

1-Break-even analysis

Evaluating services or products

Volume sufficient to break even
The portion of the total cost that varies
directly
The variable cost per unit

Example

FINDING THE BREAKEVEN QUANTITY

A hospital is considering a new procedure to be offered at $\$ 200$ per patient. The fixed cost per year would be \$100,000, with total variable costs of $\$ 100$ per patient. What is the breakeven quantity for this service? Use both algebraic and graphic approaches to get the answer.

Break-Even Analysis

Break-Even Analysis

Quantity Total Annual Total Annual $2 / \sqrt{\text { P/S }}$

Quantity
(patients)
(Q) Revenue (\$) $(100,000+100 Q) \quad(200 Q)$

0	100,000	0
2000	300,000	400,000

Example A. 1

Break-Even Analysis

Figure A. 1

Sensitivity analysis of
 sales forecasts

If the most pessimistic sales forecast for the proposed service in Figure A.I were 1,500 patients, what would be the procedure's total contribution to profit and overhead per year?

Sensitivity analysis of
 sales forecasts

If the most pessimistic sales forecast for the proposed service in Figure A.I were 1,500 patients, what would be the procedure's total contribution to profit and overhead per year?

Sensitivity Analysis

Sensitivity Analysis

Forecast $=1,500$

Qancitivitu 4 صの/J/Sis
 $$
p Q-(F+c Q)
$$

Quncitiviturang/ysis

$$
p Q-(F+c Q)
$$

200(1500) - [100,000 + 100(1500)]

Make-or-Buy Decisions

Evaluating processes

Buying choice exercice

Bagot Copy Shop has a volume of 125,000 black-and-white copies per month. Two salespeople have made presentations to Gordon Bagot for machines of equal quality and reliability.
The Print Shop 5 has a cost of $\$ 2,000$ per month and a variable cost of $\$.03$. The other machine (a Speed Copy 100) will cost only $\$ 1,500$ per month, but the toner is more expensive, driving the cost per copy up to \$. 035 .
If cost and volume are the only considerations, which machine should Bagot purchase?

The manager of a fast-food restaurant featuring hamburgers is adding salads to the menu.
There are two options, and the price to the customer will be the same for each. The make option is to install a salad bar stocked with vegetables, fruits, and toppings and let the customer assemble the salad. The salad bar would have to be leased and a part-time employee hired. The manager estimates the fixed costs at $\$ 12,000$ and variable costs totaling $\$ 1.50$ per salad. The buy option is to have preassembled salads available for sale. They would be purchased from a local supplier at $\$ 2.00$ per salad. Offering preassembled salads would require installation and operation of additional refrigeration, with an annual fixed cost of $\$ 2,400$. The manager expects to sell 25,000 salads per year.

What is the break-even quantity?

Make-or-Buy Decisions

Type
 OProduct/Service
 OTwo Processes

Solver - Break-Even Analysis

Enter data in yellow-shaded areas.

Enter data in yellow- shaded areas	
Process 1	Process 2
$\$ 12,000$	$\$ 2,400$
$\$ 1.50$	$\$ 2.00$
25,000	
$19,200.0$	

Fixed costs (F)
Variable costs (c)

Expected demand
Break-even quantity

Figure A. 2

Make-or-Buy Decisions

Solver - Break-Even Analysis

Enter data in yellow- shaded areas.
Process 1
$\$ 12,000$
$\$ 1.50$

25,000
$19,200.0$

Fixed costs (F)
Variable costs (c)

Make-or-Buy Decisions

Solver - Break-Even Analysis

Enter data in yellow-shaded areas.

Fixed costs (F)
Variable costs (c)
Process 1
$\$ 12,000$
$\$ 1.50$

25,000
$19,200.0$

$$
Q=\frac{F_{m}-F_{b}}{c_{b}-c_{m}}
$$

$Q=19,200$ salads

Break-even including several products

John has been asked to determine whether the $\$ 22.50$ cost of tickets for the community dinner theater will allow the group to achieve break-even and whether the 175 seating capacity is adequate. The cost for each performance of a 10-performance run is $\$ 2,500$. The facility rental cost for the entire 10 performances is $\$ 10,000$. Drinks and parking are extra charges and have their own price and variable costs, as shown below:

1	2	3	4	5	6	7	8	9
	SELLING PRICE (P)	VARIABLE COST (V)	PERCENT VARIABLE COST (V/P)	CONTRIBUTION 1 - (V/P)	ESTIMATED QUANTITY OF SALES UNITS (SALES)	$\begin{aligned} & \text { DOLLAR } \\ & \text { SALES } \\ & (\text { SALES } \times P \text {) } \end{aligned}$	PERCENT OF SALES	CONTRIBUTION WEIGHTED BY PERCENT SALES (COL. $5 \times$ COL. 8)
Tickets with dinner	\$22.50	\$10.50	0.467	0.533	175	\$3,938	0.741	0.395
Drinks	\$ 5.00	\$ 1.75	0.350	0.650	175	\$875	0.165	0.107
Parking	\$ 5.00	\$ 2.00	0.400	0.600	100	\$500	0.094	0.056
					450	\$5,313	1.000	0.558

John has been asked to determine whether the $\$ 22.50$ cost of tickets for the community dinner theater will allow the group to achieve break-even and whether the 175 seating capacity is adequate. The cost for each performance of a 10 -performance run is $\$ 2,500$. The facility rental cost for the entire 10 performances is $\$ 10,000$. Drinks and parking are extra charges and have their own price and variable costs, as shown below:

1	2	3	4	5	6	7	8	9
	SELLING PRICE (P)	VARIABLE COST (V)	PERCENT VARIABLE COST (V/P)	CONTRIBUTION 1 - (V/P)	ESTIMATED QUANTITY OF SALES UNITS (SALES)	$\begin{gathered} \text { DOLLAR } \\ \text { SALES } \\ (\text { SALES } \times P) \end{gathered}$	PERCENT OF SALES	CONTRIBUTION WEIGHTED BY PERCENT SALES (COL. $5 \times$ COL. 8)
Tickets with dinner	\$22.50	\$10.50	0.467	0.533	175	\$3,938	0.741	0.395
Drinks	\$ 5.00	\$ 1.75	0.350	0.650	175	\$ 875	0.165	0.107
Parking	\$ 5.00	\$ 2.00	0.400	0.600	100	\$ 500	0.094	0.056
					450	\$5,313	1.000	0.558

solution

$$
B E P_{S}=\frac{F}{\sum\left[\left(1-\frac{V_{i}}{P_{i}}\right) \times\left(W_{i}\right)\right.}=\frac{\$(10 \times 2,500)+\$ 10,000}{0.558}=\frac{\$ 35,000}{0.558}=\$ 62,724
$$

Revenue for each performance (from column 7) $=\$ 5,313$
Total forecasted revenue for the 10 performances $=(10 \times \$ 5,313)=\$ 53,130$
Forecasted revenue with this mix of sales shows a break-even of $\$ 62,724$
Thus, given this mix of costs, sales, and capacity John determines that the theater will not break even.

Preference Matrix

Preference Matrix

Threshold score $=800$

Performance Criterion

Weight Score Weighted Score
(A)
(B)

Market potential
Unit profit margin
Operations compatibility Competitive advantage Investment requirement Project risk

Example A. 4

Preference Matrix

Threshold score = 800

Performance Criterion

Weight Score Weighted Score (A)
(B)
$(A \times B)$
Market potential 30
Unit profit margin 20
Operations compatibility 20
Competitive advantage 15
Investment requirement 10
Project risk 5

Example A. 4

Preference Matrix

Threshold score $=800$

Performance Criterion

Weight Score Weighted Score (A)

30	8
20	10
20	6
15	10
10	2
5	4

Example A. 4

Preference Matrix

Threshold score $=800$

\quadPerformance Criterion	Weight (A)	Score (B)	Weighted Score $(A \times B)$
Market potential	30	8	240
Unit profit margin	20	10	200
Operations compatibility	20	6	120
Competitive advantage	15	10	150
Investment requirement	10	2	20
Project risk	5	4	20

Example A. 4

Preference Matrix

Threshold score $=800$

Performance Criterion	Weight (A)	Score (B)	Weighted Score $(A \times B)$	
Market potential	30	8	240	
Unit profit margin	20	10	200	
Operations compatibility	20	6	120	
Competitive advantage	15	10	150	
Investment requirement	10	2	20	
Project risk	5	4	$\underline{20}$	
	Weighted score = \mathbf{Y}			

Example A. 4

Preference Matrix

Threshold score $=800$

Performance Criterion	Weight (A)	Score (B)	Weighted Score $(A \times B)$
Market potential	30	8	240
Unit profit margin	20	0	200
Operations compatibility	20	6	- 0 ip
Competitive advantage	15	10	- 95
Investment requirement	10	2	20
Project risk	5	4	20
Weighted score $=75$			

Example A. 4

Preference Matrix

Threshold score = 800

Example A. 4

Preference Matrix

Solver - Preference Matrix

Replace the labels Criterion 1, Criterion 2, etc. with descriptions of your own criteria. Use the buttons above the list if you want to insert a criterion (between existing ones), add a criterion (at the end of the list), or remove a criterion. (You will not be able to reduce the number of criteria below two).

Enter the relative weights for the criteria. Remember that the weights must add up to 100 . Enter the score for each criterion. Formulas in the weighted score column do the rest. The Final Weighted Score is the overall score for the product, procedure, or strategy you're considering.

Insert a Criterion	Add a Criterio	on Remov	ve a Criterion
	Weight (A)	Score (B)	Weighted Score ($\mathrm{A} \times \mathrm{B}$)
Market potential	30	8	240
Unit profit margin	20	10	200
Operations compatability	20	6	120
Competitive advantage	15	10	150
Investment requirement	10	2	20
Project risk	5	4	20

3- decision theory

- List the feasible alternatives
- List the events
- Calculate the payoff
- Estimate the Ifkelihood of each events
- Select a decision rule

Under Certainty

星
 H

Under Certainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Under Certainty

If future demand will be low-

Example A. 5

Under Certainty

Possible
Future Demand

		Alternative
	High	
Small facility	200	270
Large raciity	160	800
Do nothing	0	0

If future demand will be low - Choose the small facility.

Example A. 5

Under Certainty

Possible
Future Demand

	Alternative	Low
High		
Small facility	200	270
Large raciity	160	800
Do nothing	0	0

If future demand will be low - Choose the small facility.

Example A. 5

Under Uncertainty

	Possible Future Demand	
Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Under Uncertainty

Possible
Future Demand

Low High

Small facility	200	270	Maximin -
Large facility	160	800	
Do nothing	0	0	

Under Uncertainty

Possible
Fiture Demand

- High

Alternative
Small facility
$200-270$
Maximin Large facility $160 \quad 800$ Do nothing \qquad

Example A. 6

Under Uncertainty

Possible
Future Demand

Alternative
Small facility $\frac{\text { Low }}{200} \frac{\text { High }}{270}$

Maximin - Small Large facility $\quad 160 \quad 800$ Do nothing

0
0

Example A. 6

Under Uncertainty

Possible
Future Demand

	Alternative	Low
High		
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Example A. 6

Under Uncertainty

Possible
Future Demand

| Alternative | Low | | High |
| :--- | ---: | ---: | ---: | ---: |
| Small facility | 200 | | 270 |
| Large facility | 160 | | 800 |
| Do nothing | 0 | | 0 |

Under Uncertainty

Possible
Future Demand

| Alternative | Low | | High |
| :--- | ---: | ---: | ---: | ---: |
| Small facility | 200 | | 270 |
| Large facility | 160 | | 800 |
| Do nothing | 0 | | 0 |

Under Uncertainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Maximin - Small Maximax - Large Laplace -

Under Uncertainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Small facility $\quad 0.5(200)+0.5(270)=235$

Under Uncertainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

$\begin{array}{ll}\text { Small facility } & 0 . .(200)+0.5(270 \\ \text { Large facility } & 0.5(160)+0.5(800)=485\end{array}$

Example A. 6

Under Uncertainty

Possible
Future Demand

	Alternative	Low
Small facility	200	270
Large facility	160	800
Do nothing	0	0

$$
\begin{array}{ll}
\text { Small facility } & 0.5(200)+0.5(270)=235 \\
\text { Large facility } & 0.5(160)+0.5(800)=480
\end{array}
$$

Under Uncertainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Maximin - Small Maximax - Large Laplace - Large Minimax Regret -

Under Uncertainty

Possible
Future Demand

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Maximin - Small
Maximax - Large Laplace - Large Minimax Regret -
Regret

	Low Demand	High remand
Small facility	$200-200=0$	$800-270=530$

Example A. 6

Under Uncertainty

Future Demand

Possible

Alternative	Low	High
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Regret

	Low Demand	High Demand
Small facility	$200-200=0$	$800-270=530$
Large facility	$200-160=40$	$800-800=0$

Example A. 6

Under Uncertainty

Possible
 Future Demand
 Low High

Small facility	200	270
Large facility	160	800
Do nothing	0	0

Maximin - Small
Maximax - Large
Laplace - Large
Minimax Regret - Large
Regret

	Low Demand	High Demar-	Best
Small facility	$200-200=$?	$8 \cap$ ¢ $-270=530$	worsit
Large facility	$200-160=40$	$800-800=0$	segjeit
Example A. 6			

Under Uncertainty

Possible
Future Demand

	Alternative	Low
Small facility	200	270
Large facility	160	800
Do nothing	0	0

Maximin - Small Maximax - Large Laplace - Large Minimax Regret - Large

Under Risk

Possible
Future Demand

Alternative	Low	High	
Small facility	200	270	
Large facility	160	800	
Do nothing	0	0	
Doll	$=0.4$		
large	$=0.6$		

Under Risk

Possible
Future Demand
Alternative \quad Low High

Small facility	200	270	$P_{\text {small }}=0.4$
Large facility	160	800	$P_{\text {large }}=0.6$
Do nothing	0	0	

Alternative	Expected Valu/s
Small facility	$0.4(200)+0.6(270)=242$

Example A. 7

Under Risk

Possible
Future Demand
Alternative

Small facility	200	270
Large facility	160	800
Do nothing	0	0

Alternative	Expected Value
Small facility	$0.4(\cdot 00)+0.6(270)=242$
Large facility	$0.4(160)+0.6(800)=544$

[^0]
Under Risk

Possible
Future Demand

Alternative	Low	High	
Small facility	200	270	
Large facility	160	800	
Do small	$=0.4$		
Do nothing	0	0	$P_{\text {large }}=0.6$

Alternative	Expected Value
Small facility	$\cap \Lambda(2 \cap \cap)+\cap \cap(\rho 70)=242$
Large facility	$0.4(160)+0.6(800)=544$

[^1]
Under Risk

Solver - Decision Theory

Enter data in yellow-shaded areas.

This solver can accommodate between two and five events and between two and six alternatives. Replace the event and alternative names with your own (delete any unused labels). Then enter the payoff estimates directly in the first table. Also, enter probabilities for the events if you plan to use the Expected Value decision rule. Using the dropdown menu, you can then view the alternative chosen for each decision rule, and the payoff that goes with its choice.

Payoff Scenarios
1: 2
Low Demand High Demand
Probabilities--->>
Small Facility
Large Facility
3:
$\begin{array}{ll}0.4 & 0.6\end{array}$

4:
5 :

200	270			
160	800			

Use the dropdown list to select the decision rule >>>

```
Expected Value
```

Selected decision rule indicates you should select:

```
Large Facility
```

Expected Payoff

```
$544
```


Decision Trees

Decision Trees

$P\left(E_{i}\right)=$ Probability of event i
Figure A. 5

Decision Trees

Decision Trees

Example A. 9

Decision Trees

Example A. 9

Decision Trees

Problem 3

Adele Weiss manages the campus flower shop. Flowers must be ordered three days in advance from her supplier in Mexico. Although Valentine's Day is fast approaching, sales are almost entirely last-minute, impulse purchases. Advance sales are so small that Weiss has no way to estimate the probability of low (25 dozen), medium (60 dozen), or high (130 dozen) demand for red roses on the big day. She buys roses for $\$ 15$ per dozen and sells them for $\$ 40$ per dozen. Construct a payoff table. Which decision is indicated by each of the following decision criteria?
a. Maximin
b. Maximax
c. Laplace
d. Minimax regret

NETWORK DESIGN DECISIONS

- Introducing method
- Fixed and variable cost
- Identiffied forecasts
- One product
- Total cost is fixed cost +unit variable cost x Quantity
- Example and identification of equivalence levels
- Best choice is

Fixed and variable cost

Site	Fixed cost	Variable cost	
A	$250000 \$$	11 \$ per unit	
B	$100000 \$$	30 \$ per unit	
C	$150000 \$$	20 \$ per unit	
D	$200000 \$$	35 \$ per unit	
Site	Fixed cost	Variable cost \ldots	Total cost
A	$250000 \$$	11×10000 u	$360000 \$$
B	$100000 \$$	30×10000 u	$400000 \$$
C	$150000 \$$	20×10000 u	$350000 \$$
D	$200000 \$$	35×10000 u	$550000 \$$

Let's come back to break even

```
100 000 $ + 30 $ x Q = 150 000 $ + 20 $ x Q Q= 5000 u
```

$150000 \$+20 \$ \times \mathrm{Q}=250000 \$+11 \$ \times \mathrm{Q} \quad \mathrm{Q}=11111 \mathrm{u}$
$100000 \$+30 \$ \times Q=250000 \$+11 \$ \times Q Q=7895 u$

NETWORK DESIGN DECISIONS

- Transport cost
- Impact
- Finished goods flows
- Raw materials
- Multi choice to be solved through transport model
- Weighing method
- Relevant factors
- Weighing
- Gravity center method
- Geographical coordinates

NETWORK DESIGN DECISIONS

Location

To sum up some business tools

Location Decisions Manufacturing

- Favorable Labor Climette - Proximity to Markets
- Quality of Life \square
- Proximity to Suppliers N II - Proximity to Parent Company
- Utilities, Taxes, and Real Estate Costs

Location Decisions -

 Services- Proximity to Customers
- Transportation costs an Proximity to Markets
- Location of Compethors

Gravity center method

Coordonates of x, y
Average of $x=$ Sum of $x i / n$ destinations
Average of $y=$ sum of $y i / n$ destinations

Average of x, y will be optimum location

BUT

we have to take into account quantities carried

- Average of x becomes sum of xi.Qi / sum Qi
- Average of y becomes sum of yi.Qi/sum Qi

Location Health-Watch

Weight Score

Total patient miles per month	25	4
Facility utilization	20	3
Average time per emergency trip	20	3
Expressway accessibility	15	4
Land and construction costs	10	1
Employee preference	10	5

Facility utilization
Average time per emergency trip Expressway accessibility
Land and construction costs Employee preference

Example 10.1

Example 10.1

Example 10.1

Location Health-Watch

Erie

North

Weighted Score

Example 10.1

Location

North

Erie

Weighted Score

Weight
Score
WS $=(25 \times 4)+(20 \times 3)+$
$(20 \times 3)+(15 x 4)+$ (10 x 1) + (10 x 5)

Land and construction costs Employee preference
254

20
3
20
3
15
4
10
1
10
5

Erie

Weighted Score

$$
W S=340
$$

North
Location Health-Watch

Location Center of Gravity Approach

Census Tract	(x, y)	Population		
A	$(2.5,4.5)$	2	5	
B	$x^{*}=$			
C	$(2.5,2.5)$	5	12.5	
D	$(5,2)$	10	55	
E	$(8,5)$	10	35	
F	$(7,2)$	20	140	$y^{*}=$
G	$(9,2.5)$	14	126	
	Totals	68	453.5	205.5

Location Center of Gravity Approach

Location Center of Gravity Approach

Census Tract	(x, y)	(I)	$I x$	
A	$(2.5,4.5)$	2	5	$x^{*}=\frac{453.5}{68}$
B	$(2.5,2.5)$	5	12.5	
C	$(5.5,4.5)$	10	55	
D	$(5,2)$	7	35	$y^{*}=\frac{205.5}{68}$
E	$(8,5)$	10	80	
F	$(7,2)$	20	140	
G	$(9,2.5)$	14	126	
	Totals	68	453.5	205.5

Location Center of Gravity Approach

Census	Population				
Tract	(x, y)	(I)	IX	$x^{*}=6.67$	
A	$(2.5,4.5)$	2	5		
B	$(2.5,2.5)$	5	12.5		
C	$(5.5,4.5)$	10	55		
D	$(5,2)$	7	35		
E	$(8,5)$	10	80	$y^{*}=$	3.02
F	$(7,2)$	20	140		
G	$(9,2.5)$	14	126		
	Totals	68	453.5		

Location

Center of Gravity Anproach Solver - Center of Gravity

Enter data in yellow - shaded areas.
Enter the names of the towns and the coordinates (x and y) and population (or load, f) of each town.

Add A Town		Remove A Town		1 x	
City Town Name	x	y	1		ly
A	2.5	4.5	2	5	9
B	2.5	2.5	5	12.5	12.5
C	5.5	4.5	10	55	45
D	5	2	7	35	14
E	8	5	10	80	50
F	7	2	20	140	40
G	9	2.5	14	126	35
			68	453.5	205.5
Center-of-Gravity Coordinates			x^{*}	6.67	
			y^{*}	3.02	

Figure 10.1

Designing Supplychain Projects

Implementing Changes

Figure 8.1

Work Breakdown Structure

GANTT chart in production ...

1. It shows the relationship of each activity to others and to the whole project.
2. It identifies the precedence relationships among activities.
3. It encourages the setting of realistic time and cost estimates for each activity.
4. It helps make better use of people, money, and material resources by identifying critical bottlenecks in the project.

Passengers	Deplaning				
	Baggage claim				
Baggage	Container offload				
Fueling	Pumping				
	Engine injection water				
Cargo and mail	Container offload				
Galley servicing	Main cabin door				
	Aft cabin door				
Lavatory servicing	Aft, center, forward				
Drinking water	Loading				
Cabin cleaning	First-class section				
	Economy section				
Cargo and mail	Container/bulk loading				
Flight service	Galley/cabin check				
	Receive passengers				
Operating crew	Aircraft check				
Baggage	Loading				
Passengers	Boarding				

St. Adolf's Hospital

Gantt Charts

```
$0. File Edit Yiew Insert Format Tools Project window Help
```


St．Adolf＇s Hospital

Gantt
TE Microsoft Project－MS Project Gantt Chart
Eile Edit Yiew Insert Format Tools Project Window Help Charts
口运回导［

QUIZ
LOCATION

1- The factors involved in location decisions include
a) foreign exchange.
b) attitudes.
c) labor productivity.
d) all of the above.

2- If Fender Guitar pays $\$ 30$ per day to a worker in its Ensenada, Mexico, plant, and the employee completes four instruments per 8 -hour day, the labor cost/unit is
a) $\$ 30.00$.
b) $\$ 3.75$.
c) $\$ 7.50$.
d) $\$ 4.00$.
e) $\$ 8.00, \mathrm{LO}$

3- Evaluating location alternatives by comparing their composite (weighted-average) scores involves
a) factor-rating analysis.
b) cost-volume analysis.
c) transportation model analysis.
d) linear regression analysis.
e) crossover analysis.

4- On the cost-volume analysis chart where the costs of two or more location alternatives have been plotted, the quantity at which two cost curves cross is the quantity at which:
a) fixed costs are equal for two alternative locations.
b) variable costs are equal for two alternative locations.
c) total costs are equal for all alternative locations.
d) fixed costs equal variable costs for one location.
e) total costs are equal for two alternative locations.

5-A regional bookstore chain is about to build a distribution center that is centrally located for its eight retail outlets. It will most likely employ which of the following tools of analysis?

Assembly-line balancing
Load-distance analysis
Center-of-gravity model
Linear programming
All of the above

6- What is the major difference in location decisions in the service manufacturing sector?

There is no difference in focus.
The focus in manufacturing is revenue maxim in service is cost minimization.
The focus in service is revenue maximization, manufacturing is cost minimization.
The focus in manufacturing is on raw materia service is on labor.

Reminding problem

The owner of a small manufacturing business has patented a new device for washing dishes ana cleaning dirty kitchen sinks. Before trying to commercialize the device and add it to her existit product line, she wants reasonable assurance of success. Variable costs are estimared at $\$ 7$ pe unit produced and sold. Fixed costs are about $\$ 56,000$ per year.
a. If the selling price is set at $\$ 25$, how many units must be produced and sold to break even? Use both algebraic and graphic approaches.
b. Forecasted sales for the first year are 10,000 units if the price is reduced to $\$ 15$. With this pricing strategy, what would be the product's total contribution to profits in the first year?

Reminding problem

Binford Tool Company is screening three new product ideas, A, B, and C. Resource constraints allow only one of them to be commercialized. The performance criteria and ratings, on a scale of 1 (worst) to 10 (best), are shown in the following table. The Binford managers give equal weights to the performance criteria. Which is the best alternative, as indicated by the preference matrix method?

	RATING		
	PRODUCT	PRODUCT	PRODUCT
PERFORMANCE CRITERION	A	B	C
I. Demand uncertainty and project risk	3	9	2
2. Similarity to present products	7	8	6
3. Expected return on investment (ROI)	10	4	8
4. Compatibility with current manufacturing process	4	7	6
5. Competitive advantage	4	6	5

Last one

White Valley Ski Resort is planning the ski lift operation for its new ski resort. Management is trying to determine whether one or two lifts will be necessary; each lift can accommodate 250 people per day. Skiing normally occurs in the 14 -week period from December to April, during which the lift will operate seven days per week. The first lift will operate at 90 percent capacity if economic conditions are bad, the probability of which is believed to be about a 0.3 . During normal times the first lift will be utilized at 100 percent capacity, and the excess crowd will provide 50 percent utilization of the second lift. The probability of normal times is 0.5 . Finally, if times are really good, the probability of which is 0.2 , the utilization of the second lift will increase to 90 percent. The equivalent annual cost of installing a new lift, recognizing the time value of money and the lift's economic life, is $\$ 50,000$. The annual cost of installing two litts is only $\$ 90,000$ if both are purchased at the same time. If used at all, each lift costs $\$ 200,000$ to operate, no matter how low or high its utilization rate. Lift tickets cost $\$ 20$ per customer per day.
a. Should the resort purchase one lift or two?
b. What is the value of perfect information?

[^0]: Example A. 7

[^1]: Example A. 7

