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Random Algorithms

Atlantic City

Partially Correct w.h.p.
Terminate w.p.p.

Las Vegas

Partially Correct 
Terminate w.p.p.

Monte Carlo

Partially Correct w.h.p.
Terminate 

Sherwood
(use randomization)

Partially Correct 
Terminate 

Deterministic Algorithm
(no randomization)

Partially Correct 
Terminate 

w.p.p. = with (strictly) positive probability
w.h.p. = with high probability, i.e., the probability depends on a parameter x such that the
probability converges to 1 when x goes to the infinite (w.h.p. ⇒ w.p.p.)
Remark: the Quicksort algorithm where the pivot is randomly chosen is a Sherwood algorithm.
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Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at
node u.

if d = u then
deliver p

else
pick i ∈ {1, . . . , δu} according to Pu
send p via port number i

end if
Pu is a probability distribution:

∀i ∈ {1, . . . , δu}, Pu(i) gives the
probability of picking i
Pu : {1, . . . , δu} → [0, 1] such that∑

i∈{1,...,δu} Pu(i) = 1

For example, Pu may be a uniform
distribution:

∀i ∈ {1, . . . , δu}, Pu(i) =
1
δu

E.g., P8(1) = P8(2) = P8(3) = 1
3

Formally, 51,17,11,51,25,42 = prefix of a
(standard) random walk

Routing from 51 to 42
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Pick 3
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Context

Let G = (V , E ) be a finite, simple, and connected graph with order
n = |V | ≥ 2 and size m = |E |

∀u ∈ V , let N(u) = {v | {u, v} ∈ E} be the neighborhood of u.

N[u] = N(u) ∪ {u} is the closed neighborhood of u and δu = |N(u)| is the
degree of u
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Transition Probability Matrix

We will consider pure random walks where the probability distribution at
each node is constant1

The probability distributions are stored in a transition probability matrix
P for G :

P = (p(u, v))u,v∈V ∈ [0, 1]V ×V

p(u, v) is the probability of moving from u to v

∀u ∈ V ,
∑

v∈N[u] p(u, v) = 1 and v /∈ N[u] ⇒ p(u, v) = 0, indeed a
walk is a graph traversal2

Let P(G) be the set of all transition probability matrix for G

1In case the probability distributions evolve along the time, a random walk is biased,
e.g., the simulated annealing is a biased random walk in a state space

2u ∈ N[u]: to be more general, we allow a walk to stay for sometime at some nodes.
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Example: Uniform Transition Probability Matrix

∀u, v ∈ V :

v /∈ N(u) ⇒ p(u, v) = 0

v ∈ N(u) ⇒ p(u, v) = 1
δu

Remark: ∀u, p(u, u) = 0, so no wait!
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Random Walk
Definition

A random walk ω = (ω0, ω1, . . .) on G starting at vertex u under
P ∈ P(G) is an infinite sequence of random variables ωi whose domain is
V such that

ω0 = u with probability 1, and
∀i ∈ N, the probability that ωi+1 = w provided that ωi = v is p(v , w)
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Random Walk
Example

The infinite random sequence (51, 17, 11)ω is a random walk on the graph
given below under a uniform transition probability matrix.
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Remark: a random walk on a graph under a uniform transition probability
matrix is called a standard random walk
A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 11 / 49



Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk
Relevant Quantities
Tool: Markov Chains
Hitting Time of the Standard Random Walk
Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 12 / 49



Correctness of the Random-walk-based Algorithm

Correctness = Partial Correctness + Termination

Partial Correctness: Trivial! The algorithm stops only if the packet has
reached its destination

Termination almost sure: termination with probability one (Las Vegas
Algorithm)
I.e., there are infinite executions where the destination is
never reached (e.g., (51, 17, 11)ω), yet the overall probability
that the occurrence of such executions is 0.

The almost sure termination is due to the fact that any vertex has
probability 1 of occurring in any standard random walk on G .
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Characterization

Let S = (VS , ES) be the digraph such that
VS = V and
ES = {(u, v) ∈ V 2 | {u, v} ∈ E ∧ p(u, v) > 0}

Theorem 1

For every u, v ∈ V , v has probability 1 of occurring in any random walk on
G starting at vertex u under P ∈ P(G)

if and only if

S is strongly connected.

Corollary 2
v has probability 1 of occurring in any standard random walk on G.

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 14 / 49



Proof of Theorem 1
Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such
that v is not reachable from u. (u ̸= v)

Assume, by the contradiction, that v occurs in a random walk on G
starting at vertex u under P.

Let P by the smallest prefix of the walk starting from u and ending with v .

Every two consecutive nodes w and w ′ in P satisfies
{w , w ′} ∈ E ∧ p(w , w ′) > 0, so (w , w ′) ∈ ES .

Thus, P is also a (directed) path from u to v in S: v is reachable from u
in S, a contradiction. □
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Proof of Theorem 1
Sufficient Condition

Let ω be any random walk on G starting at vertex u under P. Let
pmin = min{p(w , w ′) | (w , w ′) ∈ ES}.

pmin > 0, by definition of S.

Since S is strongly connected and n > 1, its diameter D satisfies
1 ≤ D < n.

In every suffix s of ω, the probability that v occurs among the first D
values of s is at least 0 < (pmin)D ≤ 1. Indeed, there is a path of length at
most D from any vertex to v in S.

So, the probability that v does not occur among the first k × D values of
ω is at most (1 − (pmin)D)k .

Now, limk→∞(1 − (pmin)D)k = 0 since 0 ≤ 1 − (pmin)D < 1.
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Relevant Quantities

Hitting Time: informally, the hitting time is the expected time to move to
a node v in a random walk
(from a routing point of view, it is the expected length of the
routing path)

Cover Time: informally, the cover time is the expected time to visit all
nodes in a random walk
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Hitting Time

Given a random walk ω = (ω0, ω1, . . .) starting at vertex u ∈ V , the
hitting time HG(P; u, v) from u to v under P is:

HG(P; u, v) = EP [inf{i ≥ 1 | ωi = v}]

i.e., the expectation of the smallest time where ω reaches v after leaving u.

Remark: HG(P; u, u) is the expectation of the smallest time for ω to leave
and then return to u!

The hitting time HG(P) of G under P is:

HG(P) = max
u,v∈V

HG(P; u, v)

In the following, we will denote by HG(u, v) the hitting time from u to v
in a standard random walk on G .
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Cover Time

Given a random walk ω = (ω0, ω1, . . .) starting at vertex u ∈ V , the cover
time CG(P; u) from u under P is:

CG(P; u) = EP [inf{i ≥ 1 | {ω0, . . . , ωi} = V }]

i.e., the expectation of the smallest time for ω to visit all vertices starting
from u.

The cover time CG(P) of G under P is:

CG(P) = max
u∈V

CG(P; u)
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Definition

A Markov chain or Markov process is a stochastic model where the
probability of future (next) state only depends on the most recent
(current) state.

This memoryless property of a stochastic process is called Markov property.

From a probability perspective, the Markov property implies that the
conditional probability distribution of the future state (conditioned on both
past and current states) only depends on the current state.

A Markov chain is usually represented as a weighted digraph where nodes
are states and arcs are possible transitions weighted with their (positive)
probability of occurrence

A Markov chain in which every state can be reached from every other
state is called an irreducible Markov chain.
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Example
A random walk on a graph as the Markov property: it can be
modeled by a finite Markov chain.

For example, the weighted digraph S in Theorem 1 is a Markov Chain.

Below, we give the Markov chain corresponding to the standard random
walk on our sample graph.
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Stationary Distribution of a Markov Chain

The stationary distribution π = (πi)i∈E of a Markov chain gives the
fraction of the time spent in each state i of the state space E of this
Markov chain, asymptotically.

Let Sn(i) the time spent in state i after the first n steps.

πi = lim
n→∞

Sn(i)
n

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 25 / 49



Application of the theorem of Perron-Frobenius [5, 8]

Corollary 3

Any finite irreducible Markov chain has a stationary distribution
π = (πi)i∈E that is the unique solution of:

1
∑

i∈E πi = 1, and
2 ∀j ∈ E,

∑
i∈E πip(i , j) = πj

where p(i , j) are the transition probabilities of the Markov chain.

Intuition:

1 In a distribution, the sum of probabilities is equal to 1
2 From i , j is reached in one step with probability p(i , j): it is the

fraction of time j is reached from i provided that the walk is in i

πi is the fraction of the time spent in i
So, πip(i , j) gives the fraction of time j is reached from i
Now, the fraction of the time spent in each state j , πj , is the fraction
of time j is reached from all states of E
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Fundamental Result
from [6]

Lemma 4

∀u ∈ V , HG(u, u) = 2m
δu

Intuition:

Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs
Since the random walk is standard, the traversing of any arc is
asymptotically equiprobable, i.e., the stationary probability of any arc is 1

2m
The stationary probability of a node u, πu, is the sum of the stationary
probability of its incoming arcs
Since a node u has δu incoming arcs in the Markov chain, we have πu = δu

2m
Since πu is the fraction of the time spent in vertex u during the walk, we
have HG(u, u) = 1

πu
, i.e., HG(u, u) = 2m

δu
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Proof of Lemma 4 (1/2)
Consider an arbitrary standard random walk ω on G . Let π = (πv )v∈V be the stationary
distribution of Markov chain that models ω.

HG(u, u) = 1
πu

.

Thus, the lemma holds if πu = δu
2m .

V is a finite set. G is connected and at each node, the probability of traversing each
incident edge is strictly positive. So, the Markov chain modeling ω is finite and ergodic.
Hence, Corollary 3 applies: ∀u ∈ V , πu := δu

2m should be the solution of∑
u∈V πu = 1, and

∀v ∈ V ,
∑

u∈V πup(u, v) = πv

where p(u, v) = 1
δu

if u and v are neighbors, 0 otherwise.

∑
u∈V

πu =
∑
u∈V

δu

2m

=
∑

u∈V δu

2m

= 2m
2m = 1 (handshaking lemma, [2])
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if u and v are neighbors, 0 otherwise.

∑
u∈V

πu =
∑
u∈V

δu

2m

=
∑

u∈V δu

2m

= 2m
2m = 1 (handshaking lemma, [2])
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Proof of Lemma 4 (2/2)

Let v ∈ V .

∑
u∈V

πup(u, v) =
∑

u∈N(v)

πu
δu

standard random walk

=
∑

u∈N(v)

δu
δu2m πu := δu

2m

=
∑

u∈N(v)

1
2m

= δv
2m δv = |N(v)|

= πv

Thus, ∀u ∈ V , πu := δu
2m is the solution! □
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Bounds

In [1], the hitting time of the standard random walk is shown to be in

Θ(n3)

Let us now study the worst case
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Basic properties
Let p1, . . . , pn the vertices of V .
Assume G has a pending line L = pi , . . . , pn with i > 1: ∀j ∈ {i , . . . , n − 1}, δpj = 2,
δpn = 1, and the subgraph G(L) induced by L is a line. Let pi−1 the neighbor of pi such
that pi−1 /∈ L.
Assume a random walk starting from p1

pi pj-1 pj pn-1 pnpj+1p1

1 A walk that leaves and returns to pn necessarily first goes to pn−1, so
HG(pn, pn) = HG(pn, pn−1) + HG(pn−1, pn) = 1 + HG(pn−1, pn), so
HG(pn−1, pn) = HG(pn, pn) − 1 = 2m − 1, by Lemma 4

2 ∀j ∈ {i , . . . , n}, HG(p1, pj) = HG(p1, pj−1) + HG(pj−1, pj): a walk from p1 to pj
necessarily go via pj−1

3 ∀j ∈ {i , . . . , n}, HG(pj−1, pj) = PG(V \{pj+1,...,pn})(pj−1, pj): a walk from pj−1 hits
pj before any vertex in pj+1, . . . , pn.

4 ∀j ∈ {i , . . . , n}, HG(pj−1, pj) = PG(V \{pj+1,...,pn})(pj−1, pj) = 2(m − (n − j)) − 1 =
2m − (2n − 2j + 1) by Property 1
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First attempt: a line L
L: p1 — p2 — . . . — pn with n > 1

L is p1 linked to a pending line p2, . . ., pn so previous properties apply with i = 2.

HG (p1, pn) =

n∑
j=2

HG (pj−1, pj ) by Property 2

=
n∑

j=2

(2m − (2n − 2j + 1)) by Property 4

=
n∑

j=2

(2n − 2 − (2n − 2j + 1)) m = n − 1

=
n∑

j=2

(2j − 3)

= 3 − 3n +
n∑

j=2

2j = 3 − 3n + 2
n∑

j=2

j (n − 1). − 3 = 3 − 3n

= 3 − 3n + 2
(n + 2)(n − 1)

2
= n2 − 2n + 1 ∈ Θ(n2)
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Second attempt: Lollipop

A lollipop consists of a clique linked by a bridge to a line

Let us consider a lollipop made of vertices p1, . . . , pn with n > 2 where
p1, pi−1 is the clique with i > 2 and a standard random walk starting from
p1

pi pnpi-1p1

m = (i − 1)(i − 2)
2 + n − (i − 1) = i2 − 5i

2 + n + 2
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Analysis (1/3)

Until reaching pi−1, the probability of hitting pi−1 at the next step is 1
i−2 :

it is a geometric law. Thus,

HG(p1, pi−1) = i − 2

We now compute HG(p1, pn)
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Analysis (2/3)

HG(p1, pn) =

HG(p1, pi−1) +
n∑

j=i
HG(pj−1, pj) by Property 2

= i − 2 +
n∑

j=i
HG(pj−1, pj)

= i − 2 +
n∑

j=i
(2m − (2n − 2j + 1)) by Property 4

= i − 2 + (n − i + 1).(2m − 2n − 1) + 2
n∑

j=i
j

= i − 2 + (n − i + 1).(2m − n + i − 1)
= i − 2 + (n − i + 1).(i2 − 4i + n + 3)
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= i − 2 + (n − i + 1).(2m − 2n − 1) + 2
n∑

j=i
j

= i − 2 + (n − i + 1).(2m − n + i − 1)

= i − 2 + (n − i + 1).(i2 − 4i + n + 3)
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Analysis (3/3)

Let i := n
4 .

HG(p1, pn) = n
4 − 2 + (3n

4 + 1).(n2

16 + 3)

= 3n3

64 + n2

16 + 10n
4 + 1 ∈ Θ(n3)

Actually, the lollipop graph is shown to be the worst case in [6]: precisely
the lollipops with a clique of 2n

3 vertices
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Bounds

From [4, 3], we know that the cover time of the standard random walk is
also in Θ(n3).

Again, the worst-case graph is the lollipop with a clique of 2n
3 vertices!
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Interest of a bounded cover time
Simple Monte-Carlo Broadcast Algorithm

Let C ≥ CG(P).
Assume u has a data d to broadcast.
Initialization

deliver d
pick i ∈ {1, . . . , δu} according to Pu
send ⟨d , 1⟩ via port number i

v receives ⟨d , i⟩
deliver d
if i < C then

pick i ∈ {1, . . . , δv } according to Pv
send ⟨d , i + 1⟩ via port number i

end if

Termination in C hops and partial correctness w.h.p. (works in anonymous
networks; yet, duplicates . . .).
A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 40 / 49



Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk
Relevant Quantities
Tool: Markov Chains
Hitting Time of the Standard Random Walk
Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 15, 2025 41 / 49



What is the issue with the standard random walk?

Lemma 4 claims that the more the degree of a node is the more often
it is visited!

It is an issue!

Indeed
In the lollipop, we have both very high degree nodes and very low
degree nodes: the hitting time is in Θ(n3)
In a line, degrees are almost equal (either 1 or 2): the hitting time is
in Θ(n2) although the diameter is maximal!

Solution: load balance the probability distributions
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Probability Distributions proposed in [7]

p(u, v) =


δ

−1/2
v∑

w∈N(u)

δ
−1/2
w

if v ∈ N(u)

0 otherwise

A minor drawback is that each node should
know the degree of its neighbors
(but, it is still local information)

Markov chain of the random walk given in
[7] on a lollipop

0

1

2 3 455/100

45/100

45/100

55/100
1/3

1/3 1/3

37/100

63/100

1

Markov chain of the standard random walk
on the same graph

0

1

2 3 41/2

1/2

1/2

1/2
1/3

1/3 1/3

1/2

1/2

1
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Bounds

Hitting Time: Θ(n2)
It is the optimal distribution for the pure random walk

Cover Time: O(n2 log n)
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A few more details
The lower bound is natural: in a line, only two vertices (p2 and pn−1) have distributions
that differ from the standard random walk

59/100

41/100

41/100

59/100p1 p2 p3
1

1/2

pn-2 pn-1 pn
1/2

1

1/21/2

1/2 1/2

Markov chain of the random walk given in [7] on a line

1/2

1/2

1/2

1/2p1 p2 p3
1

1/2

pn-2 pn-1 pn
1/2

1

1/21/2

1/2 1/2

Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk
and the one of [7] becomes negligible, thus we have Ω(n2).
Proof: Assume G is a line p1 — . . . — pn with n > 1. Let HG(pi , pj) be the hitting time
from pi to pj under the transition probability matrix of the random walk of [7].

HG(p1, pn) > HG(p1, pn−1) > HG(p1, pn−1) ∈ Ω(n2)

(n.b., HG(p1, pn−1) > HG(p1, pn−1) since 41
100 < 1

2 ) □

The upper bound is more complex! (see [7])
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Pros and Cons of Random-walk-based Routing

Pros.
Partially Correct
Robust
Adaptive
Fair
Messages: low message
overhead and no control
message
Low memory at each process

Cons.
Termination almost sure only
Slow: Ω(n2)
In many large-scale networks, the
diameter is logarithmic in n, e.g., IPv6,
which allows for up to 2128 machines,
assumes the diameter is at most 255!

Not FIFO
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