Resource Planning

Material requirements planning (MRP)

A dependent demand technique that uses a bill-of-material, inventory, expected receipts, and a master production schedule to determine material requirements.

Demand Patterns

(a)

(b)

Figure 16.1

BREAK-EVEN POINT

- Do not forget

$B E Q=F /(p-v)$
F Fixed cost
P Unit selling price
V Unit variable cost

Dependent demand

- Independent demand is influenced by market conditions
- Dependent demand are elements of the finished product
- And more ...
- Manufactured from a ... parent
- And might have several parents

Dependent demand

1. Master production schedule (what is to be made and when)
2. Specifications or bill of material (materials and parts required to make the product)
3. Inventory availability (what is in stock)
4. Purchase orders outstanding (what is on order, also called expected receipts)
5. Lead times (how long it takes to get various components)

Master production schedule (MPS)

A timetable that specifies what is to be made (usually finished goods) and when.

Material Requirements Plan Output

So MPS might be ...

- A customer order in a job shop (make-to-order) company (examples: print shops, machine shops, fine-dining restaurants)
- Modules in a repetitive (assemble-to-order or forecast) company (examples: Harley-Davidson motorcycles, TVs, fast-food restaurant)
- An end item in a continuous (stock-to-forecast) company (examples: steel, beer, bread, light bulbs, paper)

Benefits of MRP

- MRP calculates the dependent demand
- For planning capacities and financial requirements
- Automatically update dependent demand and inventory replenishement schedule

Bill of Materials

Figure 16.3

Reorder point introduction

- With Iumpy production demand
- Time and projected assembling capacities determine quantity
- For both dependent and independent demand
- Standardization of parts or modularity

Bill of Materials

Figure 16.3

Before MPS details, Phantom bills

- Bills of material for components, usually subassemblies, that exist only temporarily. These components go directly into another assembly and are never inventoried.
- Therefore, components of phantom bills of material are coded to receive special treatment; lead times are zero, and they are handled as an integral part of their parent item.
- An example is a transmission shaft with gears and bearings assembly that is placed directly into a transmission.

Master Production Schedule

	April				May			
	1	2	3	4	5	6	7	8
Ladder-back chair	150					150		
Kitchen chair				120			120	
Desk chair		200	200		200			200
Aggregate production plan for chair family	670				670			

Master Production Schedule

- Within specific periods
- Sum of quantities must equal those in the aggregate plan
- And ...
- allocate efficiently overtime
- Capacity limitations
- And ... tailor made processes

MPS more

- Gross requirement
- Scheduled receipt
- On hand
- Net requirements
- Planned receipt
- Open orders

Inventory Record

Figure 16.5

Item: C Description: Seat subassembly						Lot Size: 230 units Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								
Planned receipts								
Planned order releases								

Inventory Record

Inventory Record

Item: C Description: Seat subassembly						Lot Size: 230 units Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117							
Planned receipts		Explanation:						
Planned order releases		Gross requirements are the total demand for the two chairs. Projected on-hand inventory in week 1 is $37+230-150=117$ units.						

Inventory Record

Figure 16.5

Item: C Description: Seat subassembly						Lot Size: 230 units Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117							
Plant recei								
Plant relea								

Inventory Record

Inventory Record

Figure 16.5

Planned Orders

Figure 16.6

Explanation:

Without a new order in week 4, there will be a shortage of three

Lot Size: 230 units
Lead Time: 2 weeks
units: $117+0+0-120=-3$ units.

is.	,	$<$		4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117	117	117	-3	- 3	-153	- 273	- 273
Planned receipts								
Planned order releases								

Planned Orders

Figure 16.6

Lot Size: 230 units
Lead Time: 2 weeks

	1	$<$	\checkmark	Week				
				4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117	117	117					
Planned receipts								
Planned order releases								

Planned Orders

Explanation:

Adding the planned receipt brings the balance to $117+0+230-120=227$ units.

	1	$<$	s	4	5	6	7	8
Gross requirements	150	0	0	120	0	50	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								

Planned Orders

Explanation:
Adding the planned receipt brings the balance to $117+0+230-120=227$ units.

	1			4	5	6	7	8
Gross requirements	150	0		120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117	117	117	227				
Planned receipts				230				
Planned order releases								

Planned Orders

Explanation:

Offsetting for a two-week lead time
Lead Time: 2 weeks puts the corresponding planned order release back to week 2.

	1	4	s	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37	117	117	117	227				
Planned receipts				230				
Planned order releases		230						

Planned Orders

Figure 16.6

Explanation:

Offsetting for a two-week lead time
Lot Size: 230 units
Lead Time: 2 weeks puts the corresponding planned order release back to week 2.

	1	4	5	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								

Planned Orders

Explanation:
The first planned order lasts until week 7, when projected inventory would drop to - 43.

	1	4	5	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								

Planned Orders

Figure 16.6

Explanation:

Adding the second planned
Lot Size: 230 units
Leaa rime: 2 weeks receipt brings the balance to
$77+0+230-120=187$.

	1		s	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								

Planned Orders

Figure 16.6

Explanation:

Adding the second planned
Lot Size: 230 units
Lean IIIIE: \angle weeks receipt brings the balance to
$77+0+230-120=187$.

	1	4	s	1	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37								

Planned Orders

Figure 16.6

Explanation:

The corresponding planned
Lot Sizo. 920 units order release is for week 5.

Week								
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory 37	117	117	117	227	227	77	187	
Planned receipts				230				
Planned order releases		230			230		230	

Planned Orders

Figure 16.6

Item: C Description: Seat subassembly						Lot Size: 230 units Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117	117	117	227	227	77	187	187
Planned receipts				230			230	
Planned order releases		230			230			

Determine the low-level coding and the quantity of each component necessary to produce 10 units of an assembly we will call Alpha. The product structure and quantities of each component needed for each assembly are noted in parentheses.

TO CQNTINUE

Determine the low-level coding and the quantity of each component necessary to produce 10 units of an assembly we will
Using the product structure for Alpha in Solved Problem 14.1, and the following lead times, quantity on hand, and master production schedule, prepare a net MRP table for Alphas.

	LEAD	QUANITIY
ITEM	TIME	
ON HAND		
Alpha	1	10
B	2	20
C	3	0
D	1	100
E	1	10
F	1	50

Master Production Schedule for Alpha

PERIOD	6	7	8	9	10	11	12	13
Gross requirements			50			50		100

Periodic Order Quantity

- Periodic order quantity (POQ)
- is a lot-sizing technique that orders the quantity needed during a predetermined time between orders, such as every 3 weeks.
- We define the POQ interval as
- the EOQ divided by the average demand per period (e.g., one week)

Lot-Sizing Rules - POQ

Item: C Description: Seat subassembly						Lot Size: $P=3$ Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117					
Planned receipts								
Planned order releases								

Lot-Sizing Rules - POQ

$\left(\begin{array}{c}\text { POQ } \\ \text { lot } \\ \text { size }\end{array}\right)=\left(\begin{array}{c}\text { Gross requirements } \\ \text { for weeks } \\ 4,5, \text { and } 6\end{array}\right)-\binom{$ Inventory at }{ end of week 3}
Lot Size: $P=3$ Lead Time: 2 weeks

	1	$<$	5	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117					
Planned receipts								
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
Lead Time: 2 weeks

	1	$<$	5	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117					
Planned receipts								
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)$
Lead Time: 2 weeks

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)-117$
Lead Time: 2 weeks

	1	\angle	s	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117					
Planned receipts								
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)-117=153$ units
Lead Time: 2 weeks

	1	\angle	s	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117					
Planned receipts				153				
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)-117=153$ units
Lead Time: 2 weeks

	1	\angle	5	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117					
Planned receipts				153				
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)-117=153$ units
Lead Time: 2 weeks

	1	\angle	5	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117	150				
Planned receipts				153				
Planned order releases								

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0+150)-117=153$ units
Lead Time: 2 weeks

	1	\angle	s	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117	150				
Planned receipts				153				
Planned order releases		153						

Lot-Sizing Rules - POQ

Lot Size: $P=3$
$(120+0)-0=120$ units
Lead Time: 2 weeks

Lot-Sizing Rules - POQ

Lot-Sizing Rules - POQ

Figure 16.7

Solver - Single-ltem MRP

Enter data in yellow-shaded areas.

Lot-Sizing Rules - L4L

Lot-Sizing Rules - L4L

$\left(\begin{array}{c}\text { L4L } \\ \text { lot } \\ \text { size }\end{array}\right)$	week	ents	$-\binom{$ Inventory balance }{ at end of week 3 }			Lot Size: L4L Lead Time: 2 weeks		
	1	$<$	\checkmark	4	\bigcirc	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117					
Planned receipts								
Planned order releases								

Lot-Sizing Rules - L4L

Lot-Sizing Rules - L4L

$\left.\begin{array}{c} \text { L4L } \\ \text { lot } \\ \text { size } \end{array}\right)$		7	3	4	J	Lot Size: L4L Lead Time: 2 weeks		
	1	$<$				6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117					
Planned receipts				3				
Planned order releases								

Lot-Sizing Rules - L4L

$\left(\begin{array}{c}\mathrm{L4L} \\ \mathrm{Lot} \\ \text { size }\end{array}\right)=120-117=3$

	\mid	\angle	\checkmark	4	0	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory 37	117	117	117	0				
Planned receipts								
Planned order releases		3						

Lot-Sizing Rules - L4L

Item: C Description: Seat subassembly						Lot Size: L4L Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117	0	0	0		
Planned receipts				3				
Planned order releases		3						

Lot-Sizing Rules - L4L

Lot-Sizing Rules - L4L

Item: C Description: Seat subassembly						Lot Size: L4L Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117	0	0	0	0	
Planned receipts				3		150	120	
Planned order releases		3		150	120			

Lot-Sizing Rules - L4L

Item: C Description: Seat subassembly						Lot Size: L4L Lead Time: 2 weeks		
	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150			120		150	120	
Scheduled receipts	230							
Projected on-hand inventory	117	117	117	0	0	0	0	0
Planned receipts				3		150	120	
Planned order releases		3		150	120			

L4L calculation

DETERMINING NET REQUIREMENTS

Speaker Kits, Inc., developed a product structure from a bill of material in Example 1. Example 2 developed a gross requirements plan. Given the following on-hand inventory, Speaker Kits, Inc., now wants to construct a net requirements plan. The gross requirement remains 50 units in week 8 , and component requirements are as shown in the product structure in Example 1.

TTEM	ON HAND	TEM	ON HAND
A	10	E	10
B	15	F	5
C	20	G	0
D	10		

Hip Replacements, Inc., has a master production schedule for its newest model, as shown on page 592 , a setup cost of $\$ 50$, a holding cost per week of $\$ 2$, beginning inventory of 0 , and lead time of 1 week. What are the costs of using (a) EOQ and (b) POQ for this 10 -week period?

Compare EOQ and POQ

WEEK		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10	
Gross requirements		0	0	50	0	0	35	15	0	100	0	
Scheduled receipts												
Projected on hand	0	0	0	0	14	14	14	11	28	28	24	24
Net requirements		0	0	50	0	0	21	0	0	72	0	
Planned order receipts				64			32	32		96		
Planned order releases			64			32	32		96			

WEEK	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
Gross requirements	0	0	50	$\mathbf{0}$	0	35	15	0	100	0	
Scheduled receipts											
Projected on hand	0	0	0	0	0	0	0	15	0	0	
Net requirements	0	0	50	0	0	50	0	0	100	0	
Planned order receipts			50			50			100		
Planned order releases		50			50			100			

Lot-Sizing Rule Comparison

- The FOQ rule generates high average inventory because it creates remnants.
- The POQ rule reduces average on-hand inventory because it does a better job of matching order quantity to requirements.
- The L4L rule minimizes inventory investment
 but maximizes the number of orders placed.

Safety Stock

Figure 16.9

Tutor 15.1-FOQ, POQ, and L4L Rules

FOQ Rule						Lot Size Lead Time Safety Stock			$\begin{array}{r}230 \\ 2 \\ 80 \\ \hline\end{array}$
		1	2	3	4	5	6	7	8
Gross Requirements		150	0	0	120	0	150	120	0
Scheduled Receipts		230	0	0	0	0	0	0	0
Projected On-Hand Inventory	37	117	117	117	227	227	307	187	187
Planned Receipts		0	0	0	230	0	230	0	0
Planned Order Releases		0	230	0	230	0	0	0	0

MRP Outputs

MRP explosion

Routings

 and time standards
Material requirements plan

Action notices

- Releasing new orders
- Adjusting due dates

Priority reports

- Dispatch lists
- Supplier schedules

Capacity reports

- Capacity requirements planning
- Finite capacity scheduling
- Input-output control

Manufacturing resources plan
Performance reports

Figure 16.10

Bill of Materials

> C (1) Seat
> subassembly

Figure 16.11

$$
\begin{gathered}
J(4) \\
\text { Seat-frame } \\
\text { boards }
\end{gathered}
$$

MRP Explosion

Item: Seat subassembly Lot size: 230 units								
Lead time: 2 weeks	Week							
	1	2	3	4	5	6	7	8
Gross requirements	150	0	0	120	0	150	120	0
Scheduled receipts	230	0	0	0	0	0	0	0
Projected on-hand inventory	117	117	117	227	227	77	187	187
Planned receipts				230			230	
Planned order releases		230			230			

Figure 16.12

\section*{MRP Exiciosjon
 | Lead
 time: 2 weeks | | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gross
 requirements | 150 | 0 | 0 | 120 | 0 | 150 | 120 | 0 |
| Planned
 receipts | | | | 230 | | | 230 | |
| Planned
 order
 releases | 230 | | | 230 | | | | |}

Figure 16.12

\section*{MRP Exptesion
 | Lead time: 2 weeks | Week | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Gross requirements | 150 | 0 | 0 | | 0 | 150 | 120 | 0 |
| Planned receipts | | | | 230 | | | 230 | |
| Planned order releases | | 230 | | | 230 | | | |

Item: Seat frames Lot size: 300 units									
Lead time: 1 week	1	2	3	4	5	6	7	8	
Gross requirements									
Scheduled receipts	0	300	0	0	0	0	0	0	
Projected on-hand inventory	40								
Planned receipts									
Planned order releases									

Item: Seat cushion Lot size: L4L								
Lead time: 1 week	Week							
	1	2	3	4	5	6	7	8
Gross requirements								
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand 0 inventory								
Planned receipts								
Planned order releases								

Figure 16.12

MRP Expotesion

| Lead
 time: 2 weeks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Usage quantity: 1

Item: Seat frames Lot size: 300 units								
Lead time: 1 week	Week							
	1	2		4	5	6	7	8
Gross requirements	0	230						
Scheduled receipts	0	300	0	0	0	0	0	0
Projected on-hand 40 inventory								
Planned receipts								
Planned order releases								

Lead time: 1 week	Week							
		2	3	4	5	6	7	8
Gross requirements	0							
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand 0 inventory								
Planned receipts								
Planned order releases								

Figure 16. 12

MRP Expotesion

Usage quantity: 1

Item: Seat frames Lot size: 300 units								
Lead time: 1 week	Week							
	1	2		4	5		7	8
Gross requirements	0	230	0	0	230			
Scheduled receipts	0	300	0	0	0	0	0	0
Projected on-hand 40 inventory								
Planned receipts								
Planned order releases								

Iter. Seat cushion Lot siz. 1.4 L								
Lead time: 1 week	Week							
	2		3	$4-5$		6	7	8
Gross requirements	0	230	0	0	230			
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand inventory								
Planned receipts								
Planned order releases								

Figure 16.12

\section*{MRP Exptesion
 | Lead
 time: 2 weeks | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Gross
 requirements | 150 | 0 | 0 | 120 | 0 | 150 | 120 | 0 |
| Planned
 receipts | | | | 230 | | | 230 | |
| Planned
 order
 releases | | 230 | | | 230 | | | |}

Item: Seat frames Lot size: 300 units								
Lead time: 1 week	Week							
	1	2	3	4	5	6	7	8
Gross requirements	0	230	0	0	230	0	0	0
Scheduled receipts	0	300	0	0	0	0	0	0
Projected on-hand 40 inventory	40	110	110	110	180	180	180	180
Planned receipts					300			
Planned order releases				300				

Item: Seat cushion Lot size: L4L								
Lead time: 1 week	Week							
	1	2	3	4	5	6	7	8
Gross requirements	0	230	0	0	230	0	0	0
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand inventory	0	0	0	0	0	0	0	0
Planned receipts		230			230			
Planned order releases	230			230				

Figure 16.12

Figure 16. 12

Item: Seat-frame boards Lot size: 1500 units

Figure 16.12

Usage quantity: 4

Item: Seat-frame boards Lot size: 1500 units								
Lead time: 1 week				Week				
	1	2	3		5	6	7	8
Gross requirements	0	0	0	1200	0	0	0	0
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand 200 inventory								
Planned receipts								
Planned order releases								

Figure 16.12

Item: Seat-frame boards Lot size: 1500 units								
Lead time: 1 week	Week							
	1	2	3	4	5	6	7	8
Gross requirements	0	0	0	1200	0	0	0	0
Scheduled receipts	0	0	0	0	0	0	0	0
Projected on-hand 200 inventory	200	200	200	500	500	500	500	500
Planned receipts				1500				
Planned order releases			1500					

Figure 16.12

Capacity Requirements

Date: Plant 01 Dept. 03: Lathe Station Capacity: 320 hours per week						
	Week					
	32	33	34	35	36	37
Planned hours	90	156	349	210	360	280
Actual hours						
Total hours						

Figure 16. 13

Capacity Requirements

Date: Plant 01 Dept. 03: Lathe Station Capacity: 320 hours per week						
	Week					
	32	33	34	35	36	37
Planned hours	90	156	349	210	360	280
Actual hours	210	104	41	0	0	0
Total hours						

Figure 16. 13

Capacity Requirements

Date: Plant 01 Dept. 03: Lathe Station Capacity: 320 hours per week						
	Week					
	32	33	34	35	36	37
Planned hours	90	156	349	210	360	280
Actual hours	210	104	41	0	0	0
Total hours	300	260	390	210	360	280

Figure 16.13

Capacity Requirements

Date: Plant 01 Dept. 03: Lathe Station Capacity: 320 hours per week	Week: 32					
	32	33	34	35	36	37
Planned hours	90	156	349	210	360	280
Actual hours	210	104	41	0	0	0
Total hours	300	260	390	210	360	280

Explanation: Projected capacity requirements exceed weekly hours of capacity.

Input-Output Report

Workstation: Rough Mill Tolerance: ± 25 hours						
	Week Ending					
	28	29	30	31		
Inputs Planned Actual Cumulative deviation						
Outputs Planned Actual Cumulative deviation						

Figure 16.14

Input-Output Report

Workstation: Rough Mill Tolerance: ± 25 hours		Week: 32			
	Week Ending				
	28	29	30	31	32
Inputs Planned Actual Cumulative deviation	$\begin{array}{r} 160 \\ 145 \\ -15 \end{array}$	$\begin{array}{r} 155 \\ 160 \\ -10 \end{array}$	$\begin{array}{r} 170 \\ 168 \\ -12 \end{array}$	160 177 +5	165
Outputs Planned Actual Cumulative deviation	170 165 -5	170 165 -10	160 150 -20	160 148 -32	160

Figure 16.14

Input-Output Report

Figure 16.14

Input-Output Report

Workstation: Rough Mill Tolerance: ± 25 hours		Week: 32			
	Week Ending				
	28	29	30	31	32
Inputs					
Planned	160	155	170	160	165
Actual	145	160	168	177	
Cumulative deviation	-15	-10	-12	+ 5	
Outputs					
Planned	170	170	160	160	160
Actual	165	165	150	148	
Cumulative deviation	-5	-10	-20	-32	

Figure 16.14

Explanation: Cumulative deviations between - 25 hours and +25 hours are allowed.

Explanation:

Cumulative deviation exceeds lower tolerance limit, indicating actual hours of output have fallen too far below planned hours of output and some action is required.

MRP II

Figure 16.15

Bill of Resources

Level 1 Discharge

Level 2
Intermediate care

Level 3
Postoperative care
(Step down)

Level 4
Postoperative care
(Intensive)

Level 5
Surgery

Level 6
Preoperative care
(Angiogram)

Level 7
Preoperative care (Testing)

Figure 16.16
(a)

Bill of Resources

Figure 16.16
(a)

Bill of Resources

Level 6 Preoperative care (Angiogram)

Level 1 Discharge

Level 2
Intermediate care

Level 3

Postoperative care

(Step down)

Level 4
Postoperative care
(Intensive)

Level 5 Surgery

Level 6 Preoperative care (Angiogram)

Level 7
Preoperative care (Testing)

Figure 16.16

Bill of Resources

Level 6

 Preoperative care(Angiogram)

(b)

Postoperative care

 (Step down)

Level 5 Surgery

Level 6 Preoperative care (Angiogram)

Level 7
Preoperative care (Testing)

Figure 16.16

Distribution
 Requirements Planning

Figure 16.17

Problem 1

Refer to the bill of materials for product A shown in Figure 16.18.

If there is no existing inventory, how many units of items G, E, and D must be purchased, produce five units of end item A ?

Solved Problem 1

Figure 16.18

Problem 2

The MPS for product A calls for the assembly department to begin final assembly according to the following schedule...
100 units in week 2; 200 units in week 4; 120 units in week 6; 180 units in week 7; and 60 units in week 8 .
Develop a material requirements plan for the next eight weeks for items B, C, and D , identifying any action notices that would be provided. The BOM for A is shown in Figure 16.19, and data from the inventory records are shown in Table 16.1.

Solved Problem 2

Figure 16. 19

TABLE 16.1 INVENTORY RECORD DATA

DATA CATEGORY	B	$\begin{aligned} & \text { ITEM } \\ & \text { C } \end{aligned}$	D
Lot-sizing rule	POQ (P=3)	L4L	$F O Q=500$ units
Lead time	1 week	2 weeks	3 weeks
Scheduled receipts	None	200 (week 1)	None
Beginning (on-hand) inventory	20	0	425

Freezing the MPS

Freezing the MPS

Freezing the MPS

Freezing the MPS

SELF TEST

- A lot-sizing procedure that orders on a predetermined time interval with the order quantity equal to the total of the interval's requirement is:
a) periodic order quantity.
b) part period balancing.
c) economic order quantity.
d) all of the above.
- In a product structure diagram:
a) parents are found only at the top level of the diagram.
b) parents are found at every level in the diagram.
c) children are found at every level of the diagram except the top level.
d) all items in the diagrams are both parents and children.
e) all of the above.

SELF TEST

- The difference between a gross material requirements plan (gross MRP) and a net material requirements plan (net MRP) is:
a) the gross MRP may not be computerized, but the net MRP must be computerized.
b) the gross MRP includes consideration of the inventory on hand, whereas the net MRP doesn't include the inventory consideration.
c) the net MRP includes consideration of the inventory on hand, whereas the gross MRP doesn't include the inventory consideration.
d) the gross MRP doesn't take taxes into account, whereas the net MRP includes the tax considerations.
e) the net MRP is only an estimate, whereas the gross MRP is used for actual production scheduling.
- Net requirements =
a) Gross requirements + Allocations - On-hand inventory + Scheduled receipts.
b) Gross requirements - Allocations - On-hand inventory - Scheduled receipts.
c) Gross requirements - Allocations - On-hand inventory + Scheduled receipts.
d) Gross requirements + Allocations - On-hand inventory - Scheduled receipts.

