

#### CHAPTER II - Decision making





#### 1-Break-even analysis

Evaluating services or products

– Volume sufficient to break even

 The portion of the total cost that varies directly

- The variable cost per unit

#### Example

#### FINDING THE BREAKEVEN QUANTITY

A hospital is considering a new procedure to be offered at \$200 per patient. The fixed cost per year would be \$100,000, with total variable costs of \$100 per patient. What is the break-even quantity for this service? Use both algebraic and graphic approaches to get the answer.

## Break-Even Analysis













## Break-Even Analysis





Figure A.1

### Sensitivity analysis of sales forecasts

If the most pessimistic sales forecast for the proposed service in Figure A.I were 1,500 patients, what would be the procedure's total contribution to profit and overhead per year?

## Sensitivity Analysis





Example A.2

## Sensitivity Analysis











**Evaluating processes** 

The manager of a fast-food restaurant featuring hamburgers is adding salads to the menu.

There are two options, and the price to the customer will be the same for each. The make option is to install a salad bar stocked with vegetables, fruits, and toppings and let the customer assemble the salad. The salad bar would have to be leased and a parttime employee hired. The manager esti mates the fixed costs at \$12,000 and variable costs totaling \$1.50 per salad. The buy option is to have preassembled salads available for sale. They would be purchased from a local supplier at \$2.00 per salad. Offering preassembled salads would require installation and operation of addi tional refrigeration, with an annual fixed cost of \$2,400. The manager expects to sell 25,000 sal ads per year.

What is the break-even quantity?



Figure A.2









| Performance                                                                                                                          | Weight       | Score        | Weighted Score |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------|
| Criterion                                                                                                                            | ( <i>A</i> ) | ( <i>B</i> ) | (A x B)        |
| Market potential<br>Jnit profit margin<br>Operations compatibility<br>Competitive advantage<br>nvestment requirement<br>Project risk |              |              |                |



| Performance<br>Criterion        | Weight<br>( <i>A</i> ) | Score<br>( <i>B</i> ) | Weighted Score<br>( <i>A</i> x <i>B</i> ) |
|---------------------------------|------------------------|-----------------------|-------------------------------------------|
| Market potential                | 30                     |                       |                                           |
| Unit profit margin              | 20                     |                       |                                           |
| <b>Operations compatibility</b> | 20                     |                       |                                           |
| Competitive advantage           | 15                     |                       |                                           |
| Investment requirement          | 10                     |                       |                                           |
| Project risk                    | 5                      |                       |                                           |



| Performance<br>Criterion | Weight<br>( <i>A</i> ) | Score<br>( <i>B</i> ) | Weighted Score<br>(A x B) |
|--------------------------|------------------------|-----------------------|---------------------------|
| Market potential         | 30                     | 8                     |                           |
| Unit profit margin       | 20                     | 10                    |                           |
| Operations compatibility | 20                     | 6                     |                           |
| Competitive advantage    | 15                     | 10                    |                           |
| Investment requirement   | 10                     | 2                     |                           |
| Project risk             | 5                      | 4                     |                           |



| Performance<br>Criterion | Weight<br>( <i>A</i> ) | Score<br>( <i>B</i> ) | Weighted Score<br>( <i>A</i> x <i>B</i> ) |
|--------------------------|------------------------|-----------------------|-------------------------------------------|
| Market potential         | 30                     | 8                     | 240                                       |
| Unit profit margin       | 20                     | 10                    | 200                                       |
| Operations compatibility | 20                     | 6                     | 120                                       |
| Competitive advantage    | 15                     | 10                    | 150                                       |
| Investment requirement   | 10                     | 2                     | 20                                        |
| Project risk             | 5                      | 4                     | 20                                        |



#### Threshold score = 800

| Performance<br>Criterion | Weight<br>( <i>A</i> ) | Score<br>( <i>B</i> ) | Weighted Score<br>(A x B) |
|--------------------------|------------------------|-----------------------|---------------------------|
| Market potential         | 30                     | 8                     | 240                       |
| Unit profit margin       | 20                     | 10                    | 200                       |
| Operations compatibility | 20                     | 6                     | 120                       |
| Competitive advantage    | 15                     | 10                    | 150                       |
| Investment requirement   | 10                     | 2                     | 20                        |
| Project risk             | 5                      | 4                     | 20                        |

Weighted score = 750



| Performance<br>Criterion | Weight<br>( <i>A</i> ) | Score<br>( <i>B</i> ) | Weighted Score<br>(A x B) |
|--------------------------|------------------------|-----------------------|---------------------------|
| Market potential         | 30                     | 8                     | 240                       |
| Unit profit margin       | 20                     | 10                    | 200                       |
| Operations compatibility | 20                     | 6                     |                           |
| Competitive advantage    | 15                     | 10                    | 150                       |
| Investment requirement   | 10                     | 2                     | 20                        |
| Project risk             | 5                      | 4                     | 20                        |
|                          |                        |                       |                           |
|                          | W                      | eighted s             | core = <u>750</u>         |



Threshold score = 800

| Performance              | Weight | Score     | Weighted Score   |
|--------------------------|--------|-----------|------------------|
| Criterion                | (A)    | (5)       |                  |
| Market potential         | .30    | 8         | 24.5             |
| Unit profit margin       | 20     | <u> </u>  | 200              |
| Operations compatibility |        | 6         | 120              |
| Competitive advantag     |        | 10        | 150              |
| Investment require pan   | 10     | 2         | 20               |
| Project risk             | 5      | 4         | 20               |
|                          |        |           |                  |
|                          | We     | ighted so | ore = <u>750</u> |
|                          |        |           |                  |

Example A.4

#### 3- decision theory

- List the feasible alternatives
- List the events
- Calculate the payoff
- Estimate the likelihood of each events
- Select a decision rule



|                | Possible |        |  |
|----------------|----------|--------|--|
|                | Future I | Demand |  |
| Alternative    | Low      | High   |  |
| Small facility | 200      | 270    |  |
| Large facility | 160      | 800    |  |
| Do nothing     | 0        | 0      |  |



|                | Pc    | ssible   |
|----------------|-------|----------|
|                | Futur | e Demand |
| Alternative    | Low   | High     |
| Small facility | 200   | 270      |
| Large facility | 160   | 800      |
| Do nothing     | 0     | 0        |

*If future demand will be low –* 

Example A.5



If future demand will be low – Choose the small facility.

|                | Possible<br>Future Deman |      |  |
|----------------|--------------------------|------|--|
| Alternative    | Low                      | High |  |
| Small facility | 200                      | 270  |  |
| Large facility | 160                      | 800  |  |
| Do nothing     | 0                        | 0    |  |



If future demand will be low – Choose the small facility.

Example A.5

## Under Uncertainty

|                | Possible<br>Future Demar |      |  |
|----------------|--------------------------|------|--|
| Alternative    | Low                      | High |  |
| Small facility | 200                      | 270  |  |
| Large facility | 160                      | 800  |  |
| Do nothing     | 0                        | 0    |  |



# Under Uncertainty Possible

|                | Future |      |           |
|----------------|--------|------|-----------|
| Alternative    | Low    | High |           |
| Small facility | 200    | 270  | Maximin - |
| Large facility | 160    | 800  |           |
| Do nothing     | 0      | 0    |           |




|                | Poss<br>Future I | sible<br>Demand |                              |
|----------------|------------------|-----------------|------------------------------|
| Alternative    | Low              | High            |                              |
| Small facility | 200              | 270             | Maximin – Small<br>Maximax – |
| Large facility | 160              | 800             |                              |
| Do notning     | 0                | U               |                              |



#### **Best of the best**



Best of the best

|                                                | Poss<br>Future I | sible<br>Demand |                                                 |
|------------------------------------------------|------------------|-----------------|-------------------------------------------------|
| Alternative                                    | Low              | High            |                                                 |
| Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0  | 270<br>800<br>0 | Maximin – Small<br>Maximax – Large<br>Laplace – |



|                                                | Poss<br>Future I             | sible<br>Demand              |                                                 |
|------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------|
| Alternative                                    | Low                          | High                         |                                                 |
| Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0              | 270<br>800<br>0              | Maximin – Small<br>Maximax – Large<br>Laplace – |
| Small facility<br>Large facility               | 0.5(200) + 0<br>0.5(160) + 0 | ).5(270) = 2<br>).5(800) = 4 | 235<br>180<br>180<br>180                        |

ted

|                                                | Poss<br>Future I | sible<br>Demand |                                                    |
|------------------------------------------------|------------------|-----------------|----------------------------------------------------|
| Alternative                                    | Low              | High            |                                                    |
| Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0  | 270<br>800<br>0 | Maximin – Sma<br>Maximax – Larg<br>Laplace – Large |

Small facility Large facility 0.5(200) + 0.5(270) = 235 0.5(160) + 0.5(800) = 480 Best weighted payoff

e

|                | Pos:<br>Future I | sible<br>Demand |                  |
|----------------|------------------|-----------------|------------------|
| Alternative    | Low              | High            |                  |
| Small facility | 200              | 270             | Maximin – Small  |
| Large facility | 160              | 800             | l aplace – Large |
| Do nothing     | 0                | 0               | Minimax Regret – |

|                                                | Possible<br>Future Demand |                 |                                          | M                                           |
|------------------------------------------------|---------------------------|-----------------|------------------------------------------|---------------------------------------------|
| Alternative                                    | Low                       | High            |                                          |                                             |
| Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0           | 270<br>800<br>0 | Maximin<br>Maximax<br>Laplace<br>Minimax | – Small<br>c – Large<br>– Large<br>Regret – |
|                                                | Reg                       | gret            |                                          |                                             |
| Low                                            | Demand                    | High Ver        | nand                                     | Best                                        |
| Small facility 200                             | - 200 = 0                 | 800 – 270       | 0 = 530                                  | worst                                       |

regreu

|   |                                                | Poss            | sible           |                                                          |                                  |
|---|------------------------------------------------|-----------------|-----------------|----------------------------------------------------------|----------------------------------|
|   |                                                | Future          | Jemand          |                                                          |                                  |
|   | Alternative                                    | Low             | High            |                                                          |                                  |
|   | Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0 | 270<br>800<br>0 | Maximin – S<br>Maximax – I<br>Laplace – La<br>Minimax Re | Small<br>Large<br>arge<br>gret – |
|   |                                                | Reg             | ret             |                                                          |                                  |
|   | Lov                                            | / Demand        | High Der        | nand                                                     | Best                             |
| S | Small facility 200                             | - 200 = 0       | 800 – 270       | 0=530                                                    | worst                            |
|   | arge facility 200                              | -160 = 40       | 800 - 800       | $\mathbf{D} = 0$                                         | regret                           |
| E | Example A.6                                    |                 |                 |                                                          |                                  |

|                | Poss<br>Future D | sible<br>Demand |                        |
|----------------|------------------|-----------------|------------------------|
| Alternative    | Low              | High            |                        |
| Small facility | y 200            | 270             | Maximin – Small        |
| Large facility | y 160            | 800             | I aplace – Large       |
| Do nothing     | 0                | 0               | Minimax Regret – Large |
|                | Reg              | ret             | Deel                   |
|                | Low Demand       | High Der        | nand Best              |
| Small facility | 200 - 200 = 9    | 800 - 27        | 0 = 530 <i>Worst</i>   |
| Large facility | 200 – 160 = 40   | 800 – 800       | 0 = 0 regret           |
| Example A.6    |                  |                 |                        |

|                                  | Possible<br>Future Demand |            |                                           |
|----------------------------------|---------------------------|------------|-------------------------------------------|
| Alternative                      | Low                       | High       |                                           |
| Small facility<br>Large facility | 200<br>160                | 270<br>800 | Maximin – Small<br>Maximax – Large        |
| Do nothing                       | 0                         | 0          | Laplace – Large<br>Minimax Regret – Large |

|                | Possible |        |  |  |
|----------------|----------|--------|--|--|
|                | Future I | Demand |  |  |
| Alternative    | Low      | High   |  |  |
| Small facility | 200      | 270    |  |  |
| Large facility | 160      | 800    |  |  |
| Do nothing     | 0        | 0      |  |  |



 $P_{\text{small}} = 0.4$  $P_{\text{large}} = 0.6$ 

|                                                | Pos:<br>Future I | sible<br>Demand |                                                      |
|------------------------------------------------|------------------|-----------------|------------------------------------------------------|
| Alternative                                    | Low              | High            |                                                      |
| Small facility<br>Large facility<br>Do nothing | 200<br>160<br>0  | 270<br>800<br>0 | $P_{\text{small}} = 0.4$<br>$P_{\text{large}} = 0.6$ |
| Alternative                                    | Expecte          | d Value         |                                                      |
| Small facility 0                               | .4(200) + 0.6    | 6(270) = 242    |                                                      |
| Example A.7                                    |                  |                 |                                                      |

|                |     | Possible                    |              |  |
|----------------|-----|-----------------------------|--------------|--|
|                |     | Future                      | Demand       |  |
| Alternative    |     | Low                         | High         |  |
| Small facility |     | 200                         | 270          |  |
| Large facility |     | <b>160</b>                  | 800          |  |
| Do nothing     |     | 0                           | 0            |  |
| Alternative    |     | Expecte                     | d Value      |  |
| Small facility | 0.4 | l( <mark>?</mark> 00) + 0.( | 6(270) = 242 |  |
| Large facility | 0.4 | (160) + 0.0                 | 6(800) = 544 |  |
|                |     |                             |              |  |



 $P_{\text{small}} = 0.4$  $P_{\text{large}} = 0.6$ 

|                | Possible       |               |  |
|----------------|----------------|---------------|--|
|                | Future         | Future Demand |  |
| Alternative    | Low            | High          |  |
| Small facility | 200            | 270           |  |
| Large facility | 160            | 800           |  |
| Do nothing     | 0              | 0             |  |
| Alternative    | Expected Value |               |  |
| Small facility | 0 4(200) ± 0   | 6(270) = 242  |  |
| Large facility | 0.4(160) + 0   | .6(800) = 544 |  |



 $P_{\text{small}} = 0.4$  $P_{\text{large}} = 0.6$ 

> Highest Expected Value

#### **Perfect Information**

|                | Poss     | Possible      |  |  |
|----------------|----------|---------------|--|--|
|                | Future I | Future Demand |  |  |
| Alternative    | Low      | High          |  |  |
| Small facility | 200      | 270           |  |  |
| Large facility | 160      | 800           |  |  |
| Do nothing     | 0        | 0             |  |  |



 $P_{\text{small}} = 0.4$  $P_{\text{large}} = 0.6$ 

#### **Perfect Information**

|                | Pos         | Possible |  |
|----------------|-------------|----------|--|
|                | Future      | Demand   |  |
| Alternative    | Low         | High     |  |
| Small facility | 200         | 270      |  |
| Large facility | 160         | 800      |  |
| Do nothing     | 0           | 0        |  |
| Event          | Best Payoff |          |  |
| Low demand     | 200         |          |  |
| High demand    | 800         |          |  |
|                |             |          |  |



 $P_{\text{small}} = 0.4$  $P_{\text{large}} = 0.6$ 





#### **Decision Trees**































#### NETWORK DESIGN DECISIONS

- Introducing method
  - Fixed and variable cost
  - Identified forecasts
  - One product
  - Total cost is fixed cost +unit variable cost x Quantity
  - Example and identification of equivalence levels
  - Best choice is ….
#### Fixed and variable cost

| Site | Fixed cost | Variable cost  |
|------|------------|----------------|
| A    | 250 000 \$ | 11 \$ per unit |
| В    | 100 000 \$ | 30 \$ per unit |
| С    | 150 000 \$ | 20 \$ per unit |
| D    | 200 000 \$ | 35 \$ per unit |

| Site | Fixed cost | Variable cost | Total cost |
|------|------------|---------------|------------|
| А    | 250 000 \$ | 11x10 000 u   | 360 000 \$ |
| В    | 100 000 \$ | 30x 10 000 u  | 400 000 \$ |
| С    | 150 000 \$ | 20 x 10 000 u | 350 000 \$ |
| D    | 200 000 \$ | 35 x 10 000 u | 550 000 \$ |

#### Let's come back to break even

100 000 \$ + 30 \$ x Q = 150 000 \$ + 20 \$ x Q Q= 5000 u

150 000 \$ +20\$ x Q = 250 000 \$ + 11 \$ x Q Q = 11 111 u

100 000 \$ + 30 \$ x Q = 250 000 \$ + 11 \$ x Q Q = 7 895 u

#### NETWORK DESIGN DECISIONS

- Transport cost
  - Impact
  - Finished goods flows
  - Raw materials
  - Multi choice to be solved through transport model
- Weighing method
  - Relevant factors
  - Weighing
- Gravity center method
  - Geographical coordinates

#### Gravity center method

#### Coordonates of x,y Average of x = Sum of xi / n destinations Average of y = sum of yi / n destinations

Average of x, y will be optimum location

#### BUT

# we have to take into account quantities carried

 Average of x becomes sum of xi.Qi / sum Qi

 Average of y becomes sum of yi.Qi/sum Qi

#### NETWORK DESIGN DECISIONS



# Planning and Managing Projects



To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved

#### Activity Relationship

| AOA | AON |  |
|-----|-----|--|
|     |     |  |
|     |     |  |
|     |     |  |

Activity on Arc

Activity on Network

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved

#### Activity Relationship

S precedes T, which precedes U.



Activity on Arc

Activity on Network

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.

#### Activity Relationship

S and T must be completed before U can be started.



#### Activity Relationship

T and U cannot begin until S has been completed.



#### Activity Relationship

*U* and *V* cannot begin until both *S* and *T* have been completed.



Activity Relationship

U cannot begin until both S and T have been completed; V cannot begin until T has been completed.



Activity Relationship

*T* and *U* cannot begin until *S* has been completed; *V* cannot begin until both *T* and *U* have been completed.



Figure 8.3



To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved



| Activity | Description                                                                                         | Immediate<br>Predecessor(s) | Responsibility |
|----------|-----------------------------------------------------------------------------------------------------|-----------------------------|----------------|
|          |                                                                                                     |                             |                |
| Α        | Select administrative and medical staff.                                                            |                             |                |
| В        | Select site and do site survey.                                                                     |                             |                |
| С        | Select equipment.                                                                                   |                             |                |
| D        | Prepare final construction plans and lay                                                            | out.                        |                |
| E        | Bring utilities to the site.                                                                        |                             |                |
| F        | Interview applicants and fill positions in<br>nursing, support staff, maintenance,<br>and security. |                             |                |
| G        | Purchase and take delivery of equipmen                                                              | t.                          |                |
| Н        | Construct the hospital.                                                                             |                             |                |
| 1        | Develop an information system.                                                                      |                             |                |
| J        | Install the equipment.                                                                              |                             |                |
| K        | Train nurses and support staff.                                                                     |                             |                |





| Activity | Description                                                                                   | Immediate<br>Predecessor(s) | Responsibility |
|----------|-----------------------------------------------------------------------------------------------|-----------------------------|----------------|
|          |                                                                                               |                             |                |
| Α        | Select administrative and medical staff.                                                      | —                           | Johnson        |
| В        | Select site and do site survey.                                                               | _                           | Taylor         |
| С        | Select equipment.                                                                             | Α                           | Adams          |
| D        | Prepare final construction plans and layo                                                     | ut. B                       | Taylor         |
| E        | Bring utilities to the site.                                                                  | В                           | Burton         |
| F        | Interview applicants and fill positions in nursing, support staff, maintenance, and security. | A                           | Johnson        |
| G        | Purchase and take delivery of equipment.                                                      | . C                         | Adams          |
| Н        | Construct the hospital.                                                                       | D                           | Taylor         |
|          | Develop an information system.                                                                | Α                           | Simmons        |
| J        | Install the equipment.                                                                        | E,G,H                       | Adams          |
| K        | Train nurses and support staff.                                                               | F,I,J                       | Johnson        |



#### **AON Network**

nson Ior

sponsibility

ıms Ior

ton nson

ims Ior imons ims inson

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.











#### sponsibility **AON Network** inson lor lms Α lor ton inson С Start lms lor Β mons lms nson



#### sponsibility **AON Network** nson lor lms Α lor ton inson С Start lms lor Β D mons lms nson



#### sponsibility **AON Network** nson lor lms Α lor ton inson С Start lms lor Β D mons lms nson Ε



#### sponsibility **AON Network** nson lor lms Α F lor ton inson С Start lms lor Β D mons lms nson Ε



#### sponsibility **AON Network** nson lor lms Α F lor ton nson С Start G lms lor Β D mons lms nson Ε



#### sponsibility **AON Network** nson lor lms Α F lor ton nson С Start G lms lor Β Η D imons lms nson Ε

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved





To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved















#### **AOA Network**

inson lor ims lor ton inson ims lor imons

lms

nson

sponsibility

Fo Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.










































































































| Gantt  | 😹 Microso      | ft Pro                                            | ject - MS Project Gantt | Chart    |                       |               |         |                   |    |      |                   |          |  |
|--------|----------------|---------------------------------------------------|-------------------------|----------|-----------------------|---------------|---------|-------------------|----|------|-------------------|----------|--|
|        | Eile Ed        | Edit View Insert Format Iools Project Window Help |                         |          |                       |               |         |                   |    |      |                   | 8 ×      |  |
| Jnarts |                | 8                                                 | 0. 🖤 🐰 🖻 🛍 🝼            | 10 🔮     | ee čž 其               | 🖹 🍥 🕼         | No G    | roup 👻            | Q  | Q 💐  | • 🚳 🕐             | •        |  |
|        | • • •          | -                                                 | Show - Arial            | • 8 •    | B / U                 | E = =         | All Ta  | asks 👻            | ∀= | -S . |                   |          |  |
|        |                |                                                   |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        |                | e                                                 | Task Name               | Duration | Start                 | Finish        | Predec  | 2003<br>M J J A S |    | DJF  | 2004<br>M A M J J | ASOND    |  |
|        | Calendar       | 8                                                 | G: Purchase Equipment   | 35 wks   | Mon 11/17/03          | Fri 7/16/04   | 4       |                   | Ĭ  |      | -                 |          |  |
|        |                | 0                                                 |                         | 10       | M 100700              | 5-1700.04     | -       |                   |    |      |                   |          |  |
|        |                | э                                                 | H: Construct Hospital   | 4U WKS   | Mon 10/27/03          | Fri 7/30/04   | 5       |                   |    |      |                   |          |  |
|        | Gantt<br>Chart | 10                                                | l: Develop Information  | 15 wks   | Mon 9/8/03            | Fri 12/19/03  | 2       |                   |    |      |                   |          |  |
|        | 問              |                                                   | System                  | 1.0.000  |                       | SAMA TRACKETS | acau?   |                   | -  |      |                   |          |  |
|        | Network        | 11                                                | J: Install Equipment    | 4 wks    | Mon 8/2/04            | Fri 8/27/04   | 6,8,9   |                   |    |      |                   |          |  |
|        | Diagram        |                                                   |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        | 昭              | 12                                                | K: Train Staff          | 6 wks    | Mon 8/30/04           | Fri 10/8/04   | 7,10,11 |                   |    |      |                   | <b>1</b> |  |
|        | PERT           |                                                   |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        |                | 13                                                | Finish                  | 0 vvks   | Fri 10/8/04           | Fri 10/8/04   | 12      |                   |    |      |                   | of 10/8  |  |
|        | Ľ              | 17                                                |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        | Task<br>Usage  |                                                   |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        | <b>F</b>       | 9                                                 |                         |          |                       |               |         |                   |    |      |                   |          |  |
|        | Tracking       |                                                   |                         |          |                       |               |         |                   |    |      |                   | -        |  |
|        | Gantt          | •                                                 |                         | -        |                       |               |         |                   |    | 1    |                   |          |  |
|        | Ready          |                                                   |                         |          | EXT CAPS NUM SCRL OVR |               |         |                   |    |      |                   |          |  |
|        | 🛃 stan         |                                                   | СН 8                    | 🛃 Mi     | crosoft Project -     | M             |         |                   |    |      |                   | 11:21 AM |  |



Activity Slack

| Kicroso                                                | 😹 Microsoft Project - MS Project Schedule Table |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
|--------------------------------------------------------|-------------------------------------------------|--------|--------------------------|---------------|------------|----------------|---------------------|---------------------|-------------------------|--------------|-------------------|-----------|-------------|---------|
| Elle Edit View Insert Format Iools Project Window Help |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           | 8×          |         |
| 0 🚅 🖪                                                  | 6                                               | A V    | 🖁 🖻 🖋 🖌                  | o 🍓           | se š       | é 🛒            | 🗐 🌾                 |                     | No Gro                  | up 👻         | Q                 | Q 🦻       | 🚳 📿 🗸       |         |
| <b>+ +</b>                                             | 🕈 🗕 Show 🗸 Arial 🗸                              |        |                          | 8 • B I U = = |            |                | 🛙 🚍 🛛 All Tasks 🗸 👻 |                     |                         | ∀= -\$.      |                   |           |             |         |
|                                                        |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
|                                                        | Task Name                                       |        |                          | Start         |            | Finish         |                     | Late Start Late Fin |                         | Late Finish  | Free Slack        |           | Total Slack | -       |
|                                                        | 1                                               | Start  | (                        | Mon 6/16/03   |            | Mon 6/16/03    |                     | Mon 6/16/03         |                         | Mon 6/16/03  | 0 wks             |           | 0 wks       | ·       |
| Calendar                                               | 2                                               | A: S   | elect Staff              | Mon 6/16/03   |            | Fri 9/5/03     |                     | Mon 6/30/03         |                         | Fri 9/19/03  | 0 wks             |           | 2 wks       |         |
|                                                        | 3                                               | B: Se  | elect Site               | Mon 6/16/03   |            | Fri 8/15/03    |                     | Mon 6/16/03         |                         | Fri 8/15/03  | 0 wks             |           | 0 wks       |         |
|                                                        | 4                                               | C: Se  | elect Equipment          | Mon 9/8/03    |            | Fri 11/14/03   |                     | Mon 9/22/03         |                         | Fri 11/28/03 | 0 wks             |           | 2 wks       |         |
| Gantt                                                  | 5                                               | D: Pr  | epare Construction Plans | Mon 8/18/03   |            | Fri 10/24/03   |                     | Mon 8/18/03 Fi      |                         | Fri 10/24/03 | 0 wks             |           | 0 wks       |         |
| Chart                                                  | 6                                               | E: Br  | ing Utilities to Site    | Mon 8/18/03   |            | Fri 1/30/04    |                     | Mon 2/16/04         |                         | Fri 7/30/04  | 26 wks            |           | 26 wks      |         |
| 昭                                                      | 7                                               | F: Int | erviews/Fill Positions   | Mon           | Mon 9/8/03 |                | /14/03              | Mon 6/21/04 F       |                         | Fri 8/27/04  | 41 wks            |           | 41 wks      |         |
|                                                        | 8                                               | G: Pu  | urchase Equipment        | Mon 11/17/03  |            | Fri 7/16/04    |                     | Mon 12/1/03         |                         | Fri 7/30/04  | 2 wks             |           | 2 wks       |         |
| Diagram                                                | 9                                               | H: Co  | onstruct Hospital        | Mon 10/27/03  |            | Fri 7/30/04    |                     | Mon 10/27/03 Fri 7  |                         | Fri 7/30/04  | 0 wks             |           | 0 wks       |         |
|                                                        | 10                                              | l: De  | velop Information System | Mon 9/8/03    |            | Fri 12/19/03   |                     | Mon 5/17/04         |                         | Fri 8/27/04  | 36 wks            |           | 36 wks      |         |
| 昭                                                      | 11                                              | J: Ins | stall Equipment          | Mon 8/2/04    |            | Fri 8/27/04    |                     | Mon 8/2/04          |                         | Fri 8/27/04  | Fri 8/27/04 0 wks |           | 0 wks       |         |
| PERT                                                   | 12                                              | K: Tr  | ain Staff                | Mon 8/30/04   |            | Fri 1          | Fri 10/8/04 Mo      |                     | Mon 8/30/04 Fri 10/8/04 |              | 0 wks             |           | 0 wks       |         |
| Chart                                                  | 13                                              | Finis  | h                        | Fri 1         | 0/8/04     | Fri 10/8/04 Fr |                     | Fri                 | Fri 10/8/04 Fri 10/8/04 |              | 0 wks             |           | 0 wks       |         |
|                                                        |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
| E.                                                     | 1                                               |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
| Task                                                   |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
| Usage                                                  |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           |             |         |
| ·                                                      | _                                               |        |                          |               |            |                |                     |                     |                         |              | -                 |           |             |         |
| Tracking                                               |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   |           |             | -       |
| Gantt                                                  |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   | L         | h           |         |
| Ready EXT CAPS NUM SCRUO                               |                                                 |        |                          |               |            |                |                     |                     |                         |              |                   | SCRI LOVP |             |         |
| 🚰 start 🕞 CH 8 🦉 Microsoft Project - M                 |                                                 |        |                          |               |            |                |                     |                     |                         | 2:11 PM      |                   |           |             |         |
| Jacan                                                  |                                                 |        | 19                       |               | OSOFC PI   | rojecce i      | Millio              |                     |                         |              |                   |           | ~ ~         | Service |






















**Cost-Time Relationships in Cost Analysis** 



To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.



#### TABLE 8.1DIRECT COST AND TIME DATA FOR<br/>THE ST. ADOLF'S HOSPITAL PROJECT

|          |        |               |               |             | Maximum   |              |
|----------|--------|---------------|---------------|-------------|-----------|--------------|
|          | Normal | Normal        | Crash         | Crash       | Time      | Cost of      |
|          | Time   | Cost          | Time          | Cost        | Reduction | Crashing per |
| Activity | (NT)   | ( <i>NC</i> ) | ( <i>CT</i> ) | (CC)        | (wk)      | Week         |
| Α        | 12     | \$ 12,000     | 11            | \$ 13,000   | 1         | \$ 1,000     |
| В        | 9      | 50,000        | 7             | 64,000      | 2         | 7,000        |
| С        | 10     | 4,000         | 5             | 7,000       | 5         | 600          |
| D        | 10     | 16,000        | 8             | 20,000      | 2         | 2,000        |
| E        | 24     | 120,000       | 14            | 200,000     | 10        | 8,000        |
| F        | 10     | 10,000        | 6             | 16,000      | 4         | 1,500        |
| G        | 35     | 500,000       | 25            | 530,000     | 10        | 3,000        |
| н        | 40     | 1,200,000     | 35            | 1,260,000   | 5         | 12,000       |
| 1 I I    | 15     | 40,000        | 10            | 52,500      | 5         | 2,500        |
| J        | 4      | 10,000        | 1             | 13,000      | 2         | 1,000        |
| K        | 6      | 30,000        | 5             | 34,000      | 1         | 4,000        |
|          | Totals | \$1,992,000   |               | \$2,209,000 |           |              |

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved



Minimum-Cost Schedule

| A-K:             | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Path B-D-H-J-K: 69 weeks Crash Activity J by 3 weeks @ \$1,000/week



Minimum-Cost Schedule

| <b>A+K</b> : | 33 weeks |
|--------------|----------|
| A-F-K:       | 28 weeks |
| A-C-G-J-K:   | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,900 Indirect costs = \$8,000/veek Penalty cost = \$20,000/veek after week 65

Critical Path B-D-H-J-K: 69 weeks Crash Activity J by 3 weeks 3(\$28,000) – 3(\$1,000) = \$81,000



Minimum-Cost Schedule

| A-K:             | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Path B-D-H-J-K: 66 weeks Crash Activity J by 3 weeks @ \$1,000/week

3(\$28,000) - 3(\$1,000) = \$81,000 \$2,624,000 - \$81,000 = \$2,543,000



Minimum-Cost Schedule

| A+         | 33 weeks |
|------------|----------|
| A-F-K:     | 28 weeks |
| A-C-G-J-K: | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,543,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Path B-D-H-J-K: 66 weeks Crash Activity J by 3 weeks @ \$1,000/week

3(\$28,000) - 3(\$1,000) = \$81,000 \$2,624,000 - \$81,000 = \$2,543,000



Minimum A-I-K: A-F-K: 15 A-C-G-J-F Κ Α Total 12 10 6 Indire Penal С G Finish Start 35 10 **Critical F** Crash Ad Η В D J 10 9 40 1 3(\$28 \$2,62 Ε 24



St. Ado Minimum C A-I-K: A-F-K: A-C-G-J-K: **Total co** Indirect Penalty **Critical Pa** Crash Acti 3(\$28,0 \$2,624,





Minimum-Cost Schedule

| <b>A-I-K:</b>     | 33 weeks |
|-------------------|----------|
| 7 <b>4-F-K</b> .: | 28 weeks |
| A-C-G-J-K:        | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,543,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Path B-D-H-J-K: 66 weeks Crash Activity D by 2 weeks @ \$2,000/week



Minimum-Cost Schedule

| A-1-K:           | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,543,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Path B-D-H-J-K: 66 weeks Crash Activity D by 2 weeks (2) \$2,000/week \$28,000 + \$8,000 - 2(\$2,000) = \$32,000 \$2,543,000 - \$32,000 = \$2,511,000



Minimum-Cost Schedule

| <b>A-I-K</b> :    | 33 weeks |
|-------------------|----------|
| 7 <b>4-F-K</b> .: | 28 weeks |
| A-C-G-J-K:        | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,511,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week a fter week 65

Critical Path B-D-H-J-K: 64 weeks Crash Activity D by 2 weeks @ \$2,000/week

\$28,000 + \$8,000 - 2(\$2,000) = \$32,000 \$2,543,000 - \$32,000 = \$2,511,000



St. Ado Minimum-

> **A+K**; **A-F-K**; A-C-G-J-K Total c Indired Penalt **Critical P Crash Ac** \$28,00 \$2,543







**\*\*+**\* **A-F-K**; A-C-G-J-K Total c Indired Penalt **Critical P Crash Ac** \$28,00 \$2,543





Minimum-Cost Schedule

| 7 <b>-1-K</b> : | 33 weeks |
|-----------------|----------|
| 7 <b>-F-K</b> : | 28 weeks |
| A-C-G-J-K:      | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,511,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths B-D-H-J-K and A-C-G-J-K: 64 weeks Crash Activity K by 1 week @ \$4,000/week



Minimum-Cost Schedule

| A-1-K:           | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,511,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths B-D-H-J-K and A-C-G-J-K: 64 weeks Crash Activity K by 1 week @ \$4,000/week

\$8,000 - \$4,000 = \$4,000 \$2,511,000 - \$4,000 = \$2,507,000



Minimum-Cost Schedule

| <b>A-I-K</b> :   | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,507,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths B-D-H-J-K and A C-G-J-K: 63 weeks Crash Activity K by 1 week @ \$4,000/week

\$8,000 - \$4,000 = \$4,000 \$2,511,000 - \$4,000 = \$2,507,000



St. Ado Minimum-

> **A+K**; A-F-K; A-C-G-J-K Total c Indired Penalt **Critical P Crash Ac** \$8,000 \$2,511





St. Ado Minimum-

> **A+K**; A-F-K; A-C-G-J-K Total c Indired Penalt **Critical P Crash Ac** \$8,000 \$2,511





Minimum-Cost Schedule

| <b>A-I-K</b> :   | 33 weeks |
|------------------|----------|
| 7 <b>-F-K</b> .: | 28 weeks |
| A-C-G-J-K:       | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,507,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths B-D-H-J-K and A-C-G-J-K: 63 weeks Crash Activities B and C by 2 weeks @ \$7,000/week and \$600/week



Minimum-Cost Schedule

| 7-1-K:          | 33 weeks |
|-----------------|----------|
| 7 <b>-F-K</b> : | 28 weeks |
| A-C-G-J-K:      | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,507,000 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths Bod-H-J-K and A-C-G-J-K: 63 weeks Crash Activities B and C by 2 weeks @ \$7,000/week and \$600/week

2(\$8,000) - 2(\$7,600) = \$800 \$2,507,000 - \$800 = \$2,506,200



Minimum-Cost Schedule

| 7-1-K:          | 33 weeks |
|-----------------|----------|
| 7 <b>-F-K</b> : | 28 weeks |
| A-C-G-J-K:      | 67 weeks |

B-D-H-J-K: 69 weeks B-E-J-K: 43 weeks

Total cost = \$2,624,000 \$2,506,200 Indirect costs = \$8,000/week Penalty cost = \$20,000/week after week 65

Critical Paths B-D-H-J-K and A-C-G-J-K: 61 weeks Crash Activities B and C by 2 weeks @ \$7,000/week and \$600/week

2(\$8,000) - 2(\$7,600) = \$800 \$2,507,000 - \$800 = \$2,506,200





To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.





To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved.

#### **Coors Field**



**П**.П

#### **Probabilistic Time Estimates**



Figure 8.12 (a) Beta Distribution

#### **Probabilistic Time Estimates**





#### Probabilistic Time Estimates

Mean $t_e = \frac{a+4m+b}{6}$ 

Variance  $\sigma^2 = \left(\frac{b-a}{6}\right)^2$ 













|          | Time Estimates (wk)        |                        |                             | <b>Activity Statistics</b> |                       |
|----------|----------------------------|------------------------|-----------------------------|----------------------------|-----------------------|
| Activity | Optimistic<br>( <i>a</i> ) | Likely<br>( <i>m</i> ) | Pessimistic<br>( <i>b</i> ) | Expected Time $(t_e)$      | Variance $(\sigma^2)$ |
| Α        | 11                         | 12                     | 13                          | 12                         | 0.11                  |
| B        | 7                          | 8                      | 15                          | 9                          | 1.78                  |
| С        | 5                          | 10                     | 15                          | 10                         | 2.78                  |
| D        | 8                          | 9                      | 16                          | 10                         | 1.78                  |
| E        | 14                         | 25                     | 30                          | 24                         | 7.11                  |
| F        | 6                          | 9                      | 18                          | 10                         | 4.00                  |
| G        | 25                         | 36                     | 41                          | 35                         | 7.11                  |
| Н        | 35                         | 40                     | 45                          | 40                         | 2.78                  |
| I        | 10                         | 13                     | 28                          | 15                         | 9.00                  |
| J        | 1                          | 2                      | 15                          | 4                          | 5.44                  |
| Κ        | 5                          | 6                      | 7                           | 6                          | 0.11                  |

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved


**Probabilities** Critical Path = B - D - H - J - KT = 72 days $T_E = 69$  days  $T - T_E$  $\sigma^2 = \Sigma$  (variances of activities) Z = - $\sigma^2 = 1.78 + 1.78 + 2.78 + 5.44 + 0.11 = 11.89$ 72 – 69 **Z** =

#### **APPENDIX 2**

|     | .00   | .01   | .02    | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| .0  | .5000 | .5040 | .5080  | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| .1  | .5398 | .5438 | .5478  | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| .2  | .5793 | .5832 | .5871  | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| .3  | .6179 | .6217 | .6255  | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| .4  | .6554 | .6591 | .6628  | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| .5  | .6915 | .6950 | .6985  | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| .6  | .7257 | .7291 | .7324  | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| .7  | .7580 | .7611 | .7642  | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| .8  | .7881 | 7910  | .7939  | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| .9  | .8159 | .8186 | .8212  | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461  | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686  | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888. | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066  | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222  | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 15  | .9332 | .9345 | .9357  | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474  | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573  | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656  | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726  | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783  | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 21  | .9821 | .9826 | .9830  | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 22  | .9861 | .9864 | .9868  | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898  | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922  | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941  | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956  | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967  | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976  | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982  | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987  | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991  | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994  | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 33  | .9995 | .9995 | .9995  | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997  | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |



**Probabilities** Critical Path = B - D - H - J - KT = 72 days $T_F = 69$  days  $z = \frac{T - T_E}{\sqrt{2}}$  $\sigma^2 = \Sigma$  (variances of activities)  $\sigma^2 = 1.78 + 1.78 + 2.78 + 5.44 + 0.11 = 11.89$  $z = \frac{72 - 69}{\sqrt{11.89}} = 0.87$ From Appendix 2  $P_{z} = .8078 \approx .81$ 





Example 8.7



**Probabilities** Path = A - C - G - J - KT = 72 days $T_F = 67 \text{ days}$  $z = \frac{T - T_E}{\sqrt{1 - T_E}}$  $\sigma^2 = \Sigma$  (variances of activities)  $\sigma^2 = 0.11 + 2.78 + 7.11 + 5.44 + 0.11 = 15.55$  $z = \frac{72 - 67}{\sqrt{15.55}} = 1.27$ From Appendix 2  $P_{z} = .8980 \approx .90$ 



| TABLE 8.2 | SLACK CALCULATIONS AFTER ACTIVITIES A<br>AND B HAVE BEEN COMPLETED |                |              |       |  |  |  |
|-----------|--------------------------------------------------------------------|----------------|--------------|-------|--|--|--|
| Activity  | Duration                                                           | Earliest Start | Latest Start | Slack |  |  |  |
| С         | 10                                                                 | 16             | 14           | -2    |  |  |  |
| G         | 35                                                                 | 26             | 24           | -2    |  |  |  |
| J         | 4                                                                  | 61             | 59           | -2    |  |  |  |
| K         | 6                                                                  | 65             | 63           | -2    |  |  |  |
| D         | 10                                                                 | 10             | 9            | -1    |  |  |  |
| н         | 40                                                                 | 20             | 19           | -1    |  |  |  |
| E         | 24                                                                 | 10             | 35           | 25    |  |  |  |
| 1         | 15                                                                 | 16             | 48           | 32    |  |  |  |
| F         | 10                                                                 | 16             | 53           | 37    |  |  |  |

# **Project Life Cycle**







#### **AON Network**



#### 6(b) AOA Network





# Design network decisions

- Complete method
  - Location of supply sources and markets
  - Location of potential facility sites
  - Demand forecast by market
  - Facility, labor and material costs by site
  - Transportation costs between each pair of sites
  - Inventory costs by site and as a function of quantity
  - Sale price of product in different regions
  - Taxes and tariffs
  - Desired response time and other service factors

# Cost & Demand Data related to U.S. Petroleum

| Inputs-Costs,Capacities, Demands |                                                        |           |        |      |        |         |          |         |          |
|----------------------------------|--------------------------------------------------------|-----------|--------|------|--------|---------|----------|---------|----------|
| <u>Demand Region :</u>           | Production and transportation cost per 1,000,000 units |           |        |      | Fixed  | Low     | Fixed    | High    |          |
| Supply region                    | N America                                              | S America | Europe | Asia | Africa | cost \$ | capacity | cost \$ | capacity |
| N.America                        | 81                                                     | 92        | 101    | 130  | 115    | 6000    | 10       | 9000    | 20       |
| S. America                       | 117                                                    | 77        | 108    | 98   | 100    | 4500    | 10       | 6750    | 20       |
| Europe                           | 102                                                    | 105       | 95     | 119  | 111    | 6500    | 10       | 9750    | 20       |
| Asia                             | 115                                                    | 125       | 90     | 59   | 74     | 4100    | 10       | 6150    | 20       |
| Africa                           | 142                                                    | 100       | 103    | 105  | 71     | 4000    | 10       | 6000    | 20       |
| Demand                           | 12                                                     | 8         | 14     | 16   | 7      |         |          |         |          |

## U.S. Petroleum

n= number of potential plant locations/capacity (each level of capacity will count as a separate location)

m=number of markets or demand points

Dj=annual demand from market j

- Ki= potential capacity of plant i
- fi = annualized fixed cost of keeping factory i open

cij= cost of producing and shipping one unit from factory i to market j (cost includes production, inventory, transportation and tariffs)

yi=1 if plant is open, 0 otherwise

xij=quantity shipped from plant i to market j

#### <u>with</u>

## **U.S.** Petroleum

Min  $\sum_{i=1}^{m} f_{i}.y_{i} + \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} z_{ij}$ to minimize the total cost Under conditions  $\sum \alpha_{ij} = D_j$  for  $j = 1, \dots, m$ i=1 Demand at each regional market is sortisfied  $\sum x_{ij} \leq K_{i} \gamma_i$  for i = 1, ..., nj=1 No plant can supply more than its comparely  $Y \in \{0, 1\}$  for  $i = 1, \dots, n, \mathcal{R}, \mathcal{G}, \mathcal{E}$ so each plant is either open (yi=1) or closed (yi=0) The solution identifies the plants that are to be kept open, their Capacity, and the regional allocation of the demand for these plants -