Alain Cournier

ALGORITHMES DE PARCOURS EN LARGEUR

contenu

- Idées du parcours en largeur
- Premier algorithme
- Rappel sur les graphes non orientés
- Second algorithme
- Un exemple d'exécution

Idées du parcours en largeur

- À partir du sommet de départ x, on visite les sommets depuis les plus proches de x vers les plus éloignés.
- On visitera x puis ses successeurs puis les successeurs des successeurs...

Premier algorithme

- Pour réaliser cette idée de parcours, nous allons partager atteint en 2 parties :
 - AtteintAG : Les sommets découverts auparavant
 - AtteintNG: Les nouveaux sommets découverts
- Au fur et à mesure que l'on choisit des sommets x dans AtteintAG, on insère les sucesseurs de x inexplorés dans AteintNG.

Premier algorithme

 Quand l'ensemble AtteintAG est devenu vide, on y transfèrera tous les sommets de l'ensemble AtteintNG (Nouvelle Génération) afin de continuer la visite du graphe.

Premier algorithme

- Nous allons gérer un entier d (initialement nul) pour maintenir les 2 propriétés suivantes :
- Propriété 1 : Si un sommet y est dans l'ensemble AtteintAG alors le plus court chemin reliant x et y est de longueur d.
- Propriété 2 : Si un sommet y est dans l'ensemble AtteintNG alors le plus court chemin reliant x et y est de longueur d+1.

Algorithme de Visite (En-tête)

- Algorithme VisiteGrapheLarg
 - Données :
 - G = (X,U) un graphe
 - x un sommet de G
 - Donnée/Résultat
 - Exploré : ensemble de sommets
 - Variables
 - AtteintAG, AtteintNG: ensembles de sommets
 - u, v : Sommets de G; d : entier

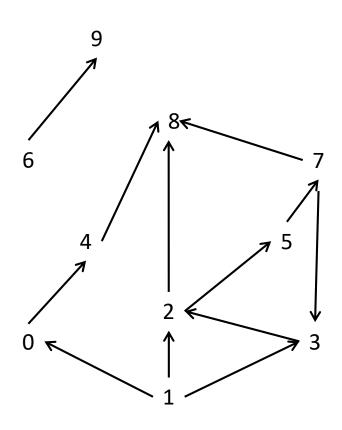
Algorithme de Base (Code)

```
DébutCode
      Si x \in Exploré alors AtteintAG \leftarrow \{\}
      Sinon AtteintAG \leftarrow {x}; AtteintNG \leftarrow{}; d\leftarrow0;
      Finsi
      Tant que AtteintAG ≠ {} faire
            Choisir u \in AtteintAG; AtteintAG \leftarrow AtteintAG – \{u\};
            Exploré \leftarrow Exploré U \{u\}; TraiterSommet \{u\};
            Pour chaque v \in Succ(u) faire
                  TraiterArc(uv)
                  Si non (v ∈ (Exploré U AtteintAG)) alors AtteintNG ← AtteintNG U {v} finsi
            FinPour
            Si AtteintAG ={} alors AtteintAG \leftarrow AtteintNG; AtteintNG \leftarrow{}; d \leftarrow d+1 Finsi
      FinTQ
FinCode
```


Algorithme de parcours

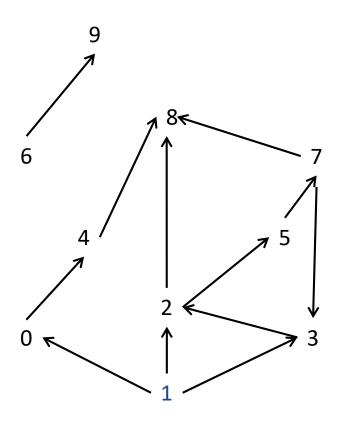
- L'algorithme de ParcoursGraphe reste quasi inchangé.
 - Il suffit remplacer l'appel de l'algorithme
 VisitGraph par l'appel de VisitGrapheLarg

Le graphe



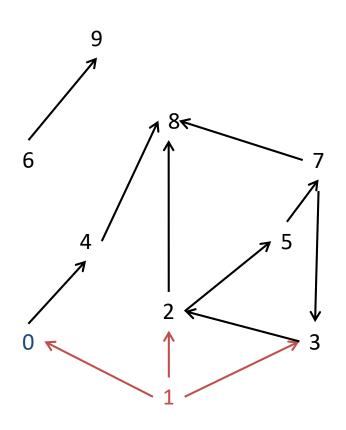
- On exécute
 ParcoursGraphes
- Exploré = {}
- x = 1 (Pour changer)
- Appel de VisitGrapheLarg à partir du sommet x = 1

Le graphe



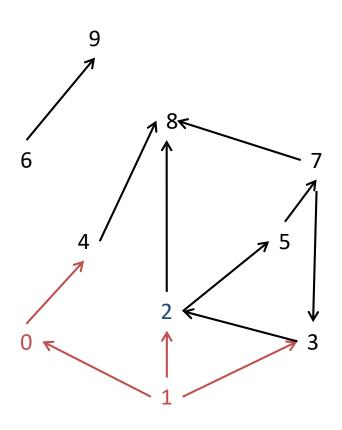
- Exploré = {}
- AtteintAG = {1}
- AtteintNG = {}
- On choisi 1,
- Traitement de 1
- Traitement des arcs (1,0), (1,2) et (1, 3)
- Insertion de 0, 2 et 3 dans AtteintNG
- Attention AtteintAG est vide donc AtteintAG ←AtteintNG

Le graphe



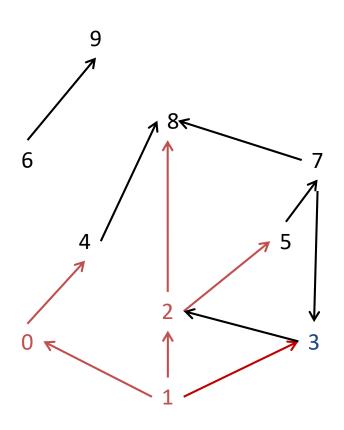
- Exploré = {1}
- AtteintAG = {0,2, 3}
- AtteintNG = {}
- On choisi 0,
- Traitement de 0
- Traitement de l'arc (0,4)
- Insérer 4 dans AtteintNG

Le graphe



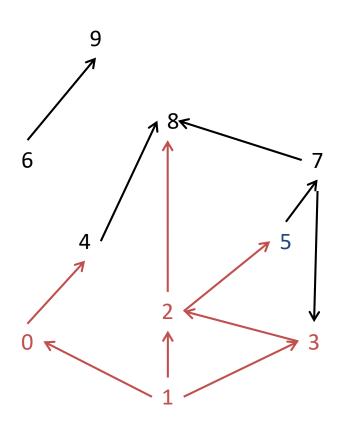
- Exploré = {0,1}
- AtteintAG = {2, 3}
- AtteintNG = {4}
- On choisi 2,
- Traitement de 2
- Traitement des arcs (2,8) et (2,5)
- Insérer 5 et 8 dans AtteintNG

Le graphe



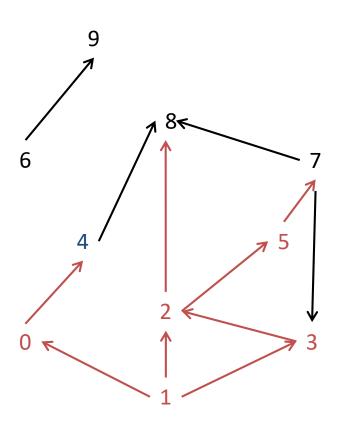
- Exploré = {0,1,2}
- AtteintAG = {3}
- AtteintNG = {4,5,8}
- On choisi 3,
- Traitement de 3
- Traitement de l'arcs (3,2)
- Attention AtteintAG est vide donc AtteintAG ← AtteintNG

Le graphe



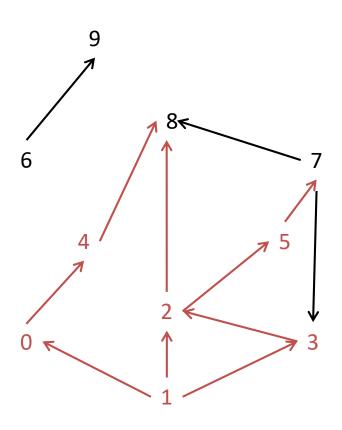
- Exploré = {0,1,2,3}
- AtteintAG = {4,5,8}
- AtteintNG = {}
- On choisi 5,
- Traitement de 5
- Traitement de l'arcs (5,7)
- Insérer 7 dans AtteintNG

Le graphe



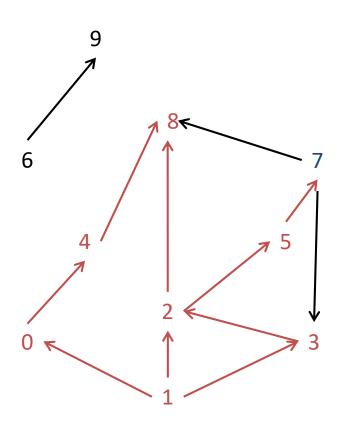
- Exploré = {0,1,2,3,5}
- AtteintAG = {4,8}
- AtteintNG = {7}
- On choisi 4,
- Traitement de 4
- Traitement de l'arcs (4,8)

Le graphe



- Exploré = {0,1,2,3,4,5}
- AtteintAG = {8}
- AtteintNG = {7}
- On choisi 8,
- Traitement de 8
- AtteintAG est vide

Le graphe



- Exploré = {0,1,2,3,4,5,8}
- AtteintAG = {7}
- AtteintNG = {}
- On choisi 7,
- Traitement de 7
- Traiter les arcs (7,8) et (7,3)
- AtteintAG et AtteintNG sont vides
- Je vous laisse finir

Parcours sur un graphe non orienté

- Un graphe non orienté est un graphe dans lequel le sens de la relation n'a pas d'importance.
- On ne parle plus alors de l'arc (x,y) mais de l'arête {x,y}.
- L'orientation n'ayant pas d'importance on notera que l'arête {x,y} est égale à l'arête {y,x}.

Représentation

- Un graphe non orienté peut se représenter comme un graphe symétrique.
- Nous ne parlerons plus de successeurs et de s, mais de voisins.

 Rappel: un arbre est un graphe connexe sans cycles.

Parcours en largeur : Algorithme 2

- Un parcours en largeur privilégie l'exploration des sommets du graphe en utilisant les plus courtes chaînes.
- On peut ainsi construire l'arbre des plus courtes chaînes du graphe G à partir d'un sommet x donné.
- On est ainsi capable de calculer la distance entre deux sommets dans un graphe.

Parcours en largeur : Algorithme 2

 Permets en outre de calculer le diamètre et un centre du graphe.

 Nous utiliserons une structure de donnée FIFO pour gérer notre ensemble Atteint : la file. De plus Atteint sera un ensemble de couples (sommet, Distance).

Algorithme ParcLarg (En-tête)

- Algorithme ParcLarg
 - Données:
 - G = (X_G,U_G) un graphe non orienté;
 - x : un sommet de G;
 - Résultats :
 - Exploré : ensemble de couples (sommet, entier)
 - Total : entier
 - Variables :
 - Atteint : une file de couples (sommet; entier)
 - u,v : deux sommets; i : entier

Algorithme ParcLarg (Code)

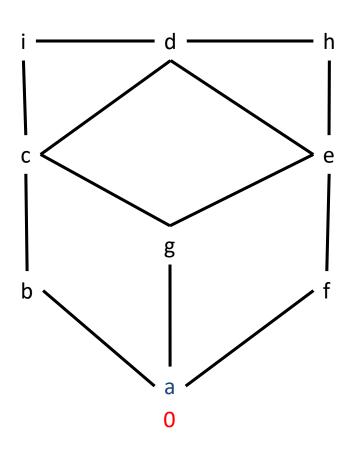
```
DebutCode
    Atteint \leftarrow \{(x,0)\}; Exploré \leftarrow \{\};
     Tq Non(TestFileVide(Atteint)) faire
        (u,i) ← Premier(Atteint); Défiler (Atteint);
        Insérer (u,i) dans Exploré
        Pour tout v \in V_G(u) faire
            Si v n'est ni dans Atteint ni dans Exploré alors
                 Enfiler (v,i+1) dans Atteint Finsi
        FinPour
    FinTq
    CalculTotal (Exploré,Total)
FinCode
```


Algorithme CalculTotal (En-tête)

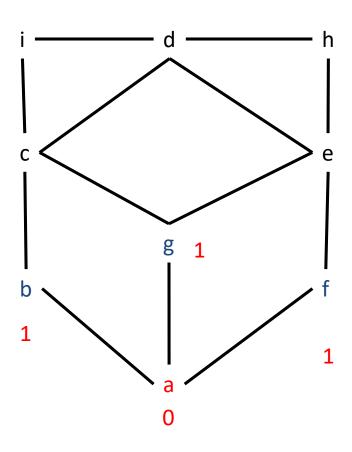
- Algorithme CalculTotal
 - Donnée
 - Exploré : ensemble de couples (sommets, entier)
 - Résultat
 - Total : entier
 - Variables
 - u : sommet; i entier

Algorithme CalculTotal (Code)

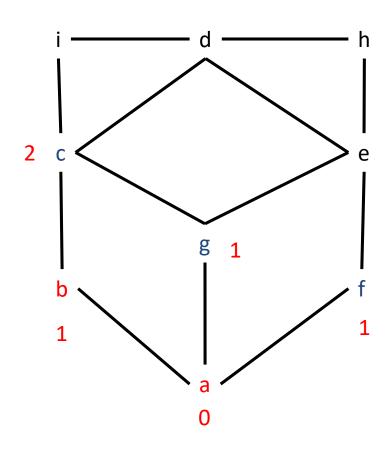
- DébutCode
 - Total ← 0;
 - Pour chaque couple (u,i) de Exploré faire
 - Total ← Total + i;
 - FinPour
 - Renvoyer(Total)
- FinCode



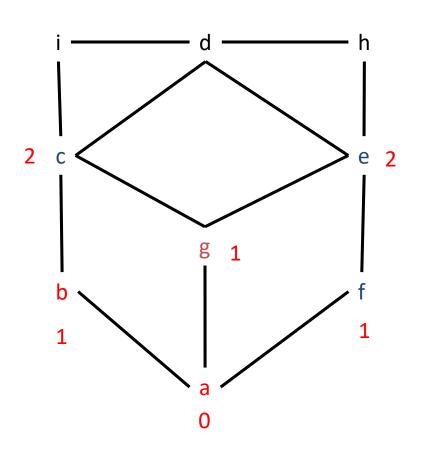
- Appel de ParcLarg à partir de a.
- Les valeurs entières données par l'algorithme seront écrites en Rouge
- Atteint = {(a,0)}



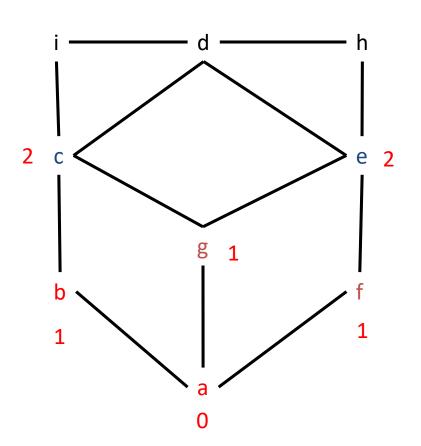
- On prend le couple (a,0)
- Insertion de (a,0) dans Exploré
- Exploré = {(a,0)}
- Chaque voisin b, g, f est introduit dans atteint
- Atteint={(b,1),(g,1),(f,1)}



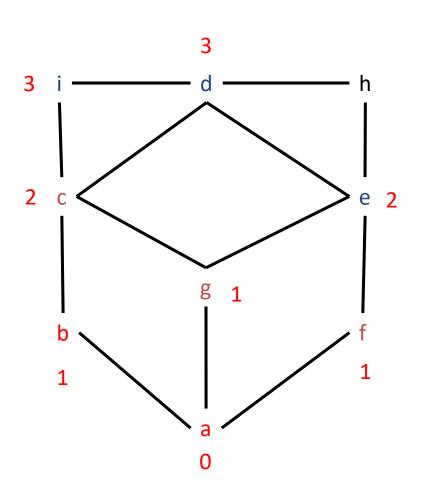
- On prend le couple (b,1)
- Insertion de (b,1) dans Exploré
- Exploré = {(a,0),(b,1)}
- Le voisin c est introduit dans Atteint
- Atteint={(g,1),(f,1),(c,2)}



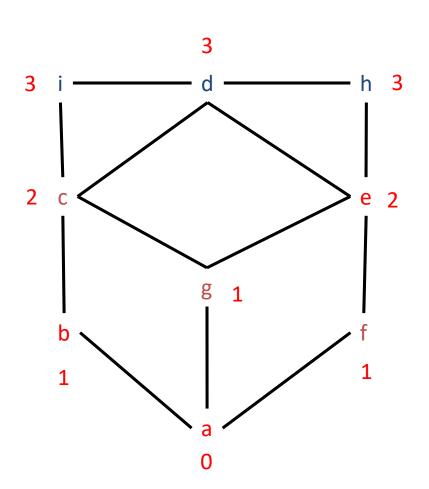
- On prend le couple (g,1)
- Insertion de (g,1) dans Exploré
- Exploré = {(a,0),(b,1),(g,1)}
- Le voisin e est introduit dans Atteint
- Atteint={(f,1),(c,2),(e,2)}



- On prend le couple (f,1)
- Insertion de (f,1) dans Exploré
- Exploré = {(a,0),(b,1), (g,1),(f,1)}
- Aucun sommet n'est introduit dans Atteint
- Atteint={(c,2),(e,2)}



- On prend le couple (c,2)
- Insertion de (c,2) dans Exploré
- Exploré = {(a,0),(b,1), (g,1),(f,1),(c,2)}
- Les Voisins i et d sont introduits dans Atteint
- Atteint={(e,2),(i,3),(d,3)}



- On prend le couple (e,2)
- Insertion de (e,2) dans Exploré
- Exploré = {(a,0),(b,1), (g,1),(f,1),(c,2),(e,2)}
- Le voisins h est introduit dans Atteint
- Atteint={(i,3),(d,3),(h,3)}
- ... Total 16

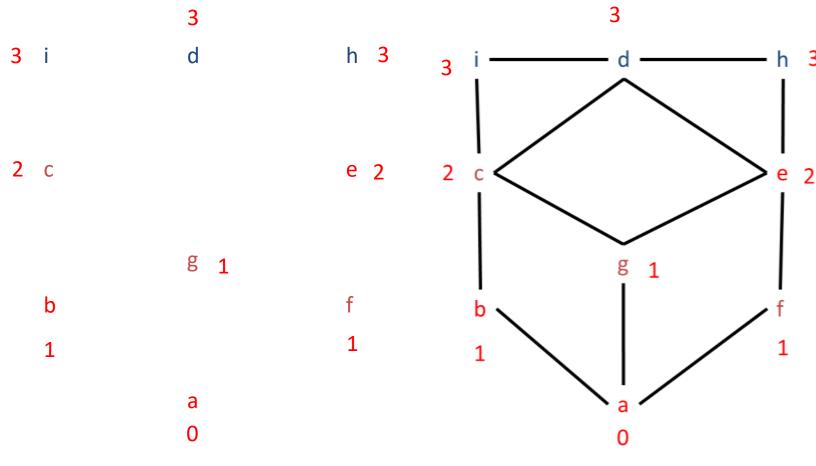
Remarques

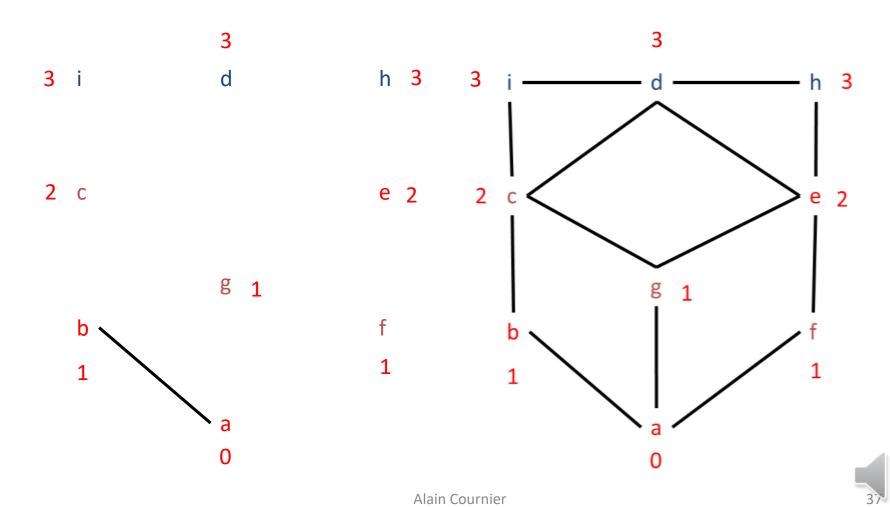
- Si un sommet u a reçu la valeur entière val alors :
 - il existe un chaîne de longueur val entre le point de départ du parcours (a dans l'exemple) et notre sommet u.
 - Il n'existe pas dans le graphe de chaîne de longueur strictement inférieure à val entre a et notre sommet u.
- Le parcours en largeur permet de calculer la plus courte chaîne entre deux sommets.

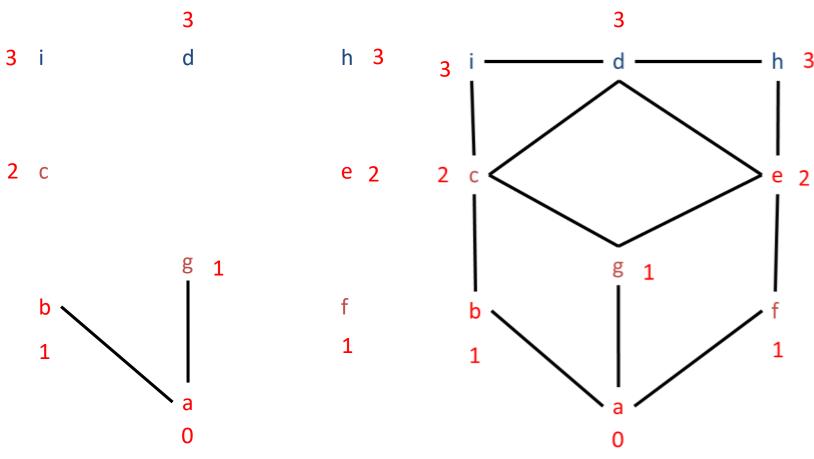
Remarques

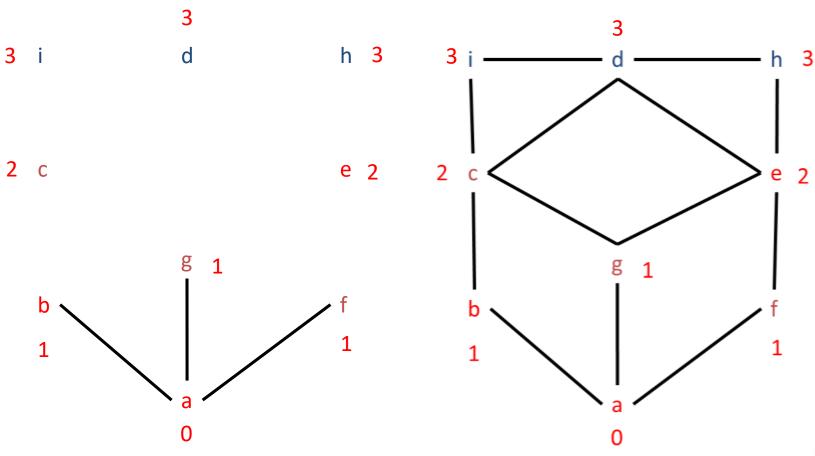
 La longueur d'une chaîne est égale au nombre d'arêtes qui la compose. C'est aussi le nombre de sommets de la chaîne moins un.

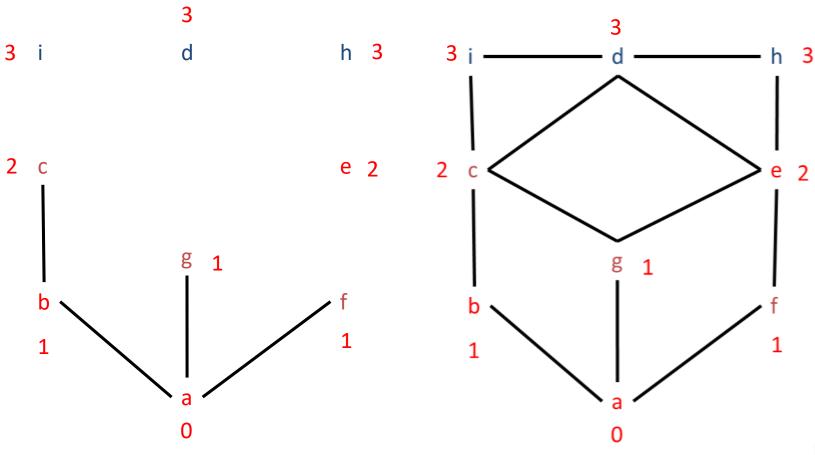
 La distance entre deux sommets x et y dans un graphe G est égale à la longueur de la plus courte chaîne liant x et y. On la note d_G(x,y)

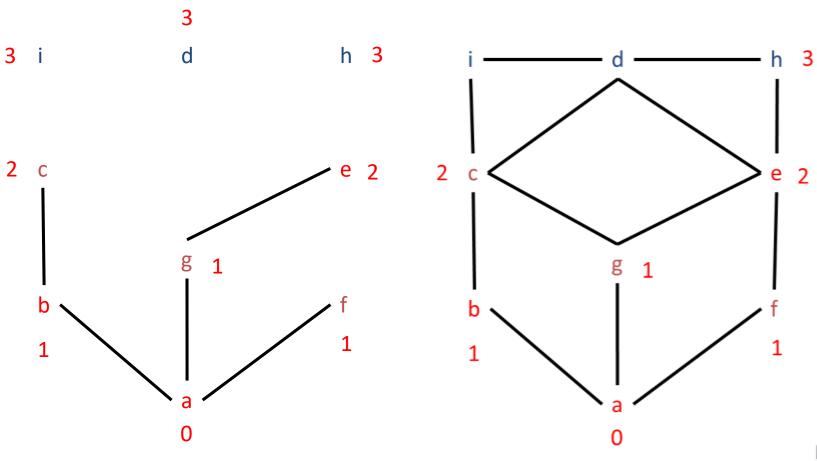


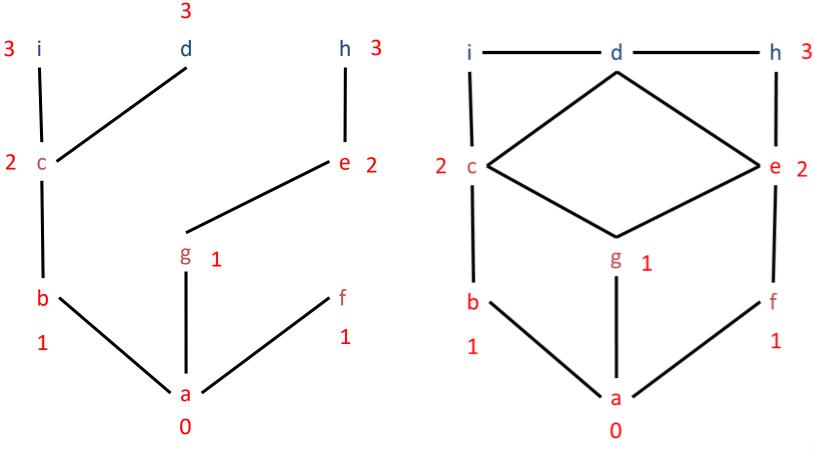












Remarque

 Les plus courtes chaînes issues de notre sommet a (Sommet de départ de notre algorithme) forment une structure d'arbre couvrant de notre graphe.

