominating set built by DS(k) or
MIN (k) ◦DS(k)? What is the gain due toMIN (k)? Is this gain the same for all spanning trees?
How does the size of the output k-dominating set depend on k, n, and d?

7.3 Results

In this section, we summarize the performance of our algorithm in terms of the size of the k-
dominating-set built by DS(k) andMIN (k) ◦DS(k) in random topologies, varying k, n, d and the
chosen spanning tree. For each setting (where k, n, d and the spanning tree are fixed) we made 50
experiments.

Figure 4 shows the size of k-dominating set versus k after stabilization of algorithm DS(k). We
observe that there is a noticeable difference between computed k-dominating sets depending on the
type of the spanning tree. The DFS tree, by construction, induces a large number of k-dominating
processes. We remark that the average size obtained by simulation is close to the theoretical upper
bound. On the other hand, the k-dominating set built on arbitrary and BFS trees have better
performances. The height of the tree also has a major impact on the size of the k-dominating set.

The impact of the average degree can be observed in Figure 6. The size of the k-dominating set
built on a DFS tree does not change, while it decreases the size of the ones built on a BFS or an
arbitrary spanning tree. When the average degree increases, the diameter of the network decreases.
In the case of BFS and arbitrary spanning trees, that leads to a decrease of height, thus a decrease
of the size of the k-dominating set.

Figures 4 and 6 show that the size of the k-dominating sets built by DS(k) in random UDGs are
not far from the worst case, regardless of the tree they are built on. In this context, it is interesting
to study if MIN (k) is able to reduce significantly the size of the k-dominating set computed by
DS(k).

Figure 5 illustrates both the gain obtained in terms of size of k-dominating set and the differences
among the k-dominating sets according to the tree on which algorithm MIN (k) is applied. For
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Tree Before the 3th layer After the 3th layer average gain
BFS 56.93 9.93 83%
DFS 65.87 8.93 86%
Arbitrary 59.17 7.83 87%

Table 1: Average gain of minimization

the three spanning tree constructions and for 1 ≤ k ≤ 6, the overall average reduction is more than
75%. For higher values of k, the good performance of DS(k) on BFS tree prevents large gains using
MIN (k). Here, the size of k-dominating set obtained by MIN (k) is quite similar for all spanning
trees considered, with a slight advantage for the arbitrary spanning tree.

For k = 2, Figure 7 shows variations of the size of k-dominating set versus d. MIN (k) uniformly
improves the size of the k-dominating sets regardless of d.

In summary, our simulations establish that the size of the computed k-dominating set is not
uniformly influenced by the types of the trees on which DS(k) is deployed. MIN (k) works very
well on all considered trees. For example, Table 1 shows the average gain of minimization on the
k-dominating sets computed by DS(k) for k = 2, n = 200, and d in ]10, 20[.

Finally, over all simulations we made, we observed that our three-layer algorithm computes
minimal k-dominating sets that are on an average drastically smaller than the theoretical bound,
see for example Figure 5. More precisely, for n = 200, 1 ≤ k ≤ 6, and d ∈]10, 20[, the size of
k-dominating sets we obtain, is on an average 89% smaller than the theoretical bound.
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8 Conclusion

In this paper, we proposed a distributed asynchronous silent self-stabilizing algorithm for finding a
minimal k-dominating set of size at most d n

k+1e in an arbitrary network. We proved this algorithm
assuming a weakly fair daemon. We then proposed a transformer, and used it to make the proposed
algorithm working under an unfair daemon. Using this transformer, our solution remains silent,
stabilizes in O(n) rounds and O(Dn3) steps, and uses O(log k + log n + k log N

k ) bits per process,
where D is diameter of the network and N is an upper bound on n. Our experimental results show
that the size of the k-dominating set obtained by our solution is usually much smaller than d n

k+1e.
An immediate extension of this work is to find if it is possible to enhance the stabilization time

to O(k) rounds (the optimal). Another future research topic is to attempt to find a distributed self-
stabilizing algorithm for computing a minimal k-dominating set which is a constant approximation
from the minimum one, that is, an algorithm that computes a minimal k-dominating set with a size
s such that s

sopt
≤ c where c is a constant and sopt is the size of the minimum k-dominating set of

the network.
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