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Idea

To reduce the cost parameters of the routing:

use of a hierarchical division of the network

Justification: Most of the communication is local, i.e., between nodes at
“relatively” small distances from each other
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Cost Parameters

1 Length of addresses
n nodes ⇒ at least log(n) bits per address
Maybe more, if information is encoded in addresses
E.g., the prefix routing.

2 Size of the routing table
A “brute-force” routing table contains n cells

3 Cost of table lookups
The cost (in time) of a single table lookups is likely as larger for a
large routing table or for larger addresses
The total table-lookup time for the delivery of a single message also
depends on the number of times the tables must be accessed (number
of hops)
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Clustering
Definition

Partition of the network into
connected subgraphs called
clusters

Each cluster is roughly of the same
size

In each cluster, there is a
designated node: the clusterhead
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Clustering
Definition

Partition of the network into
connected subgraphs called
clusters
Each cluster is roughly of the same
size
In each cluster, there is a
designated node: the clusterhead

Remark: Clustering maybe recursive,
i.e., each cluster may be partitioned into
subclusters, and so on so forth, in order
to obtain a multi-level division of the
nodes.
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k-Clustering

A k-clustering is a clustering of the
network where each cluster is of radius
at most k

(k = 1 ⇒ dominating set)

In a cluster, each node is at distance at
most k from its clusterhead.

≤ 2

2-clustering
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A good k-Clustering?

Trivial solution: all nodes are clusterheads!

The number of clusters/clusterheads should be
minimized
But, computing the minimum k-clustering is
NP-hard [5]
Minimal k-clustering (e.g., [2])
Let C be the set of clusterheads of a minimal
k-clustering.
There is no k-clustering whose set of
clusterheads is a proper subset of C
However, there are degenerated cases
k-clustering with O( n

k ) clusters [3, 1]
Competitive k-clustering [1], i.e., approximation:
At most M times the size of the optimal one
Remark: a (O( n

k )) k-clustering can be made
minimal to even more reduce the number of
clusters [2]

minimal 1-clustering with n − 1
clusters/clusterheads
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Clustering
(Usual) Structure

Cluster = Tree rooted at its
clusterhead

Spanning Forest

Colored Trees, e.g., with the
clusterhead identifiers
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Clustering-based Routing

A major application of k-clustering is in the
implementation of an efficient routing scheme
in a network.

To route a packet from p to q:
1 Route the packet from p to its

clusterhead (intra-clustering)
2 Route the packet from the clusterhead of

p to the clusterhead of q (inter-clustering)
3 Route the packet from the clusterhead of

q to q (intra-clustering)

To route among clusterheads, we need a
structure: a subgraph

Each of the three phases can be identified using
a color

Depending of its color, a packet is either
forwarded over a fixed channel or a more
complex routing scheme
Each phase can be handled using a
different protocol

Address: (Label of the clusterhead of the
destination,destination label)
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Two examples

1 Clustering of [3]
2 Clustering of [1]

Both computes O( n
k ) clusters

The second one also provides an approximation of the optimal clustering in
case the network is a Unit (or Quasi Unit) Disk Graph
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Idea

Let G = (V , E ) be a connected graph of n nodes

A k-dominating set of G is a subset D of V such that ∀p ∈ V , ∃q ∈ D
such that ∥p, q∥ ≤ k

k-dominating set ≈ set of clusterheads

Theorem
For every k ∈ N, there exists a k-dominating set D of G such that
|D| ≤ ⌈ n

k+1⌉
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Proof of the Theorem
Some notations

Let T = (V , ET ) be a spanning tree of G
rooted at node r

Let L(p) = ∥p, r∥T be the level of node p in
T

Let H = maxp∈V L(p) be the height of T
(4 in the example)

For every i ∈ [0..k], let Di
= {p ∈ V | L(p) mod (k + 1) = i}
(in the example, k = 2)
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Proof of the Theorem
Easy cases: n = 0 or k = 0

1 If n = 0, then ⌈ n
k+1⌉ = 0 = |∅| and ∅ is a k-dominating set of G .

2 If k = 0, then D0 = V , and so D0 is a k-dominating set of G .
Moreover, |D0| = n = ⌈ n

k+1⌉.
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Proof of the Theorem
Case n > 0 and k > 0

3 Assume k ≥ H. Then, D0 only contains r and every other node is within distance
k from r . So, D0 is a k-dominating set of G whose size is 1 ≤ ⌈ n

k+1⌉.

4 Assume k < H. Then, ∀i ∈ [0..k], |Di | > 0.
1 Assume that ∀i ∈ [0..k − 1], |Di | = |Di+1|.

Then, ∀i ∈ [0..k], |Di | = ⌈ n
k+1⌉.

Let v /∈ D0. The level of v , L(v), satisfies L(v) = x(k + 1) + y , where x ≥ 0
and 0 < y ≤ k.
Let u be the ancestor of v such that L(u) = L(v)− y (u exists because
y ≤ L(v)).
By definition, u ∈ D0 and ∥u, v∥ ≤ k. Hence, D0 is a k-dominating set of G
such that |D0| = ⌈ n

k+1⌉.

A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 16 / 46



Proof of the Theorem
Case n > 0 and k > 0

4 2 Assume that ∃i ∈ [0..k − 1], |Di | ̸= |Di+1|.
Let min ∈ [0..k] such that ∀i ∈ [0..k], |Dmin| ≤ |Di |.
Then, |Dmin| < ⌈ n

k+1⌉.
Let D = Dmin ∪ {r}. Then, |D| ≤ ⌈ n

k+1⌉.
Let v /∈ D.

1 If L(v) ≤ k, then v is at distance at most k from r and r ∈ D.

2 If L(v) > k, then L(v) = x(k + 1) + y with x > 0, 0 ≤ y ≤ k, and
y ̸= min.
If y > min, then let u be the ancestor of v such that
L(u) = x(k + 1) + min. Now, 0 ≤ L(v)− L(u) = y −min ≤ k.
If y < min, let u be the ancestor of v such that
L(u) = (x − 1)(k + 1) + min. Now, 0 ≤ L(v)−L(u) = k + y −min ≤ k.

By definition, u ∈ D (more precisely, u ∈ Dmin) and ∥u, v∥ ≤ k.

Hence, D is a k-dominating set of G and |D| ≤ ⌈ n
k+1⌉.

□
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Solution

Let mcd = min{|Di | | i ∈ [0..k] ∧ Di ̸= ∅}: mcd is the minimum cardinal
of a non-empty D-set

Let x = min{i | i ∈ [0..k] ∧ |Di | = mcd}: x the the smallest index of a
D-set of size mcd .

Dx ∪ {r} is a k-dominating set of G if size at most ⌈ n
k+1⌉.

Proof. Dx ∪ {r} corresponds to each set exhibited in Cases 2-4 of the
theorem proof (n.b., Case 1 is for the beauty of the art, but useless)

□
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Distributed Computation
1 Leader Election

(O(mn) messages, O(m) rounds, and O(δu + B) bits for messages and nodes, where B the number of bits to store an

identifier)

2 BFS Spanning Tree Construction (with initialization and termination detection at the leader)

(O(D) rounds, O(n.m) messages of O(log D) bits, and O(log D + log ∆) bits per node)

3 Propagation of Information with Feedback in the tree: broadcast ⇒ Node
(k + 1)-Coloring, Feedback ⇒ Computation of the D-set sizes
(O(D) rounds, O(n) messages of O(k. log n) bits, and O(log ∆ + k log n) bits per node)

4 Propagation of Information with Feedback in the tree: broadcast ⇒
clusterhead assignment and cluster coloring, Feedback ⇒ Termination
Detection at the Leader
(O(D) rounds, O(n) messages of O(log k + log B) bits, and O(log B) bits per node)

5 Routing Set-Up
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Example with k = 2

Network

|D0| = 6, |D1| = 6, |D2| = 4
Remark: the spanning tree can be used for inter-cluster routing
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Example with k = 2

BFS spanning tree

|D0| = 6, |D1| = 6, |D2| = 4
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Example with k = 2
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Node (k + 1)-Coloring

|D0| = 6, |D1| = 6, |D2| = 4
Remark: the spanning tree can be used for inter-cluster routing
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k-dominating set

|D0| = 6, |D1| = 6, |D2| = 4

Remark: the spanning tree can be used for inter-cluster routing
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Pros & Cons

Pros:
Time-efficient computation
BFS ⇒ short paths

Cons:
Memory requirement and message size: Ω(k log n)
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Roadmap

1 Introduction

2 Examples of clustering
Clustering of [3]
Clustering of [1]

3 Routing in a Clustering

4 References

A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 22 / 46



Idea

A tree T
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Idea

A tree T with clusters
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Idea

2k hops


k hops


k hops


Build paths of 2k hops (2k + 1 nodes)
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Node numbering
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Idea

2k

k+1
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k-1
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2k hops


Node labeled k: clusterhead
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Idea

2k hops
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Parent Link
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Idea

2k

k+1

k

k-1

0

Tall

Short

Tall and short nodes
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Idea

2k hops


2k

k+1

k

k-1
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kk

?

Issue: cluster of the root
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Idea
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Number of clusterheads

2k
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> k

0

k

0 0

2k

k+1
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k-1

0
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0
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≤ k

1 Non-root cluster: at least k + 1 nodes

2 1 cluster with the root + at most ⌊ n−1
k+1⌋ non-root cluster

3 ♯Clusters ≤ 1 + ⌊ n−1
k+1⌋ = ⌊n+k

k+1⌋ ≤ ⌈ n
k+1⌉
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Node Numbering: function α

For every node p, α(p) ∈ [0..2k]

maxShort(p) = max({α(q) | q ∈ Children(p) ∧ α(q) < k} ∪ {−1})
minTall(p) = min({α(q) | q ∈ Children(p) ∧ α(q) ≥ k} ∪ {2k + 1})

if maxShort(p) + minTall(p) ≤ 2k − 2 then
α(p) = minTall(p) + 1

else
α(p) = maxShort(p) + 1

end if
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Tree Structure of clusters

α(p) = k or (p is the root and α(p) ≤ k): clusterhead (root of the cluster)

If p is not a clusterhead:

α(p) < k: parent in the cluster := parent in the tree

α(p) > k: parent in the cluster := a child q with α(q) = minTall(p)
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Meaning of α

α(p) is the distance from p to q where q its furthest process in T (p) that
is in the same cluster as p

α
α hops

Bottom-up Computation

A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 27 / 46



Meaning of α

α(p) is the distance from p to q where q its furthest process in T (p) that
is in the same cluster as p

α
α hops

0

Bottom-up Computation

A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 27 / 46



Computation of α

α = ?
?

A = maxShort(p)
B = minTall(p)
0 ≤ A < k ≤ B ≤ 2k
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Computation of α

α=A

α = ?
?

0

0

α=k

α=B

11

B hops

A hops

A+B+2

A = maxShort(p)
B = minTall(p)
0 ≤ A < k ≤ B ≤ 2k
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Computation of α

α=A

α=

B+1

0

0

α=k

α=B

11

B hops

A hops

A+B+2

A = maxShort(p)
B = minTall(p)
0 ≤ A < k ≤ B ≤ 2k

Case A + B + 2 ≤ 2k
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Computation of α

α=A
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α=k

α=B
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B hops

A hops

A+B+2

α=

A+1

A = maxShort(p)
B = minTall(p)
0 ≤ A < k ≤ B ≤ 2k
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Example with k = 2
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Example with k = 2
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Remark: the (spanning) tree can be used for inter-cluster routing
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Topologies

Optimal in trees [1]

Arbitrary Connected networks: at most ⌈ n
k+1 ⌉ clusters

Unit Disk Graph (UDG): 7.2552k + O(1)-approximation of the optimal

Quasi Unit Disk Graph (QUDG): 7.2552λ2k + O(λ)-approximation of the
optimal

UDG and QUDG are models for Wireless Sensor Networks Topologies
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Distributed Computation
In Arbitrary Connected Networks

1 Leader Election
(O(mn) messages, O(m) rounds, and O(δu + B) bits for messages and nodes, where B the number of bits to store an

identifier)

2 BFS Spanning Tree Construction (with initialization and termination detection at the leader)

(O(D) rounds, O(n.m) messages of O(log D) bits, and O(log D + log ∆) bits per node)

3 Propagation of Information with Feedback in the tree: Feedback ⇒
Bottom-up computation of α

(O(D) rounds, O(n) messages of O(log k) bits, and O(log ∆ + log k) bits per node)

4 Propagation of Information with Feedback in the tree: broadcast ⇒ cluster
coloring, Feedback ⇒ Termination Detection at the Leader
(O(D) rounds, O(n) messages of O(log k + log B) bits, and O(log B) bits per node)

5 Routing Set-Up
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UDG: Unit Disk Graphs

Nodes u and v are neighbors ≡ ∥u, v∥ ≤ 1

1
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QUDG: Quasi Unit Disk Graphs

Let λ ≥ 1
∥u, v∥ ≤ 1 ⇒ u and v are neighbors
u and v are neighbors ⇒ ∥u, v∥ ≤ λ

1

λ
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Approximation of the optimal in UDGs
(at most M times the size of the optimal one)

Computing α on a MIS Tree of G = (V , E)
A spanning tree of G whose nodes at even level form a maximal independent set
S ⊆ V is a maximal independent set if

S is independent: no two distinct nodes of S are neighbors in G
S is maximal (by inclusion): no proper superset of S is independent

1

0

1

2 2 2

3 3 3

3

33

54 4

1
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Approximation of the optimal in UDGs
Compute a MIS Tree

p.status ∈ {In, Out}, initially Out
DFS traversal of the spanning tree

At the 1st visit of node p:
if every neighbor q of p satisfies
q.status = Out then

p.status ← In
else

p.status ← Out
end if

Key: pair level/identifier
Total order on keys:
(a, b) ≺ (c, d) ≡ [a < c∨(a = c∧b < d)]

Parent of non-root nodes: the neighbor
with a different status of smallest key

A network
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Approximation of the optimal in UDGs
Compute a MIS Tree
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Approximation of the optimal in UDGs
Distributed computation of a MIS Tree

1 Leader Election
(O(mn) messages, O(m) rounds, and O(δu + B) bits for messages and nodes, where B the number of bits to store an

identifier)

2 BFS Spanning Tree Construction (with initialization and termination detection at the leader)

(O(D) rounds, O(n.m) messages of O(log D) bits, and O(log D + log ∆) bits per node)

3 Token Circulation in the tree: first visit of a node ⇒ collect status of
neighbors (local message exchanges), then status assignment
(O(n) rounds, O(m) messages of O(1) bits, and O(1) bits per node)

4 Propagation of Information with Feedback in the tree: Broadcast ⇒ Collect
of status and keys (local message exchanges), Feedback ⇒ parent pointer
assignment
(O(D) rounds, O(m) messages of O(log k + log B) bits, and O(∆(log k + log B)) bits per node)

5 Clustering computation on the MIS tree
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Approximation of the optimal in UDGs
k-clustering vs. MIS

Clr : partition into clusters

2k
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kk
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0 0

≤ k

≥ k/2 ∈ MIS
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1

MIS

(|Clr | − 1).k
2 ≤ |MIS| − 1
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Approximation of the optimal in UDGs
Independent Set vs. Optimal k-clustering Clropt

Let C be any cluster of Clropt

Let I be any independent set
I ∩ C

UDG:
∀p, q ∈ I, p ̸= p ⇒ ∥p, q∥ > 1
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Approximation of the optimal in UDGs
Independent Set vs. Optimal k-clustering Clropt

Let C be any cluster of Clropt

Let I be any independent set
I ∩ C

UDG:
∀p, q ∈ I, p ̸= p ⇒ ∥p, q∥ > 1

Theorem (Folkman & Graham, [4])
Let X be a compact convex region. Let Y ⊆ X s.t. ∀p, q ∈ Y , (p ̸= q ⇒ ∥p, q∥ ≥ 1).

|Y | ≤ ⌊2.A(X)√
3

+ P(X)
2 + 1⌋

where A(X) and P(X) are respectively the area and perimeter of X.

A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 38 / 46



Approximation of the optimal in UDGs
Independent Set vs. Optimal k-clustering Clropt

Let C be any cluster of Clropt

Let I be any independent set
I ∩ C

UDG:
∀p, q ∈ I, p ̸= p ⇒ ∥p, q∥ > 1

k

Theorem (Folkman & Graham, [4])
Let X be a compact convex region. Let Y ⊆ X s.t. ∀p, q ∈ Y , (p ̸= q ⇒ ∥p, q∥ ≥ 1).

|Y | ≤ ⌊2.A(X)√
3

+ P(X)
2 + 1⌋

where A(X) and P(X) are respectively the area and perimeter of X.
A. Cournier & S. Devismes (UPJV) Hierarchical Routing December 3, 2024 38 / 46



Approximation of the optimal in UDGs
Independent Set vs. Optimal k-clustering Clropt

Let C be any cluster of Clropt

Let I be any independent set
I ∩ C

UDG:
∀p, q ∈ I, p ̸= p ⇒ ∥p, q∥ > 1

k

A(X ) = π.k2, P(X ) = 2π.k

|I ∩ C | ≤ ⌊ 2.π.k2
√

3 + π.k + 1⌋

|I| ≤ ⌊ 2.π.k2
√

3 + π.k + 1⌋.|Clropt |
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Result

|MIS| ≤ ⌊2.π.k2
√

3 + π.k + 1⌋.|Clropt |

(|Clr | − 1).k
2 ≤ |MIS| − 1

⇒ |Clr | ≤ 1 − 2
k + (4π.k√

3 + 2π + 2
k ).|Clropt |

⇒ 7, 2552k + O(1)−competitive in UDG

Generalization to QUDG: 7, 2552λ2k + O(1)−competitive in QUDG
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Routing from p to q

Address: (label of q’s clusterhead,label of q)

Phases: 3 phases distinguished using 3 colors.
1 Route the packet from p to its

clusterhead (intra-clustering)
2 Route the packet from the clusterhead of

p to the clusterhead of q (inter-clustering)
3 Route the packet from the clusterhead of

q to q (intra-clustering)

Different routing methods can be used for
each phase, e.g.,

1 Parent links to route from p to its
clusterhead

2 Shortest paths1 to route from the
clusterhead of p to the clusterhead of q

3 Interval routing from the clusterhead of q
to q

1in the network or in the tree computed during the clustering computation
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Shortest Paths for inter-cluster routing

GLOBAL:
1 The leader launches a PIF to collect

the identifiers of all clusterheads
2 The leader launches a PIF to

broadcast the identifiers of all
clusterheads

3 For each node p and each clusterhead
q:

Parp[q]← p
if p ̸= q, Dp[q]←∞, else
Dp[q] = 0

LOCAL:

1 Each node p creates cells Parp[q] and
Dp[q] for its clusterhead q and
informs its neighbors of the existence
of q

2 Parp[q]← p and
if p ̸= q, Dp[q]←∞, else Dp[q] = 0

3 If p learns the existence of some
clusterhead r , p creates cells Parp[r ]
and Dp[r ], initialized to p and ∞ resp.

4 Bellman-Ford: for each node p, each clusterhead q, and every neighbor v of p
if Dp[q] > Dv [q] + 1, then Dp[q]← Dv [q] + 1; Parp[q]← v

See [6] for further details.
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Using the Spanning Tree for inter-cluster routing

Thank to the cluster colors, local detection
of tree edge {p, q} between two different
clusters

1 Add {p, q} to the subgraph
connecting clusterheads

2 Add the cluster path from p to its
clusterhead to the subgraph
connecting clusterheads

3 Add the cluster path from q to its
clusterhead to the subgraph
connecting clusterheads

We obtain a tree

Apply the tree labeling scheme or an PLS on
the tree to allow routing between clusters
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Optimal subgraph for the Inter-cluster Routing
Steiner Tree

Non-negative edge weights.

Subset of nodes: set of terminals

Compute a tree of minimum weight that
contains all terminals (but may include additional vertices) and
minimizes the total weight of its edges.

Here, terminals are clusterheads

However, N P-hard [5]

But approximation algorithms exists!
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