
Theoretical Computer Science 626 (2016) 110–133
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Competitive self-stabilizing k-clustering ✩

Ajoy K. Datta a, Stéphane Devismes b,∗, Karel Heurtefeux b,
Lawrence L. Larmore a, Yvan Rivierre b

a School of Computer Science, University of Nevada, Las Vegas, USA
b VERIMAG UMR 5104, Université Joseph Fourier, Grenoble, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2014
Received in revised form 19 November 2015
Accepted 12 February 2016
Available online 23 February 2016
Communicated by D. Peleg

Keywords:
Self-stabilization
k-Clustering
Competitiveness
Maximal independent set
MIS tree
P-Completeness

In this paper, we give a silent self-stabilizing algorithm for constructing a k-clustering of
any asynchronous connected network with unique IDs. Our algorithm stabilizes in O (n)

rounds, using O (log k + log n) space per process, where n is the number of processes. In
the general case, our algorithm constructs O (n

k) k-clusters. If the network is a Unit Disk
Graph (UDG), then our algorithm is 7.2552k + O (1)-competitive, that is, the number of
k-clusters constructed by the algorithm is at most 7.2552k + O (1) times the minimum
possible number of k-clusters in any k-clustering of the same network. More generally,
if the network is an Quasi-Unit Disk Graph (QUDG) with approximation ratio λ, then
our algorithm is 7.2552λ2k + O (λ)-competitive. In case of tree networks, our algorithm
computes a k-clustering with the minimum number of clusters. Our solution is based on
the self-stabilizing construction of a data structure called an MIS tree, a spanning tree of the
network whose processes at even levels form a maximal independent set of the network.
The MIS tree construction we use (called LFMIS) is the time bottleneck of our k-clustering
algorithm, as it takes �(n) rounds in the worst case, while the rest of the algorithm takes
O (D) rounds, where D is the diameter of the network. We would like to improve that
time to be O (D), but we show that our distributed MIS tree construction is a P-complete
problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider a simple undirected connected graph G = (V , E), where V is a set of n nodes and E a set of edges. For any
nodes p and q, we define ‖p, q‖, the distance from p to q, to be the length of the shortest path in G from p to q. Given a
non-negative integer k, a k-cluster of G is defined to be a set C ⊆ V , together with a designated node Clusterhead(C) ∈ C ,
such that each member of C is within distance k of Clusterhead(C). A k-clustering of G is a partition of V into distinct
k-clusters.

A major application of k-clustering is in the implementation of an efficient routing scheme in a network of processes.
Indeed, we could rule that a process that is not a clusterhead communicates only with processes in its own k-cluster, and
that clusterheads communicate with each other via virtual “super-edges,” implemented as paths in the network.

✩ A preliminary version of this work appeared in [1].

* Corresponding author.
E-mail address: Stephane.Devismes@imag.fr (S. Devismes).
http://dx.doi.org/10.1016/j.tcs.2016.02.010
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.02.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:Stephane.Devismes@imag.fr
http://dx.doi.org/10.1016/j.tcs.2016.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.02.010&domain=pdf

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 111
Ideally, we would like to find a k-clustering with the minimum number of k-clusters. However, this problem is known
to be NP-hard [2]. Instead, we give here a silent self-stabilizing distributed algorithm to construct O (n

k) k-clusters in
an arbitrary asynchronous network with unique IDs. If the network is a Unit Disk Graph (UDG), then our algorithm is
7.2552k + O (1)-competitive, that is, it builds a k-clustering which has at most 7.2552k + O (1) times as many clusters as the
minimum cardinality k-clustering.

Related work Self-stabilization [3] is a versatile property, enabling an algorithm to withstand transient faults in a distributed
system. Indeed, a self-stabilizing algorithm, after transient faults hit and place the system in some arbitrary state, enables
the system to recover without external (e.g., human) intervention in finite time.

There are several known self-stabilizing distributed algorithms for finding a k-clustering of an asynchronous network,
e.g., [4–6]. The solution in [5] stabilizes in O (k) rounds using O (k log n) space per process. The algorithm given in [7]
stabilizes in O (k.n) rounds using O (k log n) space per process. The algorithm given in [6] stabilizes in O (n) rounds using
O (log k + logn) space per process. Note that, by definition, the set C of clusterheads for any k-clustering is a k-dominating
set, that is, if every vertex of G is within k hops of some member of C . The k-dominating set computed by the algorithm
given in [6] is also minimal, that is, none of its proper subsets is k-dominating. In the same paper, it is shown that every
minimal k-dominating set contains at most max(1, n/� k+1

2 �) nodes. In [8], an asynchronous silent self-stabilizing algorithm
that computes a minimal k-dominating set of at most � n

k+1 � processes is given, this latter algorithm uses the one in [6] as
module. Any k-dominating set can be used to construct a k-clustering by letting each member of the set be a clusterhead,
and others join their nearest clusterhead. The k-dominating set construction given in [8] stabilizes in O (n) rounds using
O (log k + log n + k log N

k) bits per process, where N is any upper bound on n.
Note that all these aforementioned algorithms (i.e., [5–8]) are written in the shared memory model and none of them

is competitive. To the best of our knowledge, until now there has been no self-stabilizing competitive solution to the
k-clustering problem.

There are several non-self-stabilizing distributed solutions for finding a k-clustering of a network [9–12]. Of those, only
[10] deals with competitiveness. Moreover, they are all written in message-passing model. Deterministic solutions given
in [9,10] are designed for asynchronous mobile ad hoc networks, i.e., they assume networks with a UDG topology. The time
and space complexities of the solution in [9] are O (k) and O (k log n), respectively. Fernandess and Malkhi [10] give a
k-clustering algorithm that takes O (n) steps using O (log n) memory per process, provided a BFS tree of the network is
already given. In the special case that the network is a UDG, their algorithm is 8k + O (1)-competitive.1 Spohn and Garcia-
Luna-Aceves [11] give a distributed solution to a more generalized version of the k-clustering problem. In this version, a
parameter m is given, and each process must be a member of m different k-clusters. The time and space complexities of
this algorithm for asynchronous networks are not given. Ravelomanana [12] gives a randomized algorithm for synchronous
UDG networks whose time complexity is O (D) rounds, where D is the diameter of the network.

Detailed contribution and roadmap In the present paper, we give a silent self-stabilizing distributed algorithm for the
k-clustering problem. This algorithm is written in the locally shared memory model. When the network is connected, asyn-
chronous, and has unique node IDs, our algorithm:

• stabilizes in O (n) rounds,
• requires O (log k + logn) space per process, and
• constructs at most � n

k+1 � k-clusters.

To simplify the design of our solution, we write it as a hierarchical collateral composition of two sub-algorithms. That
composition technique is defined in Section 2.

• Our first algorithm, proposed in Section 3, is silent and self-stabilizing, and constructs a particular kind of spanning
tree, called an MIS tree. An MIS tree is a spanning tree whose processes at even levels form an MIS (maximal indepen-
dent set) of the network. Our MIS tree algorithm is a straightforward self-stabilizing version of the non-self-stabilizing
algorithm proposed by Alzoubi et al. [13].

• Our second algorithm, given in Section 4, is silent and self-stabilizing, and gives a k-clustering construction which works
in any tree topology.

We then show that in several classes of network topologies, the number of k-clusters built by our algorithm can be more
precisely analyzed:

• we prove in Section 4 that in tree networks, the computed k-clustering is minimum, i.e., has the minimum possible
number of k-clusters,

1 Actually, in [10], a k-cluster is defined to have diameter at most k, while the definition in this paper uses radius k. They give competitiveness 4k + O (1),
which is equivalent to competitiveness 8k + O (1) using our definition of a k-cluster.

112 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
• in Section 5, we analyze the competitiveness of our k-clustering algorithm in UDGs and QUDGs because these topologies
are commonly used to model wireless sensor networks:
– In a UDG, our algorithm is 7.2552k + O (1)-competitive,
– in an QUDG with approximation ratio λ, our algorithm is 7.2552λ2k + O (λ)-competitive.

We then partially answer the question: “Is it possible to reduce the time complexity of our algorithm to O (D) rounds
(the trivial lower bound) where D is the diameter of the network, while retaining its competitiveness for the UDG and
QUDG cases?”

We show in Section 5 that our competitiveness result for both UDGs and QUDGs depends on the fact that we use
the Alzoubi et al. MIS tree. The construction of that tree is the time bottleneck of our k-clustering algorithm, since that
construction takes �(n) rounds in the worst case. The remainder of our algorithm takes O (D) rounds. More precisely:

• our algorithm constructs, in �(n) rounds, an MIS spanning tree of height at most 2D, as shown in Section 3;
• our algorithm constructs, in O (H) rounds, a k-clustering on any tree, where H the height of the (spanning) tree in

which it is deployed, as shown in Section 4.

In Section 6, we show that the time complexity of our self-stabilizing MIS tree algorithm could be hard to enhance since
whether a given process is part of the Alzoubi et al. MIS tree is a P-complete problem.

Finally, in Section 7, we give some concluding remarks and perspectives.

2. Preliminaries

Computational model We consider networks made of n processes. Each process can directly communicate with a subset of
other processes, called neighbors. We denote by Np the set of neighbors of process p. Communications are assumed to be
bidirectional, that is, for all processes p, q we have: q ∈Np ⇔ p ∈Nq . Hence, as commonly done in the literature, we model
a distributed system as a simple undirected connected graph G = (V , E), where V is the set of processes and E is a set of
edges representing (direct) communication relations.

Processes have unique IDs. By abuse of notation, we shall identify any process with its ID, whenever convenient. If b bits
are used to store each identifier, then the space complexity of our algorithm will be �(b) per process, but henceforth, as is
commonly done in the literature, we will assume that b = O (logn).

We assume the shared memory model of computation [3], where a process communicates with its neighbors using locally
shared variables (henceforth called variables). Each process can read its own variables and those of its neighbors, but can
write only to its own variables. Each process operates according to its (local) program. We call (distributed) algorithm A
a collection of n programs, each one operating on a single process. In the following, we will denote the local program of
Process p in the distributed algorithm A by A(p). The program of each process is a set of actions:

〈label〉 :: 〈guard〉 → 〈statement〉
Labels are only used to identify actions. The guard of an action in the program of a process p is a Boolean expression
involving the variables of p and its neighbors. The statement of an action of p updates one or more variables of p. An action
can be executed only if it is enabled, i.e., its guard evaluates to true. A process is said to be enabled if at least one of its
actions is enabled. The state of a process in A is defined by the values of its variables in A. A configuration of A is an
instance of the states of processes in A.

Let �→ be the binary relation over configurations of A such that γ �→ γ ′ if and only if it is possible for the network
to change from configuration γ to configuration γ ′ in one step of A. Each step γ �→ γ ′ consists of one or more enabled
processes executing an action. The evaluations of all guards and executions of all statements of those actions are presumed
to take place in one atomic step; this model is called composite atomicity [14].

An execution of A is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that γi−1 �→ γi for all i > 0. The
term “maximal” means that the execution is either infinite, or ends at a terminal configuration in which no action of A is
enabled at any process.

We assume that each step from a configuration to another is driven by a scheduler, also called a daemon. If one or more
processes are enabled, the scheduler selects at least one of these enabled processes to execute an action. A scheduler may
have some fairness properties. Here, we assume a weakly fair scheduler, i.e., it allows every continuously enabled process to
eventually execute an action.

We say that a process p is neutralized in the step γi �→ γi+1 if p is enabled in γi and not enabled in γi+1, but does not
execute any action between these two configurations. The neutralization of a process represents the following situation: at
least one neighbor of p changes its state between γi and γi+1, and this change effectively makes the guard of all actions of
p false.

To evaluate the time complexity, we use the notion of round [15]. This definition captures the execution rate of the
slowest process in every execution. The first round of an execution e, noted e′ , is the minimal prefix of e in which every
process that is enabled in the initial configuration either executes an action or becomes neutralized. Let e′′ be the suffix of
e starting from the last configuration of e′ . The second round of e is the first round of e′′ , and so forth.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 113
Self-stabilization and silence Let A be a distributed algorithm and P be a predicate over the configurations of A. A is
self-stabilizing w.r.t. P if there exists a non-empty subset S of configurations of A such that:

• ∀γ ∈ S , P (γ). (Correction)
• For each possible step γ �→ γ ′ of A, γ ∈ S ⇒ γ ′ ∈ S . (Closure)
• Each execution of A (starting from an arbitrary configuration) contains a configuration of S . (Convergence)

The configurations of S are said to be legitimate, and other configurations are called illegitimate.
We say that an algorithm is silent [16] if each of its executions is finite. In other words, starting from an arbitrary

configuration, the network will eventually reach a configuration where none of its actions is enabled at any process. In
this paper, we are interested in silent self-stabilizing algorithms. To show that an algorithm A is silent, and self-stabilizing
w.r.t. P , it is sufficient to show that (1) every execution of A is finite and (2) every terminal configuration of A satisfies P .

Composition To simplify the design of our algorithm, we use hierarchical collateral composition [8] which is a variant of
collateral composition [17]. When we collaterally compose two algorithms A and B, they run concurrently and B uses the
outputs of A in its computations. In the variant we use, we modify the code of B(p) (for every process p) so that p
executes an action of B(p) only when it has no enabled action in A(p).

Definition 1 (Hierarchical collateral composition). Let A and B be two (distributed) algorithms such that no variable written
by B appears in A. In the hierarchical collateral composition of A and B, noted B ◦A, the (local) program of every process p,
B(p) ◦A(p), is defined as follows:

• B(p) ◦A(p) contains all variables of A(p) and B(p).
• B(p) ◦A(p) contains all actions of A(p).
• For every action Gi → Si of B(p), B(p) ◦ A(p) contains the action ¬C p ∧ Gi → Si where C p is the disjunction of all

guards of actions in A(p).

We recall a theorem from [8] that gives sufficient conditions to show the correctness of an algorithm obtained by
hierarchical collateral composition.

Theorem 1. B ◦A is self-stabilizing w.r.t. P assuming a weakly fair daemon if the following conditions hold:

• A is a silent (self-stabilizing) algorithm under a weakly fair daemon.
• B is self-stabilizing w.r.t. P assuming a weakly fair daemon starting from any configuration where no action of A is enabled ever.2

Nick’s class NC (stand for Nick’s class) [18] is defined to be the set of all problems that can be solved in parallel in poly-
logarithmic time with polynomially many processors. Thus, there can be no deterministic polylogarithmic time distributed
algorithm for any problem which is not in NC .

Recall that P is the set of all problems that can be deterministically solved in polynomial time. NC ⊆P because a poly-
logarithmic time parallel computation with polynomially many processors can be emulated by polynomial-time sequential
computation. The question, “Is NC = P ?” is still open and considered to be in the same class of difficulty as the question
of whether P = NP . Most researchers suspect that NC �= P , meaning believe there to be tractable problems which are
“inherently sequential,” and cannot be executed in polylogarithmic time up by using parallelism.

A problem A ∈P is said to be P-complete if, given any problem B ∈P , there is NC-reduction of B to A, i.e., a reduction
that can be computed in parallel in polylogarithmic time with polynomially many processors. Thus, NC = P if and only if
there is any one P-complete problem which is in NC .

Now, if we make the usual assumption that NC �= P , then any P-complete problem belongs to P \ NC , meaning that
the problem is “inherently sequential.” Hence, just as we can justify giving up the search for a polynomial time algorithm
for any problem that we can prove to be NP-complete, we can justify giving up the search for a fast parallel algorithm for
a problem if we can prove that it is P-complete.

3. The MIS tree

In this section, we first recall the definition of MIS tree (for Maximal Independent Set tree), introduced in [13]. Then, we
give a silent self-stabilizing algorithm that computes an MIS tree in any arbitrary identified network within O (n) rounds,
this algorithm is a straightforward self-stabilizing version of the non-self-stabilizing algorithm of Alzoubi et al. [13]. There
could be many different MIS trees for a given network and a given r; the one we construct has the same specification as
that constructed in [13], i.e, it is the lexically first MIS tree.

2 Recall that in such a configuration, the specification of A is satisfied.

114 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Fig. 1. Examples. Process 1 is the root. Arrows represent the parent pointers for each non-root process. Processes at even levels are in black. The MIS tree
given in (a) is a LFMIST. The MIS tree given in (b) is not lexically first. The tree given in (c) is not an MIS tree.

3.1. Definition of MIS tree

The subset I ⊆ V is an independent set of G = (V , E) if no two distinct members of I are neighbors in G . An independent
set I of G is maximal if no proper superset of I is an independent set of G . A spanning tree of G is any connected graph
T = (V T , ET) such that V T = V , ET ⊆ E and |ET | = |V T | − 1. Any spanning tree becomes a rooted tree by choosing a
distinguished root r; in this paper, all spanning trees are rooted.

Given a rooted spanning tree T , the level of node p, Level(p), is defined to be its distance to the root r in T . The
height of T , noted h(T), is maxp∈V T Level(p). Let T (p) be the subtree of T rooted at any given node p, and define h(T (p))

to be the height of T (p). The parent of p in T is p itself if p = r, otherwise it is its unique neighbor q in T such that
Level(p) = Level(q) + 1.

Definition 2. An MIS tree T of G is a spanning tree of G rooted at some node r such that the set of nodes at even levels of
T is a maximal independent set of G .

Property 1. Let T be an MIS tree of G . Let I be the maximal independent set formed by the nodes at even levels of T . If σ
is a path of T of length � (i.e., � + 1 nodes), then σ contains at least � �

2 � members of I .

Assume that an ordering p1, p2, . . . , pn of V is given. Any rooted tree T of G can be encoded as an n-tuple of numbers
in the range 1..n, as follows. The ith entry of the encoding of T is j if p j is the parent of pi in T . The lexically first MIS
tree (LFMIST) of G with root r is then defined to be that MIS tree of G whose encoding is first in the lexical order of
the encodings of all MIS trees of G with root r. For example, two MIS trees are given in Figs. 1a and 1b: their respective
sets of processes at even level (black nodes) form maximal independent sets. However, only the tree given in Fig. 1a is a
LFMIST. Its encoding is (1, 1, 2, 1, 3, 5, 8, 4, 6), while the encoding of MIS the tree given in Fig. 1b is (1, 1, 4, 1, 3, 7, 8, 4, 6),
and (1, 1, 4, 1, 3, 7, 8, 4, 6) > (1, 1, 2, 1, 3, 5, 8, 4, 6) in the lexical order. The tree given in Fig. 1c is not an MIS tree, indeed
the set of processes at even level is not a maximal independent set, as 3 and 5 are neighbors.

3.2. The algorithm to construct an MIS tree

We now give a silent self-stabilizing algorithm to construct an MIS tree (actually a LFMIST) in O (n) rounds. It is defined
as the hierarchical collateral composition MIST ◦ BFST , where BFST is a silent self-stabilizing algorithm that con-
structs a breadth-first spanning tree (BFS tree), and MIST is an algorithm that uses the BFS tree to compute an MIS tree
of the network.

Algorithm BFST We define a breadth first spanning tree (BFS tree) rooted at r, for a graph G = (V , E) to be any spanning
tree T rooted at r such that the path, through T , from any node p to r has length ‖p, r‖, i.e., the distance from p to r in G .

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 115
Let BFST be a silent self-stabilizing breadth-first spanning tree algorithm for a network with unique IDs which works
under a weakly fair scheduler. That is, starting from an arbitrary configuration, BFST converges to a terminal configuration
where a root r and a breadth-first spanning tree of the G , rooted at r, is output. Henceforth, we denote by LevelBFS(p)

the level of any process p in the breadth-first spanning tree computed by BFST .
Many silent self-stabilizing breadth-first search spanning tree algorithms have been given in the literature. One of the first

silent self-stabilizing algorithm for that problem is given in [19]. However, it was designed for arbitrary rooted networks.
The silent self-stabilizing algorithm for identified networks given in [20] can be used to implement BFST . Actually, this
algorithm is a leader election, but, as do most of the existing silent self-stabilizing leader election algorithms, it also builds
a BFS tree that is rooted at the elected node. This algorithm stabilizes in O (n) rounds using O (log n) bits per process, and
does not require processes to know any upper bound on the size n or the diameter D of the network.

Algorithm MIST Let r be the root of the BFS tree computed by BFST . Let ≺ be an order on processes defined as
follows : p ≺ q if and only if (‖p, r‖, p) is smaller than (‖q, r‖, q) in the lexical ordering of pairs. Using the outputs of
BFST , MIST computes the MIS tree of the network which is lexically first w.r.t. to ≺. The formal description of MIST
is given in Algorithm 1. In MIST , the program of each process p contains two variables:

• The Boolean variable p.dominator, which determines if p is in the independent set or not.
• The pointer variable p.par, which points to the parent of p in the MIS tree.

Every process p such that p.dominator = true is said to be a dominator, otherwise it is said to be dominated. Eventually,
the set {p ∈ V | p.dominator} is fixed and forms a maximal independent set of the network thanks to Action SetDominator.

To decide its status, dominator or dominated, each process uses a key, noted Key(p), which is defined by the tuple
(LevelBFS(p), p) (n.b., LevelBFS(p) is eventually equal to the distance of p to the root of the BFS tree). According to the
keys and the status of its neighbors, p decides its status as follows: p is a dominator if and only if each neighbor q is either
dominated or satisfies Key(q) > Key(p), where > is the strict lexical ordering. According to this rule, the root of the BFS tree
is the node of minimum key and consequently is eventually definitely a dominator. All its neighbors becomes dominated,
and so on. Hence, eventually, the set of dominator processes is a maximal independent set.

Each process must choose a parent such that the parent links form a spanning tree, and the set of processes at even
levels is exactly the set of dominators. The root r sets its parent variable to r. All other processes choose as parent the
neighbor having a status different of their own, and of minimum key. This forces a strict alternation between status domi-
nator/dominating along every path of the tree. As the root is at level zero and of dominating status, this alternation makes
the tree an MIS tree.

Algorithm 1: MIST , code for each process p.
Input : LevelBFS(p) ∈ N

Variables: p.dominator: Boolean ; p.par ∈Np ∪ {p}
Macros:

Key(p) = (LevelBFS(p), p)

Dominator(p) = ∀q ∈Np,¬q.dominator ∨ Key(q) > Key(p)

Par(p) = if LevelBFS(p) = 0 then p
else q ∈ Np | Key(q) = min{Key(q′) | q′ ∈Np ∧ q′.dominator �= p.dominator}

Actions:
SetDominator :: p.dominator �= Dominator(p) → p.dominator ← Dominator(p)

SetParMIS :: p.dominator = Dominator(p) ∧ p.par �= Par(p) → p.par ← Par(p)

Correctness and complexity analysis According to Theorem 1, to show the correctness of MIST ◦ BFST , we show that
MIST constructs an MIS tree starting from any configuration where no action of BFST is enabled. In such a configura-
tion, a BFS tree TBFS rooted at some node is available. In the following, we denote by r the root of TBFS , which will be also
the root of the MIS tree.

The following two lemmas show that MIST stabilizes in O (n) rounds after BFST has stabilized.

Lemma 1. Starting from any configuration where no action of BFST is enabled, all actions SetDominator are disabled forever after
at most n rounds.

Proof. Let γ be a configuration where no action of BFST is enabled. From γ , Key(p) is fixed forever for every process p.
Let p1, . . . , pn the list of processes ordered by ≺ (the lexical ordering w.r.t. keys) in γ . We show the lemma by induction
on the rank of every process in the ordering.

116 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
• Base case: In γ , p1 = r and Key(p1) = (0, r). So, if p1.dominator �= true, p1 is continuously enabled to set p1.dominator =
true. Once, p1.dominator = true, action SetDominator is disabled at p1 forever. So, after at most one round from γ , action
SetDominator of p1 is disabled forever.

• Inductive Hypothesis: Let j a positive integer. Assume that for every process pi such that i ≤ j, action SetDominator is
disabled forever at pi after at most i rounds from γ .

• Inductive step: Consider process p j+1 in the first configuration of the (j + 1)st round from γ . Every neighbor q of
p j+1 has key that is fixed forever; moreover if Key(q) < Key(p j+1), then the value q.dominator is fixed forever by the
induction hypothesis. So, either action SetDominator is disabled at p j+1 or it is continuously enabled. Hence, at the end
of the current round, the value of p j+1 is fixed forever and the induction holds.

The maximum rank being n, the lemma is verified. �
Lemma 2. Starting from any configuration where no action of BFST is enabled, if at least n + 1 additional rounds have executed, no
action of MIST is enabled.

Proof. Let γ be a configuration where no action of BFST is enabled. By Lemma 1, after at most n rounds from γ , no action
SetDominator is enabled. So, from that point, the values of Key(p) and p.dominator are fixed forever, for every process p.
Now, for all processes, the guard of action SetParMIS only depends on these values. So, after at most one additional round,
no action of MIST can ever again be enabled, and we are done. �

We now consider any terminal configuration γ of MIST ◦ BFST . Let I be the set of all dominator processes in γ ,
that is, the set of all processes p such that p.dominator = true in γ .

The following three technical lemmas are used in order to prove Lemma 6 which states the correctness of MIST ◦
BFST .

Lemma 3. In any terminal configuration γ of MIST ◦BFST , I is a maximal independent set of the network.

Proof. Suppose the set I is not independent, then there exist two neighbors p and q having their respective dominator
variable equal to true. Then, either Key(p) < Key(q) or Key(q) < Key(p). In the first case, Action SetDominator is enabled
at q, in the latter Action SetDominator is enabled at p, a contradiction.

Suppose the independent set I is not maximal, then there exists a process p such that ¬p.dominator and for every
neighbor q of p, ¬q.dominator. Then Action SetDominator is enabled at p, a contradiction. �

In γ , r is the only process such that LevelBFS(r) = 0. By the definition of Par(p), we then have:

Remark 1. In γ , for every process p, either p = r and p.par = r, or p �= r and p.par ∈Np .

Lemma 4. In any terminal configuration γ of MIST ◦BFST , for every process p �= r, Key(p.par) < Key(p).

Proof. We consider two cases, according to the status of p:

• p ∈ I . Then, by Lemma 3, ∀q ∈ Np , q.dominator = false, in particular for q = ParBFS(p). Note that
LevelBFS(ParBFS(p)) = LevelBFS(p) − 1. Thus, by definition of the macro Par(p), LevelBFS(p.par) =
LevelBFS(ParBFS(p)). Consequently, Key(p.par) < Key(p).

• p /∈ I . Then ¬Dominator(p). Now, as no two processes have equal key, we have ∃q ∈Np , Key(p) > Key(q) ∧ q.dominator.
So, Key(p.par) ≤ Key(q) by definition of Macro Par(p). Consequently, Key(p.par) < Key(p). �

In the following, we denote by TMIS the subgraph induced by the values of the parent pointers of MIST in the terminal
configuration γ . Formally, TMIS = (V , EMIS), where EMIS is the set {{p, p.par} | p ∈ V \ {r}} defined in γ . (Recall that r is the
unique process such that r.par = r in γ , by Remark 1.)

Lemma 5. In any configuration where no action of MIST ◦BFST is enabled, TMIS is a spanning tree of the network.

Proof. We show by contradiction that TMIS is connected and acyclic:

• Suppose TMIS is not acyclic. Then, there exists an elementary cycle in C = (c0, c1, . . . , cm = c0) such that ∀i ∈ [0..m − 1],
ci .par = ci+1 and m > 0. By Remark 1, r /∈ C . By Lemma 4, ∀i ∈ [0..m − 1], Key(ci) < Key(ci+1) (since ci .par = ci+1). By
transitivity, Key(c0) < Key(cm), that is, Key(c0) < Key(c0), a contradiction.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 117
• Suppose TMIS is not connected, then there exist at least two connected components in TMIS . At least one component,
noted G ′ , does not contain the root r. Every process p ∈ G ′ has a parent in G ′ , by Macro Par(p). Hence, there are as
many edges as processes in G ′ , i.e., there is a cycle in G ′ . As TMIS is acyclic, we obtain a contradiction. �

In the following, we denote by LevelMIS(p) the level of any process p in the MIS tree TMIS computed by algorithm
MIST .

Lemma 6. In any configuration where no action of MIST ◦BFST is enabled, TMIS is an MIS tree of the network.

Proof. By Lemma 5, TMIS is a spanning tree of the network. By Lemma 3, I is an MIS of the network. We now show that
the even levels of TMIS form I . Formally, we prove that LevelMIS(p) is even if and only if p.dominator for all p ∈ V , by
induction on LevelMIS(p).

First, the root process r is necessarily in I . For the inductive step, let p be a process other than r, and let L =
LevelMIS(p) > 0. By the inductive hypothesis, LevelMIS(q) is even if and only if q.dominator = true for all q such that
LevelMIS(q) = L − 1.

Note that LevelMIS(p.par) = L − 1. By Macro Par(p), p.par.dominator �= p.dominator. Since L is even if and only if L − 1
is not even, we are done. �

We can require that BFST stabilize in O (n) rounds and use O (log n) space per process [20]. So, by Theorem 1, Lem-
mas 2 and 6, we have:

Theorem 2. MIST ◦ BFST is a silent self-stabilizing algorithm that builds an MIS tree within O (n) rounds using O (logn) space
per process.

Height of the MIS tree The next property establishes a bound on the height of the MIS tree computed by MIST ◦BFST .
We then illustrate this property with an example matching the bound. To show the property, we need the following tech-
nical lemma.

Lemma 7. In any terminal configuration of MIST ◦BFST , if p is a non-root process at an even level of TMIS, then the process p.par
is at level LevelBFS(p) − 1 in TBFS.

Proof. As p is a dominator process, none of its neighbors is a dominator, by Lemma 3. Since p is not the root, ParBFS(p)

is defined. To sum up, ParBFS(p) ∈ Np and LevelBFS(ParBFS(p)) = LevelBFS(p) − 1, so min{LevelBFS(q) | q ∈ Np ∧
q.dominator �= p.dominator} = LevelBFS(p) − 1. By definition, for all q, LevelBFS(q) < LevelBFS(p) implies Key(q) <
Key(p). By Macro Par(p), we are done. �
Property 2. In any terminal configuration of MIST ◦ BFST , the height of the computed MIS tree TMIS of G is at most
2 ×D, where D is the diameter of G .

Proof. Let H be the height of TBFS . Let σ = (p�, p�−1, . . . , p0 = r) be any path in TMIS from a leaf to the root. That is, p� is
a leaf, and p j = p j+1.par for all j < �.

Since TMIS is 2-colored w.r.t. dominator variables, any path in TMIS is also 2-colored w.r.t. dominator variables. Moreover,
p0.dominator = true, so p j .dominator = true if and only if j is even, for all j < �.

Since Key(p j+1) > Key(p j) (Lemma 4), we have:

(a) LevelBFS(p j+1) ≥ LevelBFS(p j) for all j < �.

By Lemma 7, LevelBFS(p.par) < LevelBFS(p) for any dominator process p �= r. Thus:

(b) LevelBFS(p j+1) > LevelBFS(p j) for all odd j.

From (a) and (b), it follows that:

(c) At most two processes of σ can be on any one level of TBFS .

By definition of TBFS:

(d) p0 = r is the only process of σ at level 0 in TBFS .

118 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Fig. 2. Worst case example for MIS tree height.

By definition of TBFS and (d), p1 (if defined) is at level 1 in both TBFS and TMIS . Then, by (b), p2 (if defined) is not at the
same level in TBFS as p1. So, p0 and p2 are not at the same level as p1 in TBFS , that is:

(e) p1 is the only process of σ at level 1 in TBFS .

Hence, among the � + 1 processes of σ , there are exactly one process at level zero of TBFS , one process at level 1 of TBFS ,
and for every other level x of TBFS , there are at most two processes of σ at level x by (c). Hence, � ≤ 2 × (H − 1) + 2, that
is, � ≤ 2 × H ≤ 2 ×D. �

Fig. 2 exhibits the upper bound on the height of TMIS , depending on the diameter D of the network. Even processes
have the same parent in both TBFS and TMIS , whereas the level of the parent in TMIS of each odd process p is the level of p
in TBFS . It is not possible to increase the height of TMIS more than once per level of TBFS , thus the height of TMIS is at most
twice the one of TBFS , that is 2 ×D.

4. k-Clustering of at most � n
k+1 � k-clusters

In this section, we present a silent self-stabilizing algorithm, called CLR(k), which constructs a k-clustering in any
directed tree T . Its stabilization time is O (H) rounds, where H is the height of T . At the end of this section we show
that this clustering is optimal (i.e., minimum in terms of number of clusters) in T . By composing CLR(k) with any silent
self-stabilizing spanning tree algorithm, we obtain a silent self-stabilizing k-clustering algorithm that builds at most � n

k+1 �
distinct k-clusters in any arbitrary network. Moreover, we will see in Section 5 that the composition between CLR(k) and
our spanning tree construction MIST ◦BFST is competitive in both UDG and QUDG networks. The stabilization time of
CLR(k) ◦MIST ◦BFST is O (n) rounds and its memory requirement is O (log k + log n) space per process. We conclude
the section with few experimental results.

4.1. Algorithm CLR(k)

The formal description of CLR(k) is given in Algorithm 2. CLR(k) builds a k-clustering in two phases. During the first
phase, CLR(k) computes the set of clusterheads, Dom, which has cardinality at most � n

k+1 �. The second phase consists
of building a spanning forest, where each directed tree is rooted at a clusterhead and represents the k-cluster of that
clusterhead. Hence, we obtain a k-clustering of at most � n

k+1 � k-clusters. CLR(k) uses the following three variables in the
code of each process p:

• p.α, an integer in the range [0..2k]. Once correctly computed, the value of p.α is equal to ‖p, q‖, where q is the furthest
process in T (p) (the subtree rooted at p) which is in the same k-cluster as p. Consequently, in any terminal configu-
ration, the set of clusterheads Dom is defined as the set of processes p such that p.α = k or p.α < k and p = r, see
Predicate IsClusterHead(p). Further details are given in the next paragraph.

• p.parCLR ∈Np ∪ {p}. In any terminal configuration, p.parCLR is the parent of p in its k-cluster, unless p is a clusterhead,
in which case p.parCLR = p. These variables are used to define a local BFS structure for each cluster, rooted at its
clusterhead.

• p.hdCLR ∈ V . In any terminal configuration, p.hdCLR is equal to the identifier of the clusterhead in the k-cluster that p
belongs to.

Building Dom The first phase of CLR(k) consists of building the set Dom as a k-dominating set of T , that is, a subset
of processes such that every process is at most at distance k from a process in Dom. Dom is constructed by dynamic
programming, in a bottom-up fashion starting from the leaves of T . As previously explained, Dom is defined using the
values of p.α for all p.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 119
Algorithm 2: CLR(k), code for each process p.
Input: Par(p) ∈Np ∪ {p}
Variables: p.α ∈ [0..2k] ; p.parCLR ∈ Np ∪ {p} ; p.hdCLR ∈ V
Macros:

IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k
IsClusterHead(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ (p = r))
ShortChildren(p) = {q ∈ Np | (Par(q) = p) ∧ IsShort(q)}
TallChildren(p) = {q ∈ Np | (Par(q) = p) ∧ IsTall(q)}
MaxAShort(p) = if ShortChildren(p) = ∅ then −1 else max {q.α | q ∈ ShortChildren(p)}
MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)}
MinIDMinATall(p) = if TallChildren(p) = ∅ then p else min {q ∈ TallChildren(p) | q.α = MinATall(p)}
Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1 else MaxAShort(p) + 1
ParCLR(p) = if IsClusterHead(p) then p else if p.α < k then Par(p) else MinIDMinATall(p)

HdCLR(p) = if IsClusterHead(p) then p else p.parCLR.hdCLR

Actions:
SetAlpha :: p.α �= Alpha(p) → p.α ← Alpha(p)

SetParCLR :: p.α = Alpha(p) ∧ p.parCLR �= ParCLR(p) → p.parCLR ← ParCLR(p)

SetHead :: p.α = Alpha(p) ∧ p.parCLR = ParCLR(p) ∧ p.hdCLR �= HdCLR(p) → p.hdCLR ← HdCLR(p)

We now give more details about the value and the computation of p.α for all p. Consider any terminal configuration.
We recall that in this configuration, p.α = ‖p, q‖, where q is the furthest process in T (p) that is in the same k-cluster as p.

We divide processes into short and tall according to the value of their α-variable:

(i) If p satisfies IsShort(p), i.e., p.α < k, then p is said to be short and we have two cases: p �= r or p = r.
In the former case, p is k-dominated by a process of Dom outside of its subtree, that is, the path from p to its cluster-
head goes through the parent link of p in the tree, and the distance to this process is at most k − p.α. See, for example,
in Configuration (VI) of Fig. 4, k = 2 and g.α = 0 mean that the clusterhead of g is at most at distance k − 0 = 2, now
its clusterhead d is at distance 1.
In the latter case (p = r), p may not be k-dominated by any process of Dom inside its subtree and, by definition, there
is no process outside its subtree, indeed T (p) = T , see the root in Configuration (VI) of Fig. 4. Thus, p must be placed
in Dom.

(ii) If p satisfies IsTall(p), i.e., p.α ≥ k, then p is said to be tall and there is a process q at p.α − k hops below p such that
q.α = k. So, q ∈ Dom and p is k-dominated by q. See, for example, in Configuration (VI) of Fig. 4, k = 2 and c.α = 3
mean that the clusterhead of c, here d, is 3 − k = 1 hop below c.
Note that, if p.α = k, then p.α − k = 0, that is, p = q and p belongs to Dom.

p.α is computed using macro Alpha(p). This latter is based on the two following macros:

• MaxAShort(p) returns the maximum value of q.α for all short children q of p. If p has no short child, MaxAShort(p)

returns −1.
• MinATall(p) returns the minimum value of q.α for all tall children q of p. If p has no tall child, MinATall(p) returns

2k + 1.

According to these macros, p.α is computed by Action SetAlpha in a bottom-up fashion in the tree T as follows:

• If MaxAShort(p) + MinATall(p) > 2k − 2, p.α = MaxAShort(p) + 1.
• If MaxAShort(p) + MinATall(p) ≤ 2k − 2, p.α = MinATall(p) + 1.

Consider a leaf f . Since f has no children, MaxAShort(f) + MinATall(f) = −1 + 2k + 1 > 2k − 2. Thus, f .α = −1 + 1 = 0,
which corresponds to the distance between f and its furthest descendant that will be in its cluster (f itself).

Consider now an internal process p and assume that the α-variables of all its children are correctly evaluated. p should
choose a clusterhead that will be either (1) in its subtree (in this case, p will be tall), or (2) outside its subtree (in this
case p will be short). Since the computations are done bottom-up, we should preferably make the choice (1) to reduce the
number of clusterheads.

Let q be a short child of p. From (i), the path from q to its clusterhead goes through p. Thus, to prevent cycle creation,

(∗) p must not choose a clusterhead which is in the subtree of any of its short children.

120 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Fig. 3. Illustrative example: Light grey nodes are short children of p; grey nodes are tall children of p. The shaded area shows the nodes that already chose
the same cluster as p. The light grey area shows the nodes that already choose the same cluster as z.

From now on, follow the illustrative example given in Fig. 3. Let x be the furthest process that is both in the subtree of
some short child of p and in the same cluster as p. Let q be the short child of p such that x ∈ T (q). Then, from (i), x is at
distance MaxAShort(p) + 1 from p. Two cases are then possible:

• MaxAShort(p) + MinATall(p) > 2k − 2. If p chooses a node y of its subtree as clusterhead, then from (∗), the path from
p to its clusterhead should go through one of its tall children. So, p will be at least at distance MinATall(p) −k + 1 from
that clusterhead, from (ii). Now, in this case, x will be at least at distance MaxAShort(p) + 1 + MinATall(p) − k + 1 >
2k − 2 − k + 2 = k from the clusterhead y, this violates the definition of k-clustering. Thus, p should necessarily choose
its clusterhead outside the subtrees of any of its children (that is, either p declares itself as clusterhead or chooses an
ancestor as clusterhead). From (i) and (ii), this means that all nodes in the subtrees of the tall children of p adopt
a different cluster from p, and consequently the node x is then the furthest node that belongs to both T (p) and the
cluster of p. This implies that p.α = ‖p, x‖ = MaxAShort(p) + 1.

• MaxAShort(p) + MinATall(p) ≤ 2k − 2. Let z be a tall child of p such that z.α = MinATall(p). Unlike the previous case,
p can choose a node y in the subtree of z as clusterhead. Indeed, in this case, x will be at distance MaxAShort(p) +
1 + MinATall(p) − k + 1 ≤ 2k − 2 − k + 2 = k from y. Hence, the nodes (other than p) that are both in the subtree
of p and in its cluster will be either nodes in subtrees of short children of p or nodes in T (z). Since by definition,
MinATall(p) > MaxAShort(p), the furthest node that belongs to both T (p) and the cluster of p will be at distance
MinATall(p) + 1 from p, i.e., p.α = MinATall(p) + 1.

Using Fig. 4, we now detail an example of computation of α-values for k = 2. In Fig. 4, the root of the tree network is the
rightmost node, node a. Recall that the computation of α-values is bottom-up. In the following explanation, we only consider
at each round the processes that are guaranteed to take their final α-value, some others may move but these moves have no
impact on the reasoning. First, regardless the initial configuration, our algorithm ensures that every leaf has its final α-value
at the end of the first round (Configuration I): every leaf x ∈ {b, g, i, k} satisfies MaxAShort(x) + MinATall(x) = −1 + 2k + 1 =
4 > 2k − 2 = 2. Thus, x.α takes value MaxAShort(x) + 1 = −1 + 1 = 0. Of course, the clusterhead of each leaf will be up in
the tree. During the second round (Configuration II), nodes f and j get their final α-value, 1, as all the α-values of all their
respective children are now fixed. Indeed, for example, MaxAShort(f) +MinATall(f) = 0 +2k +1 = 5 > 2, so f satisfies f .α =
MaxAShort(f) +1 = 0 +1 = 1. f and j being short, their respective clusterheads will be up in the tree. At the end of the third
round (Configuration III), h and d have their final α-value, 2. For example, MaxAShort(h) + MinATall(h) = 1 + 2k + 1 = 6 > 2,
so, h.α takes value MaxAShort(h) +1 = 1 +1 = 2. Notice that h.α = 2 and d.α = 2 means that both h and d are clusterheads.
In particular, we already know that h (resp. d) is the clusterhead of k and j (resp. of i, f , and g). At the end of the fourth
round (Configuration IV), only e is guaranteed to have its final α-value: MaxAShort(e) + MinATall(e) = −1 + 2 ≤ 2. So, e.α
takes value MinATall(e) + 1 = 2 + 1 = 3. So, e is tall and its clusterhead is below in the tree: h. At the end of the fifth round
(Configuration V), only c is guaranteed to have its final α-value: MaxAShort(c) + MinATall(c) = −1 + 2 = 1 ≤ 2. So, c.α takes
value MinATall(c) + 1 = 2 + 1 = 3, which means that c is tall. The clusterhead of c is then a clusterhead already defined in
the subtree of its smallest tall children, here d. Finally, a has its final value at the end of the sixth round (Configuration VI):
MaxAShort(a) + MinATall(a) = 0 + 3 = 3 > 2. So a.α takes value MaxAShort(a) + 1 = 0 + 1 = 1. As a is a short root, a is a

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 121
Fig. 4. Computation of α for k = 2. The root of the tree network is the rightmost node. α-values are given inside the nodes; when no value is given α is
arbitrary. Configuration (VI) is terminal: bold circles represent clusterheads and arrows represent local spanning tree of each k-cluster.

Fig. 5. Examples of k-Clustering using CLR(3), where k = 3. The root of each tree network is on the right, values of α are indicated, clusterheads are
colored in black, and arrows represent local spanning tree of each k-cluster.

clusterhead. Hence, in Configuration (VI), three 2-clusters are defined {c, d, f , g, i}, {e, h, j, k}, and {a, b} with d, h, and a as
respective clusterheads.

To help the reader’s intuition, we summarize below the important properties of p.α, for any process p. These properties
can be checked in the examples given in Fig. 5, and will be proven in Subsection 4.2.

Property 3. In any terminal configuration, for every process p, we have:

(a) If p.α > 0, then there is some child q of p such that q.α = p.α − 1.
(b) If p.α > k, then there is a proper descendant q of p such that q ∈ Dom and q is p.α − k levels below p.
(c) There is a member of Dom within |p.α − k| hops of p.

Constructing the k-clustering The second phase of CLR(k) partitions the processes into distinct k-clusters, each of which
contains one clusterhead. Each k-cluster contains a k-cluster spanning tree, a tree containing all the processes of that k-cluster.
Each k-cluster spanning tree is a subgraph of T rooted at the clusterhead, possibly with the directions of some edges
reversed. Furthermore, the height of the k-cluster spanning tree is at most k.

Each process of Dom designates itself as clusterhead using Actions SetParCLR and SetHead. Other processes p designate
their parent using Action SetParCLR as follows: (1) if p is short, then its parent in its k-cluster is its parent in the tree;
(2) if p is tall, then p selects as parent in its k-clustering its tall child in the tree of minimum α value (we use IDs to break

122 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
ties, see MinIDMinATall(p)). Finally, identifiers of clusterheads are propagated in a top-down fashion in their k-cluster using
Action SetHead, see macro HdCLR(p).

Two examples of 3-clustering using CLR(3) are given in Fig. 5. In Fig. 5a, the root is a tall process, consequently it is
not a clusterhead. In Fig. 5b, the root is a short process, consequently it is a clusterhead.

4.2. Correctness

We first show the convergence of CLR(k) from any configuration to a terminal one. Since computation of the p.α is
bottom-up in T , the time required for those values to stabilize is O (H) rounds, where H is the height of T . After that,
one additional round is necessary to fix the ParCLR variables, because the values of these variables only depend on the α
variables. Finally, the hdCLR variables are fixed top-down within the k-cluster spanning trees starting from the clusterheads
in O (H) rounds. Hence, it follows that the time complexity of CLR(k) is O (H) rounds, as shown below.

Lemma 8. For every process p, the variable p.α is fixed forever within H + 1 rounds.

Proof. We prove this lemma by backwards induction on the level Level(p) of processes p in the tree.
As a base case, if Level(p) = H , that is p is a leaf, then p.α is fixed forever within one round.
Assume for every p such that Level(p) = l, the variable p.α is fixed forever within H − l + 1 rounds.
Let q be a process such that Level(q) = l − 1. The value of Alpha(q) depends only on the values of every p.α where

p has level l. By the induction hypothesis, all those values are fixed within H − l + 1 rounds, thus q.α is fixed within one
additional round, that is within H − l + 2 = H − (l − 1) + 1 rounds.

This complexity is maximum with l = 0 and the lemma follows. �
Lemma 9. For every process p, the variable p.parCLR is fixed forever within H + 2 rounds.

Proof. The evaluation of both guard and statement of Action SetParCLR only relies, for a process p, on the variables p.parCLR
and q.α for every neighbor q of p. Thus, after all α variables are fixed in the network, every p.parCLR is fixed within one
additional round. By Lemma 8, we are done. �
Lemma 10. In every configuration where all parCLR and α variables are fixed forever, there is no directed cycle constituted of directed
edges of the form (p, p.parCLR) except self-loops.

Proof. The network being a tree, we only need to exclude the existence of cycle of size two. Assume by the contradiction
that such a cycle exists between p and its neighbor q, that is p.parCLR = q and q.parCLR = p. Without loss of generality,
assume that q is a child of p. Then, by definition of Macro ParCLR(q), q.α < k. By definition of Macro ParCLR(p), q.α ≥ k,
a contradiction. �
Lemma 11. For every process p, the variable p.hdCLR is fixed forever within O (H) rounds.

Proof. By Lemmas 8 and 9, the variables p.α and p.parCLR are fixed within H + 2 rounds.
Then, for every process p, the variable p.hdCLR only depends on p.parCLR.hdCLR and some fixed variables.
For every process p such that p.parCLR = p, p.hdCLR is fixed forever in at most one additional round. Then, changes on

hdCLR can be propagated from node p to its neighbor q only if q.parCLR = p. By Lemma 10, these propagations end after
O (H) rounds, and we are done. �

From Lemmas 8 to 11, follows:

Lemma 12. Starting from any configuration, CLR(k) reaches a terminal configuration in O (H) rounds.

We now consider any terminal configuration of CLR(k) and show that such a configuration is legitimate. The proof
begins by formally establishing the three claims given in Property 3 (Remark 2, Lemmas 13, and 14).

Remark 2. Property 3.(a) follows immediately from the definition of α.

Below, we prove Property 3.(b).

Lemma 13. In any terminal configuration of CLR(k), for every process p, if p.α > k, then there is a proper descendant q of p such
that q ∈ Dom and q is p.α − k levels below p.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 123
Proof. We prove this lemma by strong induction on p.α.
As a base case, if p.α = k + 1, then, by Property 3.(a), there is a child q of p such that q.α = k, that is q ∈ Dom.
Assume the lemma holds for every p such that k < p.α < a and let p′ be a process such that p′.α = a.
By Property 3.(a), there is a child q′ of p′ such that q′.α = p′.α − 1. By the induction hypothesis, there is a proper

descendant q′′ of q′ such that q′′ ∈ Dom and q′′ is q′.α −k levels below q′ . So, q′′ is q′.α −k + 1 = p′.α − 1 −k + 1 = p′.α −k
below p′ , and we are done. �

We now prove Property 3.(c).

Lemma 14. In any terminal configuration of CLR(k), for every process p, there is a process q such that q ∈ Dom and ‖p, q‖ ≤
|p.α − k|.

Proof. If p.α > k, then, by Lemma 13, we are done.
Consider now any process p such that p.α ≤ k. We prove the lemma by strong backward induction on p.α.
As a base case, if p.α = k, then p ∈ Dom by definition.
Assume the lemma holds for every p′ such that a<p′.α≤k.
Let q be a process such that q.α = a and q �= r. Indeed, if r.α ≤ k, then r ∈ Dom by definition. Let q′ be the parent of q.

We consider two cases.

• Assume q′.α = MaxAShort(q′) + 1. As q.α < k, q is short and q.α ≤ MaxAShort(q′). So:

q.α < q′.α ≤ k
a < q′.α ≤ k

By the induction hypothesis, there is a member of Dom which is within k − q′.α hops of q′ . This process is within
k − q′.α + 1 hops from q. Now:

a < q′.α
k − q′.α + 1 ≤ |q.α − k|

This process is within |q.α − k| hops from q and we are done.
• Otherwise, q′.α = MinATall(q′) + 1 and q′.α > k. By Lemma 13, there is some q′′ ∈ Dom within q′.α − k hops of q′ . Thus,

‖q′′, q‖ ≤ q′.α − k + 1. Then, by definition of α:

MaxAShort(q′) + MinATall(q′) ≤ 2k − 2
MinATall(q′) − k + 2 ≤ k − MaxAShort(q′)
q′.α − k + 1 ≤ k − q.α

Hence:

‖q′′,q‖ ≤ k − q.α
‖q′′,q‖ ≤ |q.α − k|

So, q′′ is within |q.α − k| hops from q and we are done. �
We now use Property 3 to complete the correctness proof of CLR(k).
Since |p.α − k| ≤ k for every p, we can deduce the following corollary from Property 3.(c).

Corollary 1. In any terminal configuration of CLR(k), Dom is a k-dominating set of T .

The following lemma shows that every process is in the k-cluster of a member of Dom.

Lemma 15. In any terminal configuration of CLR(k), for every process p, there is a path P = (p0 = p, . . . , pm) such that:

(1) m ≤ |p.α − k| ≤ k,
(2) ∀i ∈ [0..m − 1], pi .parCLR = pi+1 ,
(3) pm.parCLR = pm,
(4) ∀i ∈ [0..m], pi .hdCLR = pm,
(5) pm ∈ Dom.

Proof. We prove this lemma by strong induction on |p.α − k|. Note that p.α ∈ [0..2k], thus |p.α − k| ∈ [0..k] always.
As a base case, if p.α = k, then IsClusterHead(p) = true. Thus, by definition, p.parCLR = p and p.hdCLR = p. The path

P = (p) verifies each property stated in the lemma.

124 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Assume the lemma holds for every q such that |q.α − k| < a, and consider a process p such that |p.α − k| = a.
If p.α > k, then, by definition of Alpha(p), p.α = MinATall(p) + 1, i.e., there is some neighbor q of p such that q.α =

MinATall(p), hence p.α = q.α+1. Consider the process of smallest identifier. Since p.α−k = a, it follows that q.α+1 −k = a,
that is, q.α − k = a − 1 < a. By the induction hypothesis, there is a path Q = (p0 = q, . . . , pm) leading to a clusterhead pm
such that:

• m ≤ |q.α − k| ≤ k,
• ∀i ∈ [0..m − 1], pi .parCLR = pi+1,
• pm.parCLR = pm , and
• ∀i ∈ [0..m], pi .hdCLR = pm .

By definition of ParCLR(p) and HeadCLR(p), p.parCLR = q and p.hdCLR = pm . Then, as q.α ≥ k, |q.α − k| + 1 = |q.α − k + 1| =
|p.α − k|. Hence, the path p, p0 = q, . . . , pm has length at most |p.α − k|, and we are done.

Otherwise, p.α < k. If p = r, then IsClusterHead(p) = true and the lemma holds. Consider now the case p �= r and note
q = Par(p). By definition of ParCLR(p), p.parCLR = q. By definition of HeadCLR(p), p.hdCLR = q.hdCLR . We now show that
|q.α − k| < a, i.e., |q.α − k| < |p.α − k| in order to make use of the induction hypothesis as in the previous case, thus
completing the proof. Two cases have to be distinguished:

• q.α ≤ k, then, by definition of Alpha(q), q.α = MaxAShort(q) + 1. As p is a short child of q, q.α ≥ p.α + 1, and q.α − k >
p.α − k. Since p.α < q.α ≤ k, |q.α − k| < |p.α − k|.

• q.α > k, then, by definition of Alpha(q), q.α = MinATall(q) + 1 and:

MaxAShort(q) + MinATall(q) ≤ 2k − 2
(MaxAShort(q) + 1) + (q.α − k) ≤ k

Since p.α ≤ MaxAShort(q), then:

(p.α + 1) + (q.α − k) ≤ k
q.α − k ≤ k − p.α − 1
|q.α − k| < |k − p.α|
|q.α − k| < |p.α − k| �

Lemma 16. In any terminal configuration of CLR(k), every k-cluster whose clusterhead is not the root contains at least a path of k +1
processes.

Proof. Consider any k-cluster whose clusterhead p is not the root. Then, p.α = k, p.parCLR = p, and p.hdCLR = p by definition
of IsClusterHead(p), ParCLR(p), and HdCLR(p). Moreover, by Property 3.(a), there is a path (p0, . . . , pk) such that pk = p and
for every i ∈ [0..k − 1], pi .α = pi+1.α − 1 = i. By Definition of Macro ParCLR(p j), for every j ∈ [0..k − 1], p j .parCLR = p j+1.
By Definition of Macro HdCLR(p j), for every j ∈ [0..k − 1], p j .hdCLR = p j+1.hdCLR = pk = p. �
Lemma 17. In any terminal configuration of CLR(k), there are at most � n

k+1 � distinct k-clusters.

Proof. By Lemma 16, except for the k-cluster which contains the root, every k-cluster contains at least k + 1 processes.
Thus, there are at most 1 +

⌊
n−1
k+1

⌋
=

⌊
n+k
k+1

⌋
= � n

k+1 � k-clusters. �
By Corollary 1 and Lemmas 15 and 17, we have:

Lemma 18. In any terminal configuration of CLR(k), T is partitioned into at most � n
k+1 � distinct k-clusters.

From Lemmas 12 and 18, we have:

Theorem 3. In any tree of n processes and height H, CLR(k) is a silent self-stabilizing algorithm that partitions the tree within O (H)

rounds into at most � n
k+1 � distinct k-clusters.

By Theorems 1, 2, and 3, CLR(k) ◦MIST ◦BFST is self-stabilizing, MIST ◦BFST stabilizes within O (n) rounds,
and O (H) rounds later CLR(k) ◦MIST ◦BFST reaches a terminal configuration, where H is the height of TMIS . Now, by
Property 2 (page 117), H is bounded by 2D, where D is the diameter of the network. Hence, from any initial configuration,
CLR(k) ◦MIST ◦BFST stabilizes in O (n) rounds.

Theorem 4. In any arbitrary network with unique IDs, CLR(k) ◦MIST ◦BFST is a silent self-stabilizing algorithm that builds at
most � n

k+1 � distinct k-clusters within O (n) rounds using O (logk + log n) space per process.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 125
4.3. Optimality of the k-clustering in trees

In this subsection, we show that the set Dom of clusterheads computed by CLR(k) has the minimum cardinality, for any
tree T .

Lemma 19. Let p any process satisfying p.α < k in a terminal configuration γ of CLR(k), every child q of p satisfies q.α �= k.

Proof. Assume the contrary. Then, MinATall(p) = k. So:

MaxAShort(p) + MinATall(p) > 2k − 2
MaxAShort(p) + 1 ≥ k
p.α ≥ k

Hence, we obtain a contradiction and consequently q.α �= k. �
Lemma 20. In any terminal configuration γ of CLR(k), for every process p, for every process q in (T (p) ∩ Dom) \ {p}, we have:

• If p.α ≤ k, then ‖p, q‖ > |p.α − k|.
• If p.α > k, then ‖p, q‖ ≥ |p.α − k|.

Proof. We prove this lemma by backwards induction on the level Level(p) of processes p in the tree.
If Level(p) = H , then p is a leaf and (T (p) ∩ Dom) \ {p} = ∅, so the lemma trivially holds.
Assume the lemma holds for every process x such that l < Level(x) ≤ H and let p be a process such that Level(p) = l.

Let q ∈ (T (p) ∩ Dom) \ {p}. We have two cases:

q is a child of p: So, ‖p, q‖ = 1. By definition, q ∈ Dom in γ . Moreover, as q is not the root, q.α = k in γ by definition of
CLR(k). Then, by Lemma 19, p.α ≥ k in γ and we consider two subcases:

p.α = k in γ : Then, |p.α − k| = 0 and the lemma holds.
p.α > k in γ : Then p.α = MinATall(p) + 1 and MinATall(p) = k (because q.α = k). So, p.α = k + 1 ≥ 1 and the lemma

holds.

q is not a child of p in γ : Then, there is a child y of p such that q ∈ (T (y) ∩ Dom) \ {y} in γ (note that Level(y) = l + 1).
Consider the three following cases:

• p.α < k in γ . In this case, y.α �= k by Lemma 19. So, we consider the two following subcases:
– y.α < k in γ . By the induction hypothesis, we have:

‖y,q‖ > |y.α − k|
‖p,q‖ > |y.α − k| + 1
‖p,q‖ > |MaxAShort(p) − k| + 1
‖p,q‖ > |MaxAShort(p) − (k + 1)|
‖p,q‖ > |MaxAShort(p) + 1 − (k + 2)|
‖p,q‖ > |p.α − (k + 2)|
‖p,q‖ > |p.α − k|

– y.α > k in γ . Then:

MaxAShort(p) + MinATall(p) > 2k − 2
MaxAShort(p) − k + 1 > k − 1 − MinATall(p)

p.α − k > k − 1 − MinATall(p)

k − 1 − MinATall(p)	>	p.α − k
k − MinATall(p)	+ 1 >	p.α − k
k − y.α	+ 1 >	p.α − k
y.α − k	+ 1 >	p.α − k
‖y,q‖ + 1 > |p.α − k| (by the induction hypothesis)
‖p,q‖ > |p.α − k|

• p.α = k in γ . Then, |p.α − k| = 0 and as every proper descendant of p is at least at distance 1 from p, the lemma
trivially holds.

126 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Fig. 6. Illustration of the proof of Theorem 5.

• p.α > k in γ . So, we consider the two following subcases:
– y.α < k.

MaxAShort(p) + MinATall(p) ≤ 2k − 2
MaxAShort(p) + MinATall(p) + 1 ≤ 2k − 1
MaxAShort(p) + p.α ≤ 2k − 1
p.α − k ≤ k − MaxAShort(p) − 1
|p.α − k| ≤ |k − MaxAShort(p) − 1|
|p.α − k| ≤ |k − MaxAShort(p)| + 1
|p.α − k| ≤ |MaxAShort(p) − k| + 1
|p.α − k| ≤ |y.α − k| + 1
|p.α − k| ≤ ‖y,q‖ + 1 (by the induction hypothesis)
‖p,q‖ ≥ |p.α − k|

– y.α ≥ k. By the induction hypothesis, we have:

‖y,q‖ ≥ |y.α − k|
‖p,q‖ ≥ |y.α − k| + 1
‖p,q‖ ≥ |MinATall(p) − k| + 1
‖p,q‖ ≥ |MinATall(p) + 1 − k|
‖p,q‖ ≥ |p.α − k| �

Fig. 6 illustrates the proof of the theorem given below.

Theorem 5. The set Dom of clusterheads computed by CLR(k) is a minimum cardinality k-dominating set of T .

Proof. Consider the set Dom of clusterheads defined in some terminal configuration computed by CLR(k) in T . We proceed
by contradiction: Assume that there exists a k-dominating set DS of T such that |DS| < |Dom|. Pick a node p of maximum
level such that T (p) ∩ Dom contains more nodes than T (p) ∩ DS, i.e.:

• |T (p) ∩ Dom| > |T (p) ∩ DS|, and
• |T (q) ∩ Dom| ≤ |T (q) ∩ DS| for any proper descendant q of p in T .

This means, in particular, that p ∈ Dom but p /∈ DS. By definition of Dom, p.α ≤ k. By Property 3.(a), there exists a sequence
of nodes p0, p1, . . . , pa , for a = p.α, such that:

• pa = p,
• the parent of pi in T is pi+1, for all 0 ≤ i < a, and
• pi .α = i, for all 0 ≤ i ≤ a.

Let K be the set of all nodes within k hops of p0.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 127
Fig. 7. Competitive v.s. its theoretical bound � n
k+1 �, for n = 1000, k = 5, and a square field of size 4000m.

Claim I. K is a subset of T (p).
Proof of Claim I. If p is the root of T , then the claim trivially holds. Otherwise, a = p.α = k, which implies that p0 is k hops
below p, and thus the claim holds.

Claim II. K ∩ Dom = {p}.
Proof of Claim II. Suppose q ∈K and q �= p. Pick the node pi that is closest to q. Then, q is at most k − i (i.e., |pi .α − k|) hops
below pi . By Lemma 20, q /∈ Dom.

Let W = T (p) \K. Then, W is the exact union of subtrees rooted at w1, w2, . . . , wm , namely the nodes not in K whose
parents are in K.

Each wi is a proper descendant of p, and thus, by hypothesis, DS must have at least as many members as Dom in W .
Since DS has fewer members than Dom in T (p), then DS must have fewer members than Dom in K. By Claim II, K∩ DS = ∅.
This implies that DS contains no node within k hops of p0, contradicting the hypothesis that DS is a k-dominating set. �
4.4. Experimental results

We ran simulations to study the average performance of our algorithm (CLR(k) ◦MIST ◦BFST) in terms of number
of clusterheads. For sake of simplicity, our algorithm will be named Competitive in this section.

We obtain our experimental results using an event-driven simulator for wireless sensor networks, called Sinalgo. In this
simulator, processes are randomly deployed on a square plane. Processes are motionless and equipped with radio. Two
processes can communicate if and only if their Euclidean distance is at most rad, where rad is the transmission range. So,
the network topology is a Unit Disk Graph (UDG).

We considered connected UDG networks of n = 1000 nodes deployed using a uniform random distribution on a
4000m-side square. We tune the transmission range to control the average degree δ of the network. We vary δ from 10
to 30 and k from 3 to 5. For each setting, the average number of clusterheads is computed over 50 connected UDGs,
randomly generated.

We only presented here the results obtained with k = 5. However, the general trends observed for k = 5 are representa-
tive: they can be also observed in other cases we experimented (that is, k = 3 and k = 4).

We first compared the average performance of our algorithm, Competitive, against the theoretical bound proven
in Theorem 3. The experimental results are given in Fig. 7. They confirm that Competitive is well-suited for wireless
sensor networks, since its average performance is drastically better than the theoretical bound, which holds for all arbitrary
connected graphs. Note also that, the number of clusterheads decreases when the average degree increases because the
diameter of the network also decreases in that case. (This trend can be also observed in all other curves.)

Then we implemented algorithms given in [6] and [8]. To the best of our knowledge, these are the only self-stabilizing
algorithms that guarantee a bound on the number of clusterheads. The algorithm given in [8] is a hierarchical composition
of three layers. The two first layers, denoted by DSK in the following, consists of a spanning tree construction and an
algorithm that uses the tree structure to compute a k-dominating set D of at most � n

k+1 � processes. The third layer consists
of an algorithm that makes D minimal, that is, it computes a minimal k-dominating set that is a subset of D . Note that,
experiments in [8] show that best results are obtained using a BFS tree algorithm as first layer. Hence, we do the same here.
In the following, we denote by DSK+ the three layer algorithm.

The minimization module used in [8] is actually the algorithm given in [6]. This algorithm, called Minimal in the fol-
lowing, can be used without input, i.e., it can be used independently and directly on a network to compute an unconstrained
minimal k-dominating set, whose size is at most max(1, n/� k+1

2 �). We can also compose our algorithm with Minimal. This
version is denoted by Competitive+ in the following. We recall the main features of each algorithm in Table 1.

128 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Table 1
Features of each algorithm.

Algorithm Memory Requirement Round Complexity Upper Bound Minimal ?

Competitive O (log k + logn) O (n) � n
k+1 � No

DSK [8] O (log k + logn + k log N
k) O (n) � n

k+1 � No
Minimal [6] O (log k + logn) O (n) max(1,n/� k+1

2 �) Yes
Competitive+ O (log k + logn) O (n) � n

k+1 � Yes
DSK+ O (log k + logn + k log N

k) O (n) � n
k+1 � Yes

Fig. 8. Competitive v.s. DSK, for n = 1000, k = 5, and a square field of size 4000m.

Fig. 9. Competitive v.s. Competitive+, for n = 1000, k = 5, and a square field of size 4000m.

We first compared in Fig. 8 the two algorithms that computes a dominating set that is not necessarily minimal, i.e.
our algorithm Competitive and Algorithm DSK. Results clearly show that Competitive computes notably smaller
k-dominating sets than DSK.

We then compared Competitive and Competitive+ to see if the minimization really impacts the result. As we can
see in Fig. 9, the minimization drastically reduced the size of the computed k-dominating sets.

Finally, Fig. 10 presents results to compare the best version of our algorithm (Competitive+) to other algorithms that
compute minimal k-dominating sets, that is, DSK+ and Minimal. We can remark that results are really close, but still our
algorithm offers the best performances.

5. Competitiveness of k-clustering

Unit disk graphs We now analyze the competitiveness, in terms of number of clusters, of CLR(k) ◦ MIST ◦ BFST , in
the special case that the network is a UDG in the plane, that is, the processes are fixed in the plane, and two processes
can communicate if and only if their Euclidean distance in the plane is at most one. We first show, in Lemma 21, that
the cardinality of the MIS computed by MIST ◦ BFST is bounded by a multiple of the minimum cardinality of any

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 129
Fig. 10. Competitive+ v.s. DSK+ v.s. Minimal, for n = 1000, k = 5, and a square field of size 4000m.

k-clustering, then in Lemma 22, we show that the cardinality of Clr, the k-clustering built by CLR(k) ◦MIST ◦BFST , is
bounded by a multiple of that same minimum.

The proof of Lemma 21 makes use of the following result by Folkman and Graham [21].

Theorem 6 ([21]). Let X be a compact convex region of the plane and J ⊆ X such that the distance between any two distinct members
of J is at least 1. Then, the cardinality of J is at most

⌊
2√
3

A(X) + 1
2 P (X) + 1

⌋
, where A(X) and P (X) are the area and the perimeter

of X, respectively.

Lemma 21. For every connected UDG and every k ≥ 1, any independent set I is of cardinality at most
(2πk2√

3
+ πk + 1

)
times the

cardinality of an optimum k-clustering.

Proof. Consider any independent set I and any optimum k-clustering Opt of some UDG in the plane. Consider any cluster-
head p in Opt and the surrounding disk of radius k centered at p in the plane. All processes that belongs to the k-cluster of
p are within this disk. As the distance between any two distinct members of I is greater than 1, we can apply Theorem 6,
that is, no more than

(2√
3
(πk2) + 1

2 (2πk) + 1
)

processes of I can be in this disk, thus in the k-cluster of p. By definition,

every process belongs to a k-cluster. It follows that the cardinality of I is at most
(2πk2√

3
+ πk + 1

) × |Opt|. �
We now compare the maximal independent set computed by MIST ◦ BFST with the k-clustering set Clr computed

by CLR(k) ◦MIST ◦BFST .

Lemma 22. For every connected network and every k ≥ 1, let I be the MIS computed by MIST ◦BFST , the cardinality of Clr, the
k-clustering built by CLR(k) ◦MIST ◦BFST is at most 1 + 2

k (|I| − 1).

Proof. By Lemma 16 (page 124), every k-cluster of Clr contains a path of k + 1 processes (i.e., of length k), except for the
k-cluster which contains r. Since Clr is built on TMIS , by Property 1 (page 114), this path contains � k

2 � processes of I \ {r}.
Thus, |Clr| − 1 k-clusters of Clr contain at least � k

2 � processes of I \ {r}. We have:

(|Clr| − 1) × � k
2� ≤ |I \ {r}|

(|Clr| − 1) k
2 ≤ |I| − 1

|Clr| − 1 ≤ 2
k (|I| − 1)

|Clr| ≤ 1 + 2
k (|I| − 1) �

By Lemmas 21 and 22, we deduce that |Clr| ≤ 1 − 2
k + (4πk√

3
+ 2π + 2

k

)|Opt|, and since 4π√
3

≈ 7.2552, we can claim:

Theorem 7. For every connected UDG and every k ≥ 1, CLR(k) ◦ MIST ◦ BFST computes a 7.2552k + O (1)-approximation of
the optimum k-clustering in terms of cardinality.

130 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Quasi-unit disk graphs If V is a set of points in the plane, and λ ≥ 1, then we say that G = (V , E) is an Quasi-Unit Disk Graph
(QUDG) [22] in the plane with approximation ratio λ, if, for any u, v ∈ V , ‖u, v‖ ≤ 1 ⇒ {u, v} ∈ E and {u, v} ∈ E ⇒ ‖u, v‖ ≤ λ.
This model has been first introduced by [23]. It is also known as Approximate Disk Graphs.

Theorem 8. For every connected QUDG in the plane with approximation ratio λ, and every k ≥ 1, CLR(k) ◦ MIST ◦ BFST
computes a 7.2552λ2k + O (λ)-approximation of the optimum k-clustering in terms of cardinality.

Proof. As in the proof of Lemma 21, we make use of Theorem 6, but we then consider the surrounding disk of radius λk
centered at any clusterhead of an optimum k-clustering Opt . It follows that no more than

(2√
3
(πλ2k2) + 1

2 (2πλk) + 1
)

processes can be independent in this disk, and thus no more than that same number can be in any k-cluster of Opt . It
follows that the cardinality of any independent set in an QUDG is at most

(2πλ2k2√
3

+πλk + 1
)

times the one of an optimum

k-clustering Opt . By Lemma 22 and since 4π√
3

≈ 7.2552, we are done. �
6. P-Completeness of our MIS construction

The time bottleneck of our k-clustering solution is the MIS tree construction. Indeed, our algorithm MIST ◦ BFST
builds an MIS tree in �(n) rounds in the worst case and, once the MIS Tree is built, the k-clustering is computed in O (D)

rounds by Theorem 3 (page 124) and Property 2 (page 117). We would like to improve that time to be O (D), but as we
shall see below, finding an algorithm with a sublinear time complexity for computing an MIS tree for a general network
could be very hard, and may be impossible. Indeed, we show below that finding the lexically first MIS tree is P-complete.
Since there are networks where D = O (log n), this implies that there cannot be an O (D) time distributed algorithm to find
the lexically first MIS tree, unless NC =P .

Whether it would be easier to find an MIS tree, without the restriction that it be lexically first, is still an open question.

P-Completeness of the LFMIS problem with a unique local minimum Given a network G = (V , E), Algorithm MIST ◦ BFST
computes an MIS of G , with respect to the ordering ≺ defined in Subsection 3.2. Note that there is a natural lexical ordering
on the subsets of V , obtained by writing each subset as a list of processes ordered by ≺. The MIS computed by our algorithm
comes first in this natural lexical ordering of subsets of V , it is thus the lexically first maximal independent set of G .

Let p1, . . . , pn denote the processes of G , ordered by ≺. MIST ◦ BFST takes advantage of an additional property of
≺: There is a unique local minimum, i.e., for any i > 1 there is some j < i such that p j is a neighbor of pi (Lemma 4,
page 116).

The lexically first maximal independent set problem on a graph G is equivalent to finding a lexically first maximal clique
in the complementary graph G ′ , shown by Cook [24] to be P-complete. However, MIST ◦ BFST solves a restricted
version of the LFMIS problem, where the ordering is known to have a unique local minimum, and thus we need to give
separate proof that this version is also P-complete. It consists in exhibiting a method to NC-reduce any instance of the
Circuit Value (CV) problem to an instance of the LFMIS problem with unique local minimum. The CV problem has been
shown to be P-complete in [25].

A Boolean circuit is a straight line program consisting of finitely many assignments of the form

• xi ← true,
• xi ← false,
• xi ← x j ∧ xk with j, k < i,
• xi ← x j ∨ xk with j, k < i, or
• xi ← ¬x j with j < i,

where each variable xi in the program appears on the left side of exactly one assignment. The conditions j, k < i and j < i
ensure acyclicity. (This implies in particular that the right side of the first assignment is a constant true or false). The CV
problem is then defined to be the evaluation the value of variable xn in such a program, where n is the maximum index.
An example of such a program is given in Fig. 11a. The program can be also represented using logic gates, see in Fig. 12a.

We now exhibit a method to NC-reduce any instance of the P-complete CV problem to an equivalent instance of
the LFMIS problem with unique local minimum, in order to prove that the LFMIS problem with unique local minimum
is P-complete. First, we show in Lemma 23 that every Boolean circuit program can be expressed into an intermediate
equivalent form called paired form (defined in Definition 3). Next, in the proof of Theorem 9, we consider any Boolean
circuit written in paired form. We transform this circuit into another intermediate reduced form, from which it is easy to
finally obtain an equivalent instance of the LFMIS problem with unique local minimum. We show that each of these three
transformations can be computed in polylogarithmic time using a polynomial number of processes.

The example of Boolean circuit given in Fig. 12a is actually in paired form. Its reduced form is given in Fig. 11b. Fig. 12
represents the same circuits with logic gates. In Fig. 13, we show an equivalent instance of the LFMIS problem with unique
local minimum, which is the result of the transformation given at the end of the proof of Theorem 9.

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 131
1: x1 ← true
2: x2 ← ¬x1

3: x3 ← x1 ∨ x2

4: x4 ← ¬x3

5: x5 ← x2 ∧ x4

6: x6 ← ¬x5

1: y1 ← true
2: y2 ← ¬y1

3: y3 ← ¬y2

4: y4 ← ¬y2 ∧ ¬y3

5: y5 ← ¬y2 ∧ ¬y3 ∧ ¬y4

6: y6 ← ¬y2 ∧ ¬y5

7: y7 ← ¬y2 ∧ ¬y4 ∧ ¬y6

8: y8 ← ¬y2 ∧ ¬y7

x1 = y3

x2 = y4

x3 = y6

x4 = y5

x5 = y7

x6 = y8

(a) (b) (c)

Fig. 11. (a) A Boolean circuit in paired form, (b) its reduced form, and (c) the correspondence between variables of both circuits.

Fig. 12. (a) The same Boolean circuit, and (b) its reduced form using Logic gates.

Definition 3 (Paired form). A Boolean circuit is said to be in paired form if the number n of its variables is even and for every
i ∈ [1..n], we have:

• If i is even, then the right side of the ith assignment is the negation of the (i − 1)th assigned variable.
• If i is odd, then the right side of the ith assignment is either a constant or the conjunction or disjunction of two prior

variables.

Lemma 23. Any Boolean circuit can be rewritten into an equivalent Boolean circuit in paired form, in constant time using a polynomial
number of processes in parallel.

Proof. Consider any Boolean circuit containing n variables. Recall that xi denotes the ith assigned variable of the circuit.
Here, a, b, c, and d denote new variables. Apply the following transformation on each of the n assignments.

• If the ith assignment at even rank is not ¬xi−1. Then, we have two cases:
– i �= n: Insert a ← ¬xi−1 and b ← ¬xi respectively before and after that assignment.
– i = n: We have to ensure that the output of the circuit remains unchanged. Insert a ← ¬xi−1 before the ith assignment

and insert the assignments b ← ¬xi , c ← b ∧ b, and d ← ¬c after the ith assignment. Then, the new output will be
d = ¬c = ¬(b ∧ b) = ¬b = ¬¬xi = xi .

In both cases the truth value of every variable xk with k ∈ [1..n] remains unchanged.
• If the ith assignment at odd rank is a negation xi ← ¬x j with j < i and i < n. Then, replace the ith assignment by a ← x j ∨ x j ,

b ← ¬a and xi ← b ∨ b. In particular, after the transformation, we have xi = b ∨ b = ¬a ∨ ¬a = ¬(x j ∨ x j) ∨ ¬(x j ∨ x j) =
¬x j ∨ ¬x j = ¬x j . The truth value of every variable xk with k ∈ [1..n] remains unchanged.

• If the nth assignment is at an odd rank. Then, we should add assignments so that the number of assignments of the new
circuit becomes even. Moreover, we have to ensure that the output of the circuit remains unchanged. We have two
cases:
– The assignment is a negation xn ← ¬x j with j < n. Replace the nth assignment by a ← x j ∨ x j and xn ← ¬a. Then, the

output remains unchanged since xn = ¬a = ¬(x j ∨ x j) = ¬x j .
– The assignment is not a negation. Add assignments a ← ¬xn , b ← a ∧ a, and c ← ¬b at the end of the circuit. The new

output will be c = ¬b = ¬(a ∧ a) = ¬a = ¬¬xn = xn .
In both cases the truth value of every variable xk with k ∈ [1..n] remains unchanged.

After the transformation, we obtain a Boolean circuit of the paired form. The value of the last variable of this circuit is the
same as that of the last variable of the initial circuit. Finally, note that there are O (n) transformations. Each transformation
is independent of all others, and hence can be done in constant time. Thus, the whole transformation can be done in
constant time using a polynomial number of processes in parallel. �
Theorem 9. The LFMIS problem with unique local minimum is P-complete.

132 A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133
Fig. 13. Resulting instance of the LFMIS problem.

Proof. Consider an instance of CV problem, that is a Boolean circuit. Recall that xi denotes the ith assigned variable of the
circuit. Without loss of generality, we can assume that this instance is in the paired form. Indeed, this assumption can
be enforced using the NC-reduction given in Lemma 23. Thus, from Definition 3, assuming an even number of variables,
we note them x1, x2, . . . , x2n . For any i ∈ [1..n], refer to x2i−1 and x2i as partners. Note that partners always take opposite
Boolean values when evaluated.

The rest of the proof is divided into two parts. We first NC-reduce the initial instance of the CV problem into an
intermediate reduced form (i). Then, we transform that reduced form of the circuit into an equivalent instance of the LFMIS
problem with unique local minimum (ii).

(i) Reduced form. Rewrite the circuit into reduced form, where the variables are y1, y2, . . . , y2n+2. The first assignment
will be y1 ← true, and the second assignment will be y2 ← ¬y1. There will be a one-to-one correspondence between the
variables of the initial circuit and all but the first two variables of the circuit in the reduced form: For any i ∈ [1..n], the two
variables y2i+1 and y2i+2 will correspond to the partner variables x2i−1 and x2i , in either order. This order will be solved
by the rewriting, allowing in particular to know which of y2n+1 and y2n+2 corresponds to x2n , the output of the initial
circuit. Thus, y2i+1 and y2i+2 will also have opposite values and we will also refer to these variables as partners. We use
the following rewriting rules to construct the reduced form of the circuit, for any i ∈ [1..n].

1. The (2i + 2)nd assignment of the reduced circuit will be y2i+2 ← ¬y2 ∧ ¬y2i+1. That is, y2i+2 is assigned the Boolean
value opposite to that of its odd partner y2i+1, since ¬y2 = true.

2. The (2i + 1)st assignment of the reduced circuit will depend on the (2i − 1)st assignment in the initial circuit:
(a) If the (2i − 1)st assignment of the initial circuit is x2i−1 = true, then the (2i + 1)st assignment of the reduced circuit

will be y2i+1 ← ¬y2 (that is, true). Thus, y2i+1 will correspond to x2i−1, and y2i+2 will correspond to x2i .
(b) If the (2i −1)st assignment of the initial circuit is x2i−1 = false, then the (2i +1)st assignment of the reduced circuit

will be y2i+1 ← ¬y2 (that is, true). Thus, y2i+1 will correspond to x2i , and y2i+2 will correspond to x2i−1.
(c) If the (2i − 1)st assignment of the initial circuit is a conjunction x2i−1 ← x j ∧ xk , let yp and yq be the variables

corresponding to the partners of x j and xk , respectively. Then, the (2i + 1)st assignment of the reduced circuit will
be y2i+1 ← ¬y2 ∧ ¬yp ∧ ¬yq (that is, true ∧ ¬¬x j ∧ ¬¬xk = x j ∧ xk). Thus, y2i+1 will correspond to x2i−1, and
y2i+2 will correspond to x2i .

(d) If the (2i − 1)st assignment of the initial circuit is a disjunction x2i−1 ← x j ∨ xk , let yp and yq be the variables
corresponding to x j and xk , respectively. Then, the (2i + 1)st assignment of the reduced circuit will be y2i+1 ←
¬y2 ∧ ¬yp ∧ ¬yq (that is, true ∧ ¬(yp ∨ yq) = ¬(x j ∨ xk)). Thus, y2i+1 will correspond to x2i , and y2i+2 will
correspond to x2i−1.

By construction, the partner variables of the reduced circuit will always be assigned opposite truth values. Through
simple induction, we can see that evaluation of the reduced circuit will assign true to y1, false to y2, and to each variable
of the reduced circuit the same value as the corresponding variable in the initial circuit.

(ii) Equivalent instance of LFMIS problem. Finally, we construct an equivalent instance of the LFMIS problem with unique local
minimum as follows. Let G be the network whose ordered (w.r.t. UIDs) list of processes is p1, p2, . . . , p2n+2, and where p1
is the root. For each 1 ≤ j < i ≤ 2n + 2, pi is adjacent to p j if and only if the term ¬y j appears in the ith assignment
of the reduced circuit. The LFMIS problem with unique local minimum for the reduced circuit described in Fig. 11b and
represented using Logic gates in Fig. 12b is shown in Fig. 13. We remark that the distances of all processes to p1 are:
‖p1, p1‖ = 0, ‖p2, p1‖ = 1, and ∀2 < i ≤ 2n + 2, ‖pi, p1‖ = 2. Consequently, for every 1 < i ≤ 2n + 2, pi−1 ≺ pi .

The first variable y1 is assigned to true; it is equivalent to having the root process p1 in the LFMIS. The second variable
y2 is the only one to depend on y1 and, for every 3 ≤ i ≤ 2n + 2, yi depends on y2; p2 is the central process of G and the
only one at level 1. Every other variable is the conjunction of the negations of some previous variables, which implies that,

A.K. Datta et al. / Theoretical Computer Science 626 (2016) 110–133 133
for all 3 ≤ i ≤ 2n + 2, local computation of the LFMIS at process pi depends only on the computation at prior processes
p2, . . . , pi−1.

By simple induction on process ordering, we can see that pi ∈ I if and only if yi , and hence its corresponding variable of
the initial circuit, are assigned the value true.

Note that all steps of the reduction can be accomplished in parallel in polylogarithmic time with polynomially many
processors. Thus, any instance of CV problem can be NC-reduced to an instance of the LFMIS problem with unique local
minimum. �
7. Conclusion and perspectives

We have given a silent self-stabilizing algorithm for constructing a k-clustering of any asynchronous connected network
with unique IDs. Our algorithm stabilizes in O (n) rounds, using O (log k + log n) space per process, where n is the number
of processes. Our algorithm is uniform in the sense that it does not require processes to know any upper bound on the
size n or the diameter D of the network. This is the first algorithm of k-clustering construction that is both self-stabilizing
and competitive in UDG and QUDG networks. Moreover, in case of tree networks, our algorithm computes an optimal
k-clustering.

An immediate extension of this work would be to sharpen the competitive analysis of our k-clustering in any UDG.
Another possible extension is to try to find another competitive construction for a UDG which can be performed in sublinear
time. We feel it is worth investigating if it is possible to design a self-stabilizing k-clustering that is competitive in any
connected network.

References

[1] A.K. Datta, L.L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Competitive self-stabilizing k-clustering, in: IEEE 32nd International Conference on
Distributed Computing Systems, ICDCS, Macao, China, 18–21 June 2012, IEEE, 2012, pp. 476–485.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of N P -Completeness, W.H. Freeman, 1979.
[3] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (1974) 643–644.
[4] E. Caron, A.K. Datta, B. Depardon, L.L. Larmore, A self-stabilizing k-clustering algorithm for weighted graphs, J. Parallel Distrib. Comput. 70 (11) (2010)

1159–1173.
[5] A.K. Datta, L.L. Larmore, P. Vemula, A self-stabilizing O (k)-time k-clustering algorithm, Comput. J. (2009) bxn071.
[6] A.K. Datta, S. Devismes, L.L. Larmore, A self-stabilizing O (n)-round k-clustering algorithm, in: SRDS, 2009, pp. 147–155.
[7] E. Caron, A.K. Datta, B. Depardon, L.L. Larmore, A self-stabilizing k-clustering algorithm for weighted graphs, J. Parallel Distrib. Comput. 70 (11) (2010)

1159–1173.
[8] A.K. Datta, S. Devismes, K. Heurtefeux, L.L. Larmore, Y. Rivierre, Self-stabilizing small k-dominating sets, in: ICNC, IEEE Computer Society, 2011,

pp. 30–39.
[9] A.D. Amis, R. Prakash, D. Huynh, T. Vuong, Max–min D-cluster formation in wireless ad hoc networks, in: IEEE INFOCOM, 2000, pp. 32–41.

[10] Y. Fernandess, D. Malkhi, K -clustering in wireless ad hoc networks, in: POMC, 2002, pp. 31–37.
[11] M.A. Spohn, J.J. Garcia-Luna-Aceves, Bounded-distance multi-clusterhead formation in wireless ad hoc networks, Ad Hoc Netw. 5 (2004) 504–530.
[12] V. Ravelomanana, Distributed k-clustering algorithms for random wireless multihop networks, in: ICN, 2005, pp. 109–116.
[13] K.M. Alzoubi, P. Wan, O. Frieder, New distributed algorithm for connected dominating set in wireless ad hoc networks, in: 35th Hawaii International

Conference on System Sciences, HICSS-35, Big Island, HI, USA, 7–10 January 2002, IEEE Computer Society, 2002, p. 297, CD-ROM/abstracts proceedings.
[14] S. Dolev, Self-Stabilization, MIT Press, 2000.
[15] S. Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election, IEEE Trans. Parallel Distrib. Syst. 8 (1997) 424–440.
[16] S. Dolev, M.G. Gouda, M. Schneider, Memory requirements for silent stabilization, in: PODC, 1996, pp. 27–34.
[17] G. Tel, Introduction to Distributed Algorithms, 2nd edn., Cambridge University Press, 2001.
[18] S.A. Cook, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space, in: STOC, ACM, 1979, pp. 338–345.
[19] S.T. Huang, N.S. Chen, A self-stabilizing algorithm for constructing breadth-first trees, Inform. Process. Lett. 41 (1992) 109–117.
[20] A.K. Datta, L.L. Larmore, P. Vemula, An o(n)-time self-stabilizing leader election algorithm, J. Parallel Distrib. Comput. 71 (11) (2011) 1532–1544.
[21] J.H. Folkman, R.L. Graham, A packing inequality for compact convex subsets of the plane, Canad. Math. Bull. 12 (6) (1969) 745–752.
[22] F. Kuhn, R. Wattenhofer, A. Zollinger, Ad-hoc networks beyond unit disk graphs, in: DIALM–POMC, ACM, 2003, pp. 69–78.
[23] L. Barrière, P. Fraigniaud, L. Narayanan, Robust position-based routing in wireless ad hoc networks with unstable transmission ranges, in: DIALM, ACM,

2001, pp. 19–27.
[24] S. Cook, A taxonomy of problems with fast parallel algorithms, Inform. Control 64 (1985) 2–22.
[25] R.E. Ladner, The circuit value problem is log space complete for P , SIGACT News 7 (1975) 18–20.

http://refhub.elsevier.com/S0304-3975(16)00131-6/bib444C444852313263s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib444C444852313263s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib474A373962s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib44696A6B737472613734s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4344444C3130s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4344444C3130s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib444C5030396As1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4461747461444C32303039s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4344444C31306As1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4344444C31306As1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4444484C52313174722D36s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4444484C52313174722D36s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib415056483030s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib464D3032s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib53473037s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib726176656C6F3035s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib416C7A6F75626957463032s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib416C7A6F75626957463032s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib446F6C65763030s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib446F6C6576494D3937s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib446F6C657647533936s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib54656C3031s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib436F6F6B3739s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4875616E67433932s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib444C5631316As1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib466F6C6B6D616E473639s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4B575A3033s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib42464E3031s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib42464E3031s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib436F6F6B3835s1
http://refhub.elsevier.com/S0304-3975(16)00131-6/bib4C61646E65723735s1

	Competitive self-stabilizing k-clustering
	1 Introduction
	2 Preliminaries
	3 The MIS tree
	3.1 Deﬁnition of MIS tree
	3.2 The algorithm to construct an MIS tree

	4 k-Clustering of at most n/k+1 k-clusters
	4.1 Algorithm CLR(k)
	4.2 Correctness
	4.3 Optimality of the k-clustering in trees
	4.4 Experimental results

	5 Competitiveness of k-clustering
	6 P-Completeness of our MIS construction
	7 Conclusion and perspectives
	References

