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Preamble

This lesson is mainly based on Chapter 4 of the book entitled
“Introduction to Distributed Algorithms,” by Gerard Tel [3].

A. Cournier & S. Devismes (UPJV) Labeling and Routing November 19, 2024 4 / 73



Routing

In a network, a node can send packets of information directly only to a
subset of nodes: its neighbors.

Routing: decision procedure by which a node selects one (or, sometimes,
more) of its neighbors to forward a packet on its way to an ultimate
destination.

Routing Algorithm: a decision-making procedure to perform routing and
guaranteeing delivery of each packet.
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Criteria for “good” routing

1 Correctness: each packet should be eventually delivery to its
ultimate destination.

2 Efficiency: each packet should be routed through “good” paths.
(n.b., more detail in the next slide)

3 Complexity: cost in terms of messages (control and data packets),
volume of exchanged data, time, storage . . . .

4 Message ordering: is the message sending order between a source
and a destination preserved upon receipt (FIFO)?

5 Robustness: ability of handling topological changes.
6 Adaptiveness: load-balancing at channels and nodes.
7 Fairness: ability to provide service to every user in the same degree.

Remark
These criteria are often conflicting: most of algorithms perform well
only w.r.t. a subset of them.
A illustrative example will be proposed later.
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Main optimization criteria

1 Minimum hop: minimizing the number traversed edges.
2 Shortest path: a (non-negative) weight is statically assigned to each

channel.
Minimizing the sum of the weights of the traversed edges.

3 Minimum delay: a (non-negative) weight is dynamically assigned to
each channel (weights are periodically revised depending on the
traffic).
Minimizing the sum of the weights of the traversed edges.
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Labeling

Labeling consists of assigning (or re-assigning) labels to nodes and/or
channels.

Usually, node labels are unique in the network, while channel labels are
unique only at the incident node.
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Illustrative Example
N-S-E-W sense of direction in a (ℓ × L)-grid with ℓ > 1 and L > 1
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Illustrative Example
From N-S-E-W sense of direction to Coordinated System (Node Labeling)
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Illustrative Example
From N-S-E-W sense of direction to Coordinated System (Node Labeling)

How ?
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Node labeling, code for node p: the Algorithm
Inputs
1: ℓ, L ∈ N: length and width of the grid
2: Labels ⊆ {N, S, E , W}: labels of channels incident to p

Variables
3: x , y ∈ N

Initialization(all initiators)
4: if Labels = {E , S} then ▷ Top-Left Corner
5: (x , y)← (0, 0)
6: Send ⟨x , y⟩ to {S, E}
7: end if

Receipt of ⟨a, b⟩ from N
8: (x , y)← (a, b + 1)
9: if S ∈ Labels then

10: Send ⟨x , y⟩ to S
11: end if
Receipt of ⟨a, b⟩ from W
12: (x , y)← (a + 1, b)
13: if E ∈ Labels then
14: Send ⟨x , y⟩ to E
15: end if
16: Send ⟨x , y⟩ to S
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Observations

1 From all-initiators to multi-initiators: wake-up the leader using
flooding
(cf., distributed computing courses)

2 Time complexity: ℓ + L, optimal (in case ℓ = L,
√

ℓ)
3 Message complexity: ℓ × L, optimal
4 Message size: O(log ℓ + log L) bits per message
5 Memory requirement: O(log ℓ + log L) bits per node
6 termination detection is missing
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Adding Termination Detection at (0, 0)
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Remark: global termination detection requires an additional flooding
initiated by (0, 0)
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Adding Termination Detection at (0, 0), the algorithm

Add variable Cpt initialized to 0

Receipt of ⟨a, b⟩ from N
1: (x , y)← (a, b + 1)
2: if S ∈ Labels then
3: Send ⟨x , y⟩ to S
4: else
5: Send ⟨Ack⟩ to N
6: end if

Receipt of ⟨Ack⟩ from c
7: if N ∈ Labels then
8: Send ⟨Ack⟩ to N
9: else if E /∈ Labels then

10: Send ⟨Ack⟩ to W
11: else
12: Cpt + +
13: if Cpt = 2 then
14: if Labels = {S, E} then
15: termination
16: else
17: Send ⟨Ack⟩ to W
18: end if
19: end if
20: end if
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Routing in the Labeled Grid

Example: from (1, 1) to (3, 3)
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Routing in the Labeled Grid
The Algorithm

Function Latitude(D,nx ,ny)
1: if y < ny then
2: return S
3: end if
4: return N

Function Longitude(D,nx ,ny)
1: if x < nx then
2: return E
3: end if
4: return W

Function Routing(D,nx ,ny)
1: if nx = x ∧ ny = y then
2: Deliver D
3: else if nx = x then
4: Send ⟨D,nx ,ny⟩ to Latitude(D,nx ,ny)
5: else
6: Send ⟨D,nx ,ny⟩ to Longitude(D,nx ,ny)
7: end if

Inputs
1: (x , y) ∈ N2: label of the source node
2: Data: data to transmit (initiator only)
3: (dx , dy): destination label (initiator only)

Initialization
4: Routing(Data,dx ,dy)

Receipt of ⟨D, nx , ny⟩ from c
5: Routing(D,nx ,ny)
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Pros and Cons

Pros:
Correctness
(if the links are reliable)
Hop-optimal
(from node p to node q,
∥p, q∥ ≤ ℓ + L hops)
Low memory usage,
O(log ℓ + log L) bits per node
n.b., “brute-force” routing table
in a grid: Ω(ℓ × L) bits per node
FIFO
Fair

Cons:
Not robust
Not adaptive
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A more adaptive solution

There are several hop-optimal paths from a source to a destination.
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We can select one of them based on bandwidth.
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A more adaptive solution
The algorithm

Function Routing(D,nx ,ny)
1: if nx = x ∧ ny = y then
2: Deliver D
3: else if nx = x then
4: Send ⟨D,nx ,ny⟩ to Latitude(D,nx ,ny)
5: else if ny = y then
6: Send ⟨D,nx ,ny⟩ to Longitude(D,nx ,ny)
7: else
8: if Bandwidth(Latitude(D,nx ,ny)) > Bandwidth(Longitude(Latitude(D,nx ,ny))) then
9: Send ⟨D,nx ,ny⟩ to Latitude(D,nx ,ny)

10: else
11: Send ⟨D,nx ,ny⟩ to Longitude(D,nx ,ny)
12: end if
13: end if
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A more adaptive solution
No more FIFO
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E.g., MA sent through the green path before MB, sent through the red
path. Yet MB may be delivered before MA.
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A more adaptive solution
Reconstruction of the FIFO at the destination

1 A sequence number at each source.
2 The message can be tagged with the node label and the sequence number
3 Storing at the destination, the expected sequence number and a queue

containing the early messages
(only for sources that have already routed a message to the destination)

Very costly! Worst case: Ω(ℓ × L × B) bits, where B is the number of bits
required for storing one sequence number, just for saving sequence numbers at
the destination.
Bigger than the “brute-force” routing table (Θ(ℓ × L) bits per node in a grid)!

Remark
Optimization criteria for “good” routing are often conflicting: most of algorithms
perform well only w.r.t. a subset of them.
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Preliminaries

Goal: compact routing tables by generalizing the grid example to arbitrary
connected networks.

vi : node label (e.g., MAC address)
ci : port number, local at the node, usually ∈ [1..δvi ] (δvi : degree of vi )

v3v4

v8

v1

v5

c1

c2

c3

“Brute-force” routing table at v3:

dest. chan.
v1 c2
. . . . . .
v4 c3
v5 c1
. . . . . .
v8 c1
. . . . . .

Memory requirement:
Ω(n × (log n + log δvi )) at each node vi ,
where n is the total number of nodes.

“Compact” routing table at v3:

chan. dest.
c1 . . ., v5, . . ., v8, . . .
c2 . . ., v1, . . .
c3 . . ., v4, . . .

Memory requirement: only δvi cells,
depends on how compactly the set of
destinations for each channel can be
represented.
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Two ways for compacting routing tables

Tree-labeling Scheme, by Santoro and Khatib [2]

Interval Routing, by Leeuwen and Tan [4]
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Principle

In-tree network T 1

Goal: Considering a connected network of n > 1 nodes, labeling of nodes
from 0 to n − 1 in such a way that the set of destinations for each channel
is a distinct interval of node labels

Notations:
ring of integers modulo n: Zn = {0, 1, . . . , n − 1}
but integers are ordered with < following Z

1A generalization to arbitrary connected network at the end of the subsection.
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Cyclic Interval
A cyclic interval [a, b) in Zn in the set of integers defined by:

{a, a + 1, . . . , b − 1} if a < b,
{a, . . . , n − 1, 0, . . . , b − 1} otherwise.

Example: let n = 10.
0

9 1

2

3

4

5

6

7

8

[4, 8) is in blue
[8, 3) is in red

Remarks:
[a, a) = Zn

For every a ̸= b, the
complement of [a, b), i.e.,
Zn \ [a, b), is [b, a).
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Routing using labels and cyclic intervals
Idea

For each node u:
assign a unique label lu ∈ Zn to u
order channel from 1 to δu and assign a label αi(u) to the ith channel
outgoing from u

in such a way that for each node v :
either lv = lu (and so v = u)
or lv ̸= lu and there exists i ∈ {1, . . . , δu} such that
lv ∈ [αi(u), α(i mod δu)+1(u)) and the link designated by αi(u) is on
the path from u to v
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Routing using labels and cyclic intervals
The algorithm

Given a packet p with destination label d at node u.

if d = lu then
deliver p

else
let αi(u) such that d ∈ [αi(u), αi+1(u))
send p via the channel labeled with αi(u)

end if
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Node Labeling

A tree of n = 11 nodes
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Node Labeling
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A tree of n = 11 nodes

Preorder tree traversal
(computed by a token circulation in 2n − 2 rounds)
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Node Labeling
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A tree of n = 11 nodes

Preorder tree traversal + node labeling
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Node Labeling
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20

A tree of n = 11 nodes

Preorder tree traversal + node labeling

Property:
Labels in T (u) : {lu , . . . , lu + |T (u)| − 1}
E.g., Nodes in the subtree of the node with
label 4 are numbered from 4 to 8 (i.e., 4+5-1)
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Channel Labeling
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A tree of n = 11 nodes

Labeling: let u be a node. For every neighbor v
of u, we assign the label αv (u) = Av (u) mod n
to the channel of u outgoing to v , where Av (u)
is set as follows:

Av (u) = lv if v is a child of u

Av (u) = lu + |T (u)| if v is the parent of
u.

Remark: If v is a child of u, then αv (u) = lv
since lv < n.

Let α1(u), . . . , αδu (u) be the channel label at u
sorted in increasing order according to values
Av (u).
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Labeling: let u be a node. For every neighbor v
of u, we assign the label αv (u) = Av (u) mod n
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Av (u) = lv if v is a child of u

Av (u) = lu + |T (u)| if v is the parent of
u.
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since lv < n.
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A tree of n = 11 nodes

Labeling: let u be a node. For every neighbor v
of u, we assign the label αv (u) = Av (u) mod n
to the channel of u outgoing to v , where Av (u)
is set as follows:

Av (u) = lv if v is a child of u

Av (u) = lu + |T (u)| if v is the parent of
u.

Remark: If v is a child of u, then αv (u) = lv
since lv < n.
Let α1(u), . . . , αδu (u) be the channel label at u
sorted in increasing order according to values
Av (u).
Examples:

Assume u is the node with label 4:
α1(u) = 5, α2(u) = 8, α3(u) = 9
Assume u is the node with label 9:
α1(u) = 10, α2(u) = 0 (i.e., 11 mod 11)
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Channel Labeling
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A tree of n = 11 nodes

Let nbcu be the number of children of u.
Properties:

1 If u is not the root, δu = nbcu + 1 and
αδu (u) is the label of u outgoing to its
parent, otherwise δu = nbcu .
We order u’s children: the ith child of u,
with i ∈ {1, . . . , nbcu}, is the one, say v ,
of label αi (u) (n.b., αi (u)=lv since lv <n)

2 0 < α1(u) < . . . < αnbcu (u) < n

3 ∀i ∈ {1, . . . , nbcu},
∀x ∈ [αi (u), αi+1(u)), x ≥ αi (u)

4 Let i ∈ {1, . . . , nbcu − 1}. Let v and w
be the ith and (i + 1)th child of u, resp.
Labels in T (v) : {lv , . . . , lw − 1} =
[lv , lw ) = [αi (u), αi+1(u))
E.g., labels in the subtree of the 1st child of 4 (label 5)
range from 5 to 7 (i.e., the label of the 2nd child of 4,
8, minus 1)
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Remark: Assuming n is known, the channel
labeling can be also computed during the token
circulation, otherwise n can computed
beforehand using a PIF or a token circulation.

Let nbcu be the number of children of u.
Properties:
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αδu (u) is the label of u outgoing to its
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Local View
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A tree of n = 11 nodes
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Local view at node with label 4

Zn
α1(u)

α2(u)...αi(u)

αi+1(u)

...

αδ(u)(u) 0

Destination routed
via αi(u)

General scheme
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Example of routing through the labeled Tree
From label 5 to label 1
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Example of routing through the labeled Tree
From label 5 to label 1
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At 5, 1 ∈ [8, 6)
At 4, 1 ∈ [9, 5)
At 0, 1 ∈ [1, 4)
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Correctness
Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

[αi (u), α(i mod δu)+1(u)), i ∈ {1, . . . , δu} is a partition of Zn

Proof.
1 By definition, if δu > 1, then [αδu (u), α1(u)) is the complement of [α1(u), αδu (u))

2
⋃

i∈{1,...,δu}[αi (u), α(i mod δu)+1(u)) = [α1(u), αδu (u)) ∪ [αδu (u), α1(u)) = Zn.

Let x ∈ Zn.
Assume, by contradiction, that x ∈ [αi (u), α(i mod δu)+1(u)) and x ∈ [αj (u), α(j mod δu)+1(u))
with i , j ∈ {1, . . . , δu} and i < j (so δu > 1).
Since i < δu , [αi (u), α(i mod δu)+1(u)) ⊆ [α1(u), αδu (u)), which implies j < δu by 1.
So, i < δu − 1 and x ∈ [αi (u), α(i mod δu)+1(u)) implies x < α(i mod δu)+1(u) = αi+1(u) ≤ αj (u).
Now, since j < δu , ∀y ∈ [αj (u), α(j mod δu)+1(u)), y ≥ αj (u).
Thus, x /∈ [αj (u), α(j mod δu)+1(u)), a contradiction.
The result follows. □
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Correctness
Using the routing algorithm, each packet is eventually delivered to its final destination

The previous result implies that will a packet has not reached its final
destination, a channel is always uniquely determined for the next hop.

We now show that the channel chosen by the algorithm allows to get
closer from the destination.
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Correctness
Using the routing algorithm, each packet is eventually delivered to its final destination

Consider a packet p with destination v at node u.

Two cases: either v /∈ T (u) or v ∈ T (u).

v /∈ T (u) : Then, u is not the root and p should be forwarded via the parent link of u.

Now, lv /∈ {lu , . . . , lu + |T (u)| − 1}.

So, lv ̸= lu and lv /∈ [lu + 1, (lu + |T (u)|) mod n), i.e., lv /∈ [α1(u), αδu (u)).

As intervals are a partition of Zn, lv ∈ [αδu (u), α1(u)), which implies that p is
forwarded via the parent link of u.
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Correctness
Using the routing algorithm, each packet is eventually delivered to its final destination
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Complexity Analysis

Distributed Computation of the Labeling (using a token circulation):
O(n) rounds / messages
message length: O(log n) bits per message

Memory Usage: δu + 1 labels for node u, i.e., (δu + 1) × ⌈log n⌉ bits

Routing from u to v : ∥u, v∥ hops (hop-optimal)
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Generalization to arbitrary connected networks
Leader election + spanning tree (with initialization and term. detect. at leader), token circulation in the tree
(O(mn) messages, O(m) rounds, and O(δu + B) bits, where B the number of bits to store an identifier)
(cf., distributed computing courses)

Pros.
Correctness
Time complexity: a packet is routed in at
most min(n− 1, 2H) hops where H < n is
the height of the tree.
If the tree is BFS, at most min(n − 1, 2D) hops where
D is the network diameter.

Memory Usage: at most δu+1 labels for
node u, i.e., at most (δu+1)×⌈log n⌉ bits

Cons.
A packet may be routed from u to v in
drastically more than ∥u, v∥ hops.
E.g., in a ring, the two leaves are 1-hop away but any
packet is routed from one to the other in n − 2 hops.

Only n − 1 links are used while the
network may contain Θ(n2) links: this
may lead to congestion and a single link
failure partitions the network (this
approach is then not robust)

v
u

This latter drawback is addressed by the interval routing
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Definition

An interval labeling scheme (ILS) for a network G of n nodes is
1 An assignment of different labels from Zn to the nodes of G , and
2 and for each node u, an assignment of pairwise distinct labels αi(u),

i = 1, . . . , δu, to all channels of u.

The interval routing algorithm assumes a ILS is given and forwards
packets as in the tree-labeling scheme routing algorithm.

An ILS is valid if all packets forwarded using the interval routing
algorithm eventually reach their final destination.
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A valid ILS for arbitrary connected networks
Tool: Depth-First Search (DFS) spanning tree T

Property: For every two neighbors u and v in G, either u ∈ T (v), or v ∈ T (u).

Distributed Construction: Leader election + token circulation
(O(mn) messages, O(m) rounds, and O(δu + B) bits, where B the number of bits to
store an identifier, cf., distributed computing courses)
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A valid ILS for arbitrary connected networks
Node labeling

A network of n = 12 nodes
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A valid ILS for arbitrary connected networks
Node labeling
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A valid ILS for arbitrary connected networks
Node labeling
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A valid ILS for arbitrary connected networks
Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label
αv (u) = Av (u) mod n to the channel of u outgoing to v .

Yet, Av (u) is set as follows:
1 if {u, v} is a non-tree edge, Av (u) = lv
2 If v is a child of u, Av (u) = lv
3 If v is the parent of u,

Av (u) = lu + |T (u)| unless
lu + |T (u)| = n and u has a non-tree
edge to the root2

4 If v is the parent of u, lu + |T (u)| = n,
and u has a non-tree edge to the root,
Av (u) = lv

8

0

1

2 5 9

3 4 111076

12 nodes

Remark: If v is a non-parent neighbor of u, αv (u) = lv since lv < n.

Like for the tree-labeling scheme, we let α1(u), . . . , αδu (u) be the channel label at u sorted in
increasing order according to values Av (u).
Generalization: if G is a tree, G is labeled as with the tree-labeling scheme.

2In this case, the non-tree edge is labeled 0 at u by the rule 1, so assigning Av (u) to lu + |T (u)| would lead to two
channels at u with the same label!
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Example of Interval Routing

8

0

1

2 5 9

3 4 111076

4

10 9

2 5

3 4 6 7

1 8

9

10 11

8

0118754 1 0

0
8

8

5

0

Routing from 4 to 9
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A valid ILS for arbitrary connected networks
Properties

1 Locally at each node, the union of
intervals is equal to Zn

(the proof is identical to the one for the
tree-labeling scheme)

So, when u has a packet for v ̸= u, u finds a
destination w for the next hop.

2 If lu > lv , lw < lu
3 If lu < lv , lw ≤ lv

Let lca(u, v) be the label of the lowest common
ancestor of u and v and
fv (u) = (−lca(u, v), lu).3

4 If lu < lv , fv (w) < fv (u)
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3(a, b) < (c, d) ≡ [a < c ∨ (a = c ∧ b < d)]
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In the path 10,0,1,2,3: lu = 10 > lv = 3 and
lw = 0 < lu = 10

In the path 7,5,1: lu = 7 > lv = 1 and
lw = 5 < lu = 7

At the next hop, lu = 5 > lv = 1 and
lw = 1 < lu = 5

3(a, b) < (c, d) ≡ [a < c ∨ (a = c ∧ b < d)]
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See the paths 0,10,9,11 and 2,1,5,7
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In the path 0,10,9,11: take lu = 0 and lw = 10,
we have fv (w) = (−9, 10) < fv (u) = (0, 0)

In the path 2,1,5,7: lu = 2 and lw = 1, we have
fv (w) = (−1, 1) < fv (u) = (−1, 2)

3(a, b) < (c, d) ≡ [a < c ∨ (a = c ∧ b < d)]
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Proof of Property 2
If lu > lv , lw < lu

Proof:

If αw (u) ≤ lv .
First, w is not a proper descendent of u since otherwise αw (u) = lw > lu > lv .
So, w is a proper ancestor of u: lw < lu.

Otherwise, every label α at u satisfies α > lv and αw (u) is the larger label at u.
u is not the root since lu > lv ≥ 0.
Let f be the parent of u. Since every label α at u satisfies α > lv ≥ 0,
αf (u) = (lu + |T (u)|) mod n. Again, αf (u) ̸= 0 since αf (u) > lv ≥ 0. Thus,
αf (u) = lu + |T (u)| is the largest channel label at u and so w = f .

Indeed, the label at u of any channel from u to any of its proper ancestor w ′ ̸= f
is lw′ < lu and the label at u of any channel from u to any of its proper descendent
w ′ is lw′ < lu + |T (u)|.

As w is the father of u, we have lw < lu. □
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Proof of Property 3
If lu < lv , lw ≤ lv

Proof:
If v ∈ T (u), let w ′ be the child of u such that v ∈ T (w ′).
We have αw′ (u) = lw′ ≤ lv and this implies that αw′ (u) ≤ αw (u) ≤ lv < lw′ + |T (w ′)|.
So, w is not the father f of u (indeed, either αf (u) = lf < lu < lw′ , αf (u) = 0 < lw′ , or
αf (u) = lu + |T (u)| ≥ lw′ + |T (w ′)|) and lw = αw (u) ≤ lv .

Otherwise v /∈ T (u) and as lv > lu, we also have lv ≥ lu + |T (u)|
Since lu + |T (u)| ≤ lv ≤ n − 1, the label of channel from u to its parent is
lu + |T (u)|.
The channel from u to one of its proper descendent w ′ is labeled at u with
lw′ < lu + |T (u)|.
The channel from u to one of its non-parent proper ancestor w ′ is labeled at u
with lw′ < lu < lu + |T (u)|.

So, w is the father of u and lw < lu < lv .
□
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Proof of Property 4
If lu < lv , fv (w) < fv (u)

Proof: If v ∈ T (u), lca(u, v) = lu. Let w ′ the child of u such that v ∈ T (w ′). As in the
proof of Property 3, we have lw′ ≤ lw < lw′ + |T (w ′)|. Thus, w ∈ T (w ′) and so
lca(w , v) ≥ lw′ > lu = lca(u, v). Hence, fv (w) < fv (u).

Otherwise v /∈ T (u) and lv ≥ lu + |T (u)| since lv > lu. As in the proof of Property 4, w
is the parent of u and so lw < lu. Now, v /∈ T (u) implies lca(w , v) = lca(u, v). Hence,
fv (w) < fv (u). □
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A valid ILS for arbitrary connected networks
Correctness & Complexity

By Property 2 (if lu > lv , lw < lu), after a finite number of hops, the packet
reaches a node u such that lu ≤ lv
By Property 3 (if lu < lv , lw ≤ lv ), the property lu ≤ lv is invariant
By Property 4 (if lu < lv , fv (w) < fv (u)), the packet is deliver to its destination
within a finite number of hops after the property lu ≤ lv becomes true

Complexity: At most n − 1 hops
(the correctness implies the absence of cycles)
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A valid ILS for arbitrary connected networks
Pros and Cons

Pros:
1 More robust than tree-labeling scheme

2 Load-balancing
(every link is used by at least one route)

3 Memory Usage: δu + 1 labels for node u,
i.e., (δu + 1)× ⌈log n⌉ bits

Cons:
1 Robustness: in case of topological

changes, the DFS spanning tree may have
to be totally recomputed.
A more robust solution: prefix routing
(presented in the next section

2 Efficiency: in arbitrary connected
networks, the route length can be greater
than the distance between the source and
the destination.
In the previous example: nodes of labels 4
and 2 are neighbors but the route from 4
to 2 go through the node of label 1!
Lower bound: in the worst case the
interval routing algorithm chooses a route
of length at least 3

2 of the network
diameter [1]

However, hop-optimal in many regular topologies, e.g., rings and L× L-grids
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A hop-optimal valid ILS for rings

Labeling:
1 Nodes are labeled from 0 to n − 1 in

clockwise order
2 For each node labeled i , the clockwise

channel is labeled (i + 1) mod n
3 For each node labeled i , the anticlockwise

channel is labeled (i + ⌈ n
2 ⌉) mod n

Routing:
1 Packets for nodes i + 1, . . ., (i + ⌈ n

2 ⌉)− 1
routed via the clockwise channel

2 Packets for nodes (i + ⌈ n
2 ⌉), . . ., i − 1

routed via the anticlockwise channel
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A hop-optimal valid ILS for (L × L)-grids (n = L × L)

Labeling:
1 The node at the ith column and jth row

is labeled (j − 1)L + (i − 1)
2 The channels of the node at the ith

column and the jth row are labeled as
follows

(j-1)L+i(j-1)L

0

jL

Routing:
1 If v is in a row higher that u, u sends the

packet up
2 If v is in a row lower that u, u sends the

packet down
3 If v is in the same row as u but to the

left, u sends the packet to the left
4 If v is in the same row as u but to the

right, u sends the packet to the right
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Roadmap

1 Introduction

2 Routing using Labels
Tree-labeling Scheme
Interval Routing

3 Prefix Routing

4 Conclusion

5 References
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Idea

Based on an arbitrary spanning tree T to increase robustness:
1 If a link is added between two nodes, the spanning tree remains a

spanning tree and the new link is a non-tree edge

2 If a new node is added together with new links connecting it to
existing nodes, the spanning tree is extended using one of the links,4
the other are non-tree edges

Efficiency can be improved starting from a BFS spanning tree

4e.g., the one with the extremity that is closest to the root
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Principle
1 Node and channels labels: strings on some alphabet Σ

(e.g., port numbers)

2 Σ∗: set of all strings over Σ

3 ϵ: the empty string

4 α ◁ β: α is a prefix of β

Packet forwarding
Consider all channels whose label is prefix of the destination label and
select the longest one.

Example: If the destination label is aabbc and the current node has
channel labels: aabb, abba, aab, aabc, aa.

aabb, aab, aa are prefix and the channel labeled aabb is selected for the
next hop.
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Routing Algorithm

Given a packet p with destination label d at node u.

if d = lu then
deliver p

else
let αi(u) := the longest channel label such that αi(u) ◁ d
send p via the channel labeled with αi(u)

end if
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Node Labeling

1 If u is the root, u is labeled with lu = ϵ

2 If w is the child of u, lw extends lu by
one letter: if u1, . . ., lk are the
children of u, then lui = lu.ai , where
a1, . . ., ak are k distinct letters from Σ

ε
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31
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2
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3
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2 If w is the child of u, lw extends lu by
one letter: if u1, . . ., lk are the
children of u, then lui = lu.ai , where
a1, . . ., ak are k distinct letters from Σ

Remark: It may be distributedly computed
using (BFS) spanning tree construction
(with initialization and termination
detection at the root) (O(H) rounds,
O(n.m) messages of O(H. log |Σ|) bits, and
O(log ∆ + H. log |Σ|) bits per node )
(H is the height of the tree)

(If we use port numbers as alphabet, Σ = O(∆) where ∆ is the

degree of the network)
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Channel Labeling

1 If {u, v} is a non-tree edge, αv (u) = lv
2 If v is a child of u, αv (u) = lv
3 If v is the parent of u and u has no

non-tree edge to the root,5 αv (u) = ϵ

4 If v is the parent of u and u has a
non-tree edge to the root, αv (u) = lv

ε
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2

12

3

5Otherwise, the non-tree edge is labeled 0 at u by the rule 1, so assigning αv (u) to ϵ would lead to two channels at u with
the same label!
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Local View
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Example of Prefix Routing
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Properties

1 For all nodes u and v such that
u ̸= v, there is a channel at u labeled
with a prefix of lv

So, when u has a packet for v ̸= u, u
uniquely determines a destination w for the
next hop
(channel labels are unique at u, and so is the one that is the

longest prefix of lv )

2 If u ∈ T (v), w is an ancestor of u

3 If u is an ancestor of v, w is an
ancestor of v closer to v than u

4 If u /∈ T (v), w is an ancestor of v or
w is the parent of u
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(channel labels are unique at u, and so is the one that is the

longest prefix of lv )

2 If u ∈ T (v), w is an ancestor of u
See, e.g., 211, 21, 2 and 31, ϵ

3 If u is an ancestor of v, w is an
ancestor of v closer to v than u

4 If u /∈ T (v), w is an ancestor of v or
w is the parent of u
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Proof of Property 1
For all nodes u and v such that u ̸= v, there is a channel at u labeled with a prefix of lv

If u is not the root, u has a channel ϵ which is a prefix of lv .

Otherwise, u is the root, v ∈ T (u), and has a child w such that
v ∈ T (w). By construction, αw (u) = lw ◁ lv . □
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Proof of Property 2
If u ∈ T (v), w is an ancestor of u

If αw (u) = ϵ, w is an ancestor of u.

Otherwise, lw = αw (u) ◁ lv ◁ lu and so w is an ancestor of u.
□
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Proof of Property 3
If u is an ancestor of v, w is an ancestor of v closer to v than u

Let w ′ be the child of u such that v ∈ T (w ′). αw ′(u) = lw ′ is a
non-empty prefix of lv . As αw (u) is the longest prefix of lv at u, we have
αw ′(u) = lw ′ ◁ αw (u) = lw ◁ lv : w is an ancestor of v below u.

□
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Proof of Property 4
If u /∈ T (v), w is an ancestor of v or w is the parent of u

If αw (u) = ϵ, w is the parent of u or the root. Now, the root is an
ancestor of v .

Otherwise, αw (u) = lw ◁ lv : w is an ancestor of v . □

A. Cournier & S. Devismes (UPJV) Labeling and Routing November 19, 2024 67 / 73



Correctness & Complexity

Assume u sends a packet to v

1 If u is an ancestor of v , v is reached within at most H hops by
Property 3 (if u is an ancestor of v , w is an ancestor of v closer to v than u)

2 If u is a descendent of v , an ancestor of v is reached within at most
H hops by Property 2 (if u ∈ T (v), w is an ancestor of u); then v is reached within
at most H hops by Property 3 (if u is an ancestor of v , w is an ancestor of v closer to v than u)

3 If u is neither an ancestor nor a descendent of v , the packet reaches
an ancestor of v in at most H hops by Property 4 (if u /∈ T (v), w is an ancestor of

v or w is the parent of u)6 and then at most H additional hops are required to
reach v by Property 3 (if u is an ancestor of v , w is an ancestor of v closer to v than u)

Overall, a packet for v initiated at u reaches v within at most 2H hops.

6In case w is the parent of u, we have w /∈ T (v)
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Pros. and Cons.

Pros.
Correct
Robust

Cons.
Memory usage: O(∆.H. log |Σ|) bits per node
(O(∆.H. log ∆) bits per node if we use port numbers)

A. Cournier & S. Devismes (UPJV) Labeling and Routing November 19, 2024 69 / 73



Roadmap

1 Introduction

2 Routing using Labels
Tree-labeling Scheme
Interval Routing

3 Prefix Routing

4 Conclusion

5 References

A. Cournier & S. Devismes (UPJV) Labeling and Routing November 19, 2024 70 / 73



Conclusion

1 A good labeling allows to save space in routing algorithms.

2 No optimal solution
Optimization criteria for “good” routing are often conflicting: most of
algorithms perform well only w.r.t. a subset of them.
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