Labeling and Routing Réseaux & Communication

Alain Cournier Stéphane Devismes

Université de Picardie Jules Verne

November 19, 2024

Roadmap

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4 Conclusion

Roadmap

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4 Conclusion

5 References

This lesson is mainly based on Chapter 4 of the book entitled "Introduction to Distributed Algorithms," by Gerard Tel [3].

In a network, a node can send packets of information directly only to a subset of nodes: its neighbors.

Routing: decision procedure by which a node selects one (or, sometimes, more) of its neighbors to forward a packet on its way to an ultimate destination.

Routing Algorithm: a decision-making procedure to perform routing and guaranteeing delivery of each packet.

Correctness: each packet should be eventually delivery to its ultimate destination.

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage
- Message ordering: is the message sending order between a source and a destination preserved upon receipt (FIFO)?

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage
- Message ordering: is the message sending order between a source and a destination preserved upon receipt (FIFO)?
- Solution Robustness: ability of handling topological changes.

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage
- Message ordering: is the message sending order between a source and a destination preserved upon receipt (FIFO)?
- Solution Sol
- **Adaptiveness:** load-balancing at channels and nodes.

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage
- Message ordering: is the message sending order between a source and a destination preserved upon receipt (FIFO)?
- Solution Sol
- **Adaptiveness:** load-balancing at channels and nodes.
- **Fairness:** ability to provide service to every user in the same degree.

- Correctness: each packet should be eventually delivery to its ultimate destination.
- Efficiency: each packet should be routed through "good" paths. (*n.b.*, more detail in the next slide)
- Complexity: cost in terms of messages (control and data packets), volume of exchanged data, time, storage
- Message ordering: is the message sending order between a source and a destination preserved upon receipt (FIFO)?
- Solution Sol
- **Adaptiveness:** load-balancing at channels and nodes.
- **Fairness:** ability to provide service to every user in the same degree.

Remark

These criteria are often conflicting: most of algorithms perform well only *w.r.t.* a subset of them.

A illustrative example will be proposed later.

A. Cournier & S. Devismes (UPJV)

Labeling and Routing

- **Minimum hop:** minimizing the number traversed edges.
- Shortest path: a (non-negative) weight is statically assigned to each channel.

Minimizing the sum of the weights of the traversed edges.

Minimum delay: a (non-negative) weight is dynamically assigned to each channel (weights are periodically revised depending on the traffic).

Minimizing the sum of the weights of the traversed edges.

 $\mbox{Labeling}$ consists of assigning (or re-assigning) labels to nodes and/or channels.

Usually, node labels are unique in the network, while channel labels are unique only at the incident node.

Illustrative Example

N-S-E-W sense of direction in a ($\ell \times L$)-grid with $\ell > 1$ and L > 1

Illustrative Example

From N-S-E-W sense of direction to Coordinated System (Node Labeling)

Illustrative Example

From N-S-E-W sense of direction to Coordinated System (Node Labeling)

How ?

Node labeling, code for node p: the Algorithm

Inputs

- 1: $\ell, L \in \mathbb{N}$: length and width of the grid
- 2: Labels $\subseteq \{N, S, E, W\}$: labels of channels incident to p

Variables

3: $x, y \in \mathbb{N}$

Initialization(all initiators)

4: if Labels = $\{E, S\}$ then 5: $(x, y) \leftarrow (0, 0)$ 6: Send $\langle x, y \rangle$ to $\{S, E\}$ 7: end if **Receipt of** (a, b) from N 8: $(x, y) \leftarrow (a, b+1)$ 9: if $S \in Labels$ then 10: Send $\langle x, y \rangle$ to S 11: end if **Receipt of** $\langle a, b \rangle$ from W 12: $(x, y) \leftarrow (a + 1, b)$ 13: if $F \in I$ abels then 14: Send $\langle x, y \rangle$ to E 15: end if 16: Send $\langle x, y \rangle$ to S

▷ Top-Left Corner

- From all-initiators to multi-initiators: wake-up the leader using flooding (*cf.*, distributed computing courses)
- **2** Time complexity: $\ell + L$, optimal (in case $\ell = L$, $\sqrt{\ell}$)
- Message complexity: $\ell \times L$, optimal
- Message size: $O(\log \ell + \log L)$ bits per message
- So Memory requirement: $O(\log \ell + \log L)$ bits per node
- **o** termination detection is missing

Adding Termination Detection at (0,0)

Adding Termination Detection at (0,0)

Remark: global termination detection requires an additional flooding initiated by (0,0)

Add variable Cpt initialized to 0

```
Receipt of \langle a, b \rangle from N

1: (x, y) \leftarrow (a, b + 1)

2: if S \in Labels then

3: Send \langle x, y \rangle to S

4: else

5: Send \langle Ack \rangle to N

6: end if
```

```
Receipt of (Ack) from c
7: if N \in Labels then
8:
       Send \langle Ack \rangle to N
9: else if E \notin Labels then
10:
       Send \langle Ack \rangle to W
11: else
12: Cpt + +
13: if Cpt = 2 then
14:
           if Labels = \{S, E\} then
15:
               termination
16: else
17:
               Send \langle Ack \rangle to W
18:
           end if
19:
        end if
20: end if
```

Routing in the Labeled Grid

Example: from (1,1) to (3,3)

Routing in the Labeled Grid

Function Latitude(*D*,*nx*,*ny*)

- 1: if y < ny then 2: return S
- 3: end if
- 4: return N

Function Longitude(*D*,*nx*,*ny*)

- 1: if x < nx then
- 2: return E
- 3: end if
- 4: return W

Function Routing(D,nx,ny)

1: if
$$nx = x \land ny = y$$
 then
2: Deliver D
3: else if $nx = x$ then
4: Send $\langle D, nx, ny \rangle$ to Latitude (D, nx, ny)
5: else
6: Send $\langle D, nx, ny \rangle$ to Longitude (D, nx, ny)
7: end if

Inputs

- 1: $(x,y)\in \mathbb{N}^2$: label of the source node
- 2: Data: data to transmit (initiator only)
- 3: (dx, dy): destination label (initiator only)

Initialization

4: Routing(Data,dx,dy)

Receipt of $\langle D, nx, ny \rangle$ from c

5: Routing(D,nx,ny)

Pros:

- Correctness (if the links are reliable)
- Hop-optimal (from node p to node q, $||p,q|| \le \ell + L$ hops)
- Low memory usage,
 O(log ℓ + log L) bits per node
 n.b., "brute-force" routing table
 in a grid: Ω(ℓ × L) bits per node
- FIFO

Fair

Cons:

- Not robust
- Not adaptive

A more adaptive solution

There are several hop-optimal paths from a source to a destination.

A more adaptive solution

There are several hop-optimal paths from a source to a destination.

We can select one of them based on bandwidth.

```
Function Routing(D,nx,ny)
1: if nx = x \land ny = y then
2:
       Deliver D
3: else if nx = x then
4
       Send (D, nx, ny) to Latitude(D, nx, ny)
5:
   else if ny = y then
6:
       Send (D, nx, ny) to Longitude(D, nx, ny)
7: else
8:
       if Bandwidth(Latitude(D, nx, ny)) > Bandwidth(Longitude(Latitude(D, nx, ny))) then
9:
           Send (D, nx, ny) to Latitude(D, nx, ny)
10:
       else
11:
           Send (D, nx, ny) to Longitude(D, nx, ny)
12:
       end if
13: end if
```

A more adaptive solution No more FIFO

E.g., M_A sent through the green path before M_B , sent through the red path. Yet M_B may be delivered before M_A .

- A sequence number at each source.
- 2 The message can be tagged with the node label and the sequence number
- Storing at the destination, the expected sequence number and a queue containing the early messages

(only for sources that have already routed a message to the destination)

- A sequence number at each source.
- 2 The message can be tagged with the node label and the sequence number
- Storing at the destination, the expected sequence number and a queue containing the early messages

(only for sources that have already routed a message to the destination)

Very costly! Worst case: $\Omega(\ell \times L \times B)$ bits, where *B* is the number of bits required for storing one sequence number, just for saving sequence numbers at the destination.

Bigger than the "brute-force" routing table ($\Theta(\ell \times L)$ bits per node in a grid)!

- A sequence number at each source.
- 2 The message can be tagged with the node label and the sequence number
- Storing at the destination, the expected sequence number and a queue containing the early messages

(only for sources that have already routed a message to the destination)

Very costly! Worst case: $\Omega(\ell \times L \times B)$ bits, where *B* is the number of bits required for storing one sequence number, just for saving sequence numbers at the destination.

Bigger than the "brute-force" routing table ($\Theta(\ell \times L)$ bits per node in a grid)!

Remark

Optimization criteria for "good" routing are often conflicting: most of algorithms perform well only *w.r.t.* a subset of them.

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4) Conclusion

5 References

Goal: compact routing tables by generalizing the grid example to arbitrary connected networks.

vi: node label (e.g., MAC address)

 c_i : port number, local at the node, usually $\in [1..\delta_{v_i}]$ (δ_{v_i} : degree of v_i)

"Brute-force" routing table at v3:

dest.	chan.
<i>v</i> ₁	<i>c</i> ₂
v4	<i>c</i> 3
<i>v</i> 5	<i>c</i> 1
<i>v</i> 8	<i>c</i> 1

Memory requirement:

where n is the total number of nodes

"Compact" routing table at v3:

chan.	dest.
<i>c</i> ₁	, <i>v</i> ₅ ,, <i>v</i> ₈ ,
c ₂	, <i>v</i> ₁ ,
C3	, <i>v</i> ₄ ,

Memory requirement: only δ_{V_i} cells, depends on how compactly the set of $\Omega(n \times (\log n + \log \delta_{v_i}))$ at each node v_i , destinations for each channel can be represented.
- Tree-labeling Scheme, by Santoro and Khatib [2]
- Interval Routing, by Leeuwen and Tan [4]

Introduction

- Routing using Labels
 Tree-labeling Scheme
 Interval Routing
 - 3 Prefix Routing

4 Conclusion

26 / 73

In-tree network T^1

Goal: Considering a connected network of n > 1 nodes, labeling of nodes from 0 to n - 1 in such a way that the set of destinations for each channel is a distinct interval of node labels

Notations:

- ring of integers modulo n: $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$
- $\bullet\,$ but integers are ordered with < following $\mathbb Z$

 $^{^1\}mathsf{A}$ generalization to arbitrary connected network at the end of the subsection.

Cyclic Interval

A cyclic interval [a, b) in \mathbb{Z}_n in the set of integers defined by:

•
$$\{a, a+1, \dots, b-1\}$$
 if $a < b$,

•
$$\{a, ..., n-1, 0, ..., b-1\}$$
 otherwise.

Remarks:

- $[a,a) = \mathbb{Z}_n$
- For every a ≠ b, the complement of [a, b), i.e., Z_n \ [a, b), is [b, a).

[4,8) is in blue
[8,3) is in red

28 / 73

For each node *u*:

- assign a unique label $I_u \in \mathbb{Z}_n$ to u
- order channel from 1 to δ_u and assign a label $\alpha_i(u)$ to the *i*th channel outgoing from u

in such a way that for each node v:

- either $l_v = l_u$ (and so v = u)
- or $I_v \neq I_u$ and there exists $i \in \{1, \ldots, \delta_u\}$ such that $I_v \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and the link designated by $\alpha_i(u)$ is on the path from u to v

Given a packet p with destination label d at node u.

```
if d = l_u then

deliver p

else

let \alpha_i(u) such that d \in [\alpha_i(u), \alpha_{i+1}(u))

send p via the channel labeled with \alpha_i(u)

end if
```


A tree of n = 11 nodes

Node Labeling

(computed by a token circulation in 2n - 2 rounds)

Node Labeling

A tree of n = 11 nodes

 $\label{eq:preorder} \mbox{Preorder tree traversal} + \mbox{node labeling}$

Node Labeling

A tree of n = 11 nodes

Preorder tree traversal + node labeling

Property:

Labels in $T(u) : \{l_u, ..., l_u + |T(u)| - 1\}$

E.g., Nodes in the subtree of the node with label 4 are numbered from 4 to 8 (*i.e.*, 4+5-1)

A tree of n = 11 nodes

Labeling: let *u* be a node. For every neighbor *v* of *u*, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of *u* outgoing to *v*, where $A_v(u)$ is set as follows:

- $A_v(u) = I_v$ if v is a child of u
- *A_v(u) = l_u + |T(u)|* if *v* is the parent of *u*.

Remark: If v is a child of u, then $\alpha_v(u) = l_v$ since $l_v < n$.

Let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_v(u)$.

A tree of n = 11 nodes

Labeling: let *u* be a node. For every neighbor *v* of *u*, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of *u* outgoing to *v*, where $A_v(u)$ is set as follows:

- $A_v(u) = I_v$ if v is a child of u
- *A_v(u) = l_u + |T(u)|* if *v* is the parent of *u*.

Remark: If v is a child of u, then $\alpha_v(u) = l_v$ since $l_v < n$.

Let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_v(u)$.

32 / 73

A tree of n = 11 nodes

Labeling: let *u* be a node. For every neighbor *v* of *u*, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of *u* outgoing to *v*, where $A_v(u)$ is set as follows:

- $A_v(u) = I_v$ if v is a child of u
- *A_v(u) = l_u + |T(u)|* if *v* is the parent of *u*.

Remark: If v is a child of u, then $\alpha_v(u) = l_v$ since $l_v < n$.

Let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_V(u)$.

Examples:

- Assume *u* is the node with label 4:

 α₁(*u*) = 5, α₂(*u*) = 8, α₃(*u*) = 9
- Assume u is the node with label 9:

 α₁(u) = 10, α₂(u) = 0 (*i.e.*, 11 mod 11)

32 / 73

A tree of n = 11 nodes

Let nbc_u be the number of children of u.

Properties:

If *u* is not the root, $\delta_u = nbc_u + 1$ and $\alpha_{\delta_u}(u)$ is the label of *u* outgoing to its parent, otherwise $\delta_u = nbc_u$.

We order *u*'s children: the *i*th child of *u*, with $i \in \{1, ..., nbc_u\}$, is the one, say *v*, of label $\alpha_i(u)$ (*n.b.*, $\alpha_i(u)=l_v$ since $l_v < n$)

- **2** $0 < \alpha_1(u) < \ldots < \alpha_{nbc_u}(u) < n$
- $\exists \quad \forall i \in \{1, \dots, nbc_u\}, \\ \forall x \in [\alpha_i(u), \alpha_{i+1}(u)), x \ge \alpha_i(u)$
- 4 Let $i \in \{1, \ldots, nbc_u 1\}$. Let v and w be the *i*th and (i + 1)th child of u, resp.

Labels in T(v): { $l_v, ..., l_w - 1$ } = [l_v, l_w) = [$\alpha_i(u), \alpha_{i+1}(u)$)

E.g., labels in the subtree of the 1st child of 4 (label 5) range from 5 to 7 (*i.e.*, the label of the 2nd child of 4, 8, minus 1)

A tree of n = 11 nodes

Remark: Assuming n is known, the channel labeling can be also computed during the token circulation, otherwise n can computed beforehand using a PIF or a token circulation.

Let nbc_u be the number of children of u.

Properties:

If *u* is not the root, $\delta_u = nbc_u + 1$ and $\alpha_{\delta_u}(u)$ is the label of *u* outgoing to its parent, otherwise $\delta_u = nbc_u$.

We order *u*'s children: the *i*th child of *u*, with $i \in \{1, ..., nbc_u\}$, is the one, say *v*, of label $\alpha_i(u)$ (*n.b.*, $\alpha_i(u)=l_v$ since $l_v < n$)

- 2 $0 < \alpha_1(u) < \ldots < \alpha_{nbc_u}(u) < n$
- $\forall i \in \{1, \dots, nbc_u\}, \\ \forall x \in [\alpha_i(u), \alpha_{i+1}(u)), x \ge \alpha_i(u)$
- Let i ∈ {1,..., nbc_u − 1}. Let v and w be the ith and (i + 1)th child of u, resp. Labels in T(v) : {l_v,..., l_w − 1} =

 $[I_v, I_w) = [\alpha_i(u), \alpha_{i+1}(u))$

E.g., labels in the subtree of the 1st child of 4 (label 5) range from 5 to 7 (*i.e.*, the label of the 2nd child of 4, 8, minus 1)

Local View

Example of routing through the labeled Tree From label 5 to label 1

Example of routing through the labeled Tree From label 5 to label 1

Labeling and Routing

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

 $[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$ is a partition of \mathbb{Z}_n

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

(1) By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

(1) By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

$$\textcircled{0} \bigcup_{i \in \{1, \dots, \delta_u\}} [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) = [\alpha_1(u), \alpha_{\delta_u}(u)) \cup [\alpha_{\delta_u}(u), \alpha_1(u)) = \mathbb{Z}_n.$$

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

1 By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

$$2 \bigcup_{i \in \{1,...,\delta_u\}} [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) = [\alpha_1(u), \alpha_{\delta_u}(u)) \cup [\alpha_{\delta_u}(u), \alpha_1(u)) = \mathbb{Z}_n.$$

Let $x \in \mathbb{Z}_n$.

Assume, by contradiction, that $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and $x \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$ with $i, j \in \{1, \ldots, \delta_u\}$ and i < j (so $\delta_u > 1$).

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

(1) By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

$$2 \quad \bigcup_{i \in \{1,\ldots,\delta_u\}} [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) = [\alpha_1(u), \alpha_{\delta_u}(u)) \cup [\alpha_{\delta_u}(u), \alpha_1(u)) = \mathbb{Z}_n.$$

Let $x \in \mathbb{Z}_n$.

Assume, by contradiction, that $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and $x \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$ with $i, j \in \{1, \dots, \delta_u\}$ and i < j (so $\delta_u > 1$). Since $i < \delta_u$, $[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \subseteq [\alpha_1(u), \alpha_{\delta_u}(u))$, which implies $j < \delta_u$ by 1.

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

1 By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

$$2 \quad \bigcup_{i \in \{1,\ldots,\delta_u\}} [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) = [\alpha_1(u), \alpha_{\delta_u}(u)) \cup [\alpha_{\delta_u}(u), \alpha_1(u)) = \mathbb{Z}_n.$$

Let $x \in \mathbb{Z}_n$.

Assume, by contradiction, that $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and $x \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$ with $i, j \in \{1, \dots, \delta_u\}$ and i < j (so $\delta_u > 1$). Since $i < \delta_u$, $[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \subseteq [\alpha_1(u), \alpha_{\delta_u}(u))$, which implies $j < \delta_u$ by 1. So, $i < \delta_u - 1$ and $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ implies $x < \alpha_{(i \mod \delta_u)+1}(u) = \alpha_{i+1}(u) \le \alpha_j(u)$.

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

1 By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

Let $x \in \mathbb{Z}_n$.

Assume, by contradiction, that $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and $x \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$ with $i, j \in \{1, \ldots, \delta_u\}$ and i < j (so $\delta_u > 1$). Since $i < \delta_u$, $[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \subseteq [\alpha_1(u), \alpha_{\delta_u}(u))$, which implies $j < \delta_u$ by 1. So, $i < \delta_u - 1$ and $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ implies $x < \alpha_{(i \mod \delta_u)+1}(u) = \alpha_{i+1}(u) \le \alpha_j(u)$. Now, since $j < \delta_u$, $\forall y \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$, $y \ge \alpha_j(u)$.

A. Cournier & S. Devismes (UPJV)

Using the routing algorithm, each packet is eventually delivered to its final destination

Preliminary result:

$$[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)), i \in \{1, \dots, \delta_u\}$$
 is a partition of \mathbb{Z}_n

Proof.

1 By definition, if $\delta_u > 1$, then $[\alpha_{\delta_u}(u), \alpha_1(u))$ is the complement of $[\alpha_1(u), \alpha_{\delta_u}(u))$

Let $x \in \mathbb{Z}_n$.

Assume, by contradiction, that $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and $x \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$ with $i, j \in \{1, \dots, \delta_u\}$ and i < j (so $\delta_u > 1$). Since $i < \delta_u$, $[\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \subseteq [\alpha_1(u), \alpha_{\delta_u}(u))$, which implies $j < \delta_u$ by 1. So, $i < \delta_u - 1$ and $x \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ implies $x < \alpha_{(i \mod \delta_u)+1}(u) = \alpha_{i+1}(u) \le \alpha_j(u)$. Now, since $j < \delta_u$, $\forall y \in [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$, $y \ge \alpha_j(u)$. Thus, $x \notin [\alpha_j(u), \alpha_{(j \mod \delta_u)+1}(u))$, a contradiction. The result follows.

The previous result implies that will a packet has not reached its final destination, a channel is always uniquely determined for the next hop.

We now show that the channel chosen by the algorithm allows to get closer from the destination.

Consider a packet p with destination v at node u.

Two cases: either $v \notin T(u)$ or $v \in T(u)$.

 $v \notin T(u)$: Then, u is not the root and p should be forwarded via the parent link of u.

37 / 73

Consider a packet p with destination v at node u.

Two cases: either $v \notin T(u)$ or $v \in T(u)$.

 $v \notin T(u)$: Then, u is not the root and p should be forwarded via the parent link of u.

Now, $I_v \notin \{I_u, \ldots, I_u + |T(u)| - 1\}.$

Consider a packet p with destination v at node u.

Two cases: either $v \notin T(u)$ or $v \in T(u)$.

 $v \notin T(u)$: Then, u is not the root and p should be forwarded via the parent link of u.

Now, $I_v \notin \{I_u, \ldots, I_u + |T(u)| - 1\}.$

So, $I_v \neq I_u$ and $I_v \notin [I_u + 1, (I_u + |\mathcal{T}(u)|) \mod n)$, *i.e.*, $I_v \notin [\alpha_1(u), \alpha_{\delta_u}(u))$.

Consider a packet p with destination v at node u.

Two cases: either $v \notin T(u)$ or $v \in T(u)$.

 $v \notin T(u)$: Then, u is not the root and p should be forwarded via the parent link of u.

Now, $I_v \notin \{I_u, \ldots, I_u + |T(u)| - 1\}.$

So, $I_v \neq I_u$ and $I_v \notin [I_u + 1, (I_u + |\mathcal{T}(u)|) \mod n)$, *i.e.*, $I_v \notin [\alpha_1(u), \alpha_{\delta_u}(u))$.

As intervals are a partition of \mathbb{Z}_n , $l_v \in [\alpha_{\delta_u}(u), \alpha_1(u))$, which implies that p is forwarded via the parent link of u.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$:

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $l_{v} \in \{l_{w}, \ldots, l_{w} + |T(w)| - 1\}$, i.e., $l_{v} \in [l_{w}, l_{w} + |T(w)|)$

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}$, i.e., $l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$
Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, ..., nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$ If $i < nbc_u$ $l_w + |T(w)| < n$ is the label of the (i + 1)th child of u

so $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, ..., nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}$, i.e., $l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$ If $i < nbc_u$

If $i < nbc_u$

 $l_w + |T(w)| < n \text{ is the label of the } (i + 1) \text{th child of } u$ so $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of u

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

 $l_w + |T(w)| < n \text{ is the label of the } (i + 1)\text{th child of } u$ so $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of uNow, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $I_v \in \{I_w, \ldots, I_w + |T(w)| - 1\}$, i.e., $I_v \in [I_w, I_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

$$\begin{split} &l_w + |T(w)| < n \text{ is the label of the } (i+1) \text{th child of } u \\ &\text{so } l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \end{split}$$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

$$\begin{split} &l_w + |T(w)| < n \text{ is the label of the } (i+1) \text{th child of } u \\ &\text{so } l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \end{split}$$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Otherwise, $(l_w + |T(w)|) \mod n = 0 = \alpha_{\delta_u}(u)$. As $l_v \le n - 1$ and $\alpha_{\delta_u}(u) < \alpha_i(u)$, we also have $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

$$\begin{split} &l_w + |T(w)| < n \text{ is the label of the } (i+1) \text{th child of } u \\ &\text{so } l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \end{split}$$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Otherwise, $(l_w + |T(w)|) \mod n = 0 = \alpha_{\delta_u}(u)$. As $l_v \le n - 1$ and $\alpha_{\delta_u}(u) < \alpha_i(u)$, we also have $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$.

Thus, in either cases, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)).$

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, \ldots, nbc_u\}$.

p should be forwarded toward w.

 $I_v \in \{I_w, \ldots, I_w + |T(w)| - 1\}$, i.e., $I_v \in [I_w, I_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

$$\begin{split} &l_w + |T(w)| < n \text{ is the label of the } (i+1) \text{th child of } u \\ &\text{so } l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)) \end{split}$$

Otherwise, i = nbcu

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Otherwise, $(l_w + |T(w)|) \mod n = 0 = \alpha_{\delta_u}(u)$. As $l_v \le n - 1$ and $\alpha_{\delta_u}(u) < \alpha_i(u)$, we also have $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Thus, in either cases, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$.

Otherwise, $i = \delta_u$ and u is the root.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, ..., nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

 $l_w + |T(w)| < n$ is the label of the (i + 1)th child of uso $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Otherwise, i = nbc_u

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Otherwise, $(l_w + |T(w)|) \mod n = 0 = \alpha_{\delta_u}(u)$. As $l_v \le n - 1$ and $\alpha_{\delta_u}(u) < \alpha_i(u)$, we also have $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$.

Thus, in either cases, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)).$

Otherwise, $i = \delta_u$ and u is the root.

 $l_w \leq l_v < n$. So, $l_v \in [l_w, n) = [\alpha_i(u), n) = [\alpha_{\delta_u}(u), n)$.

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, ..., nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

 $l_w + |T(w)| < n$ is the label of the (i + 1)th child of uso $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Otherwise, i = nbc_u

 $\begin{array}{l} u \text{ is not the root, } i+1=\delta_u, \text{ and } (l_w+|T(w)|) \mbox{ mod } n=\alpha_{\delta_u}(u), \mbox{ the label of the parent of } u \\ \mbox{ Now, } l_v\geq l_w=\alpha_i(u). \mbox{ Moreover, } l_w+|T(w)|\leq n. \\ \mbox{ If } (l_w+|T(w)|) \mbox{ mod } n=l_w+|T(w)|, \ l_v\leq l_w+|T(w)|=(l_w+|T(w)|) \mbox{ mod } n=\alpha_{\delta_u}(u). \mbox{ So, } l_v\in[\alpha_i(u),\alpha_{\delta_u}(u)). \\ \mbox{ Otherwise, } (l_w+|T(w)|) \mbox{ mod } n=0=\alpha_{\delta_u}(u). \mbox{ As } l_v\leq n-1 \mbox{ and } \alpha_{\delta_u}(u)<\alpha_i(u), \mbox{ we also } have \ l_v\in[\alpha_i(u),\alpha_{\delta_u}(u)). \end{array}$

Thus, in either cases, $I_v \in [\alpha_i(u), \alpha_{\delta_u}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)).$

Otherwise, $i = \delta_u$ and u is the root.

$$\begin{split} &l_w \leq l_v < n. \text{ So, } l_v \in [l_w, n) = [\alpha_i(u), n) = [\alpha_{\delta_u}(u), n).\\ &\text{Since } \alpha_{\delta_u}(u) > \alpha_1(u), \ l_v \in [\alpha_{\delta_u}(u), \alpha_1(u)) = [\alpha_i(u), \alpha_{(i \text{ mod } \delta_u)+1}(u)). \end{split}$$

38 / 73

Using the routing algorithm, each packet is eventually delivered to its final destination

 $v \in T(u)$: If v = u, $l_v = l_u$ and u delivers p.

Assume now that $v \neq u$: $v \in T(w)$, where w is the *i*th child of u with $i \in \{1, ..., nbc_u\}$.

p should be forwarded toward w.

 $l_v \in \{l_w, \ldots, l_w + |T(w)| - 1\}, i.e., l_v \in [l_w, l_w + |T(w)|)$

If $i < \delta_u$, $(i \mod \delta_u) + 1 = i + 1$ and we consider two subcases: $i < nbc_u$ and $i = nbc_u$

If i < nbcu</p>

 $l_w + |T(w)| < n$ is the label of the (i + 1)th child of uso $l_v \in [\alpha_i(u), \alpha_{i+1}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$

Otherwise, i = nbcu

u is not the root, $i + 1 = \delta_u$, and $(l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$, the label of the parent of *u* Now, $l_v \ge l_w = \alpha_i(u)$. Moreover, $l_w + |T(w)| \le n$. If $(l_w + |T(w)|) \mod n = l_w + |T(w)|$, $l_v \le l_w + |T(w)| = (l_w + |T(w)|) \mod n = \alpha_{\delta_u}(u)$. So, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$. Otherwise, $(l_w + |T(w)|) \mod n = 0 = \alpha_{\delta_u}(u)$. As $l_v \le n - 1$ and $\alpha_{\delta_u}(u) < \alpha_i(u)$, we also have $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u))$.

Thus, in either cases, $l_v \in [\alpha_i(u), \alpha_{\delta_u}(u)) = [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u)).$

Otherwise, $i = \delta_u$ and u is the root.

$$\begin{split} &l_w \leq l_v < n. \text{ So, } l_v \in [l_w, n) = [\alpha_i(u), n) = [\alpha_{\delta_u}(u), n).\\ &\text{Since } \alpha_{\delta_u}(u) > \alpha_1(u), \, l_v \in [\alpha_{\delta_u}(u), \alpha_1(u)) = [\alpha_i(u), \alpha_{(i \text{ mod } \delta_u)+1}(u)). \end{split}$$

Hence, in all cases, $l_v \in [\alpha_i(u), \alpha_{(i \mod \delta_u)+1}(u))$ and, since intervals are a partition of \mathbb{Z}_n , p is forwarded toward w, and we are done.

A. Cournier & S. Devismes (UPJV)

- Distributed Computation of the Labeling (using a token circulation):
 - O(n) rounds / messages
 - message length: $O(\log n)$ bits per message
- Memory Usage: $\delta_u + 1$ labels for node u, *i.e.*, $(\delta_u + 1) \times \lceil \log n \rceil$ bits
- Routing from u to v: ||u, v|| hops (hop-optimal)

Generalization to arbitrary connected networks

Leader election + spanning tree (with initialization and term. detect. at leader), token circulation in the tree (O(mn) messages, O(m) rounds, and $O(\delta_u + B)$ bits, where B the number of bits to store an identifier) (cf., distributed computing courses)

Pros.

- Correctness
- Time complexity: a packet is routed in at most min(n 1, 2H) hops where H < n is the height of the tree.

If the tree is *BFS*, at most min(n - 1, 2D) hops where *D* is the network diameter.

 Memory Usage: at most δ_u+1 labels for node u, *i.e.*, at most (δ_u+1) × [log n] bits

Generalization to arbitrary connected networks

Leader election + spanning tree (with initialization and term. detect. at leader), token circulation in the tree (O(mn) messages, O(m) rounds, and $O(\delta_u + B)$ bits, where B the number of bits to store an identifier) (*cf.*, distributed computing courses)

Pros.

- Correctness
- Time complexity: a packet is routed in at most min(n - 1, 2H) hops where H < n is the height of the tree.

If the tree is *BFS*, at most min(n - 1, 2D) hops where *D* is the network diameter.

 Memory Usage: at most δ_u+1 labels for node u, *i.e.*, at most (δ_u+1) × ⌈log n⌉ bits

Cons.

- A packet may be routed from u to v in drastically more than ||u, v|| hops.
 E.g., in a ring, the two leaves are 1-hop away but any packet is routed from one to the other in n 2 hops.
- Only n 1 links are used while the network may contain Θ(n²) links: this may lead to congestion and a single link failure partitions the network (this approach is then not robust)

This latter drawback is addressed by the interval routing

40 / 73

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4 Conclusion

5 References

An interval labeling scheme (ILS) for a network G of n nodes is

- **()** An assignment of different labels from \mathbb{Z}_n to the nodes of G, and
- 2 and for each node u, an assignment of pairwise distinct labels $\alpha_i(u)$, $i = 1, \ldots, \delta_u$, to all channels of u.

The **interval routing algorithm** assumes a ILS is given and forwards packets as in the tree-labeling scheme routing algorithm.

An **ILS** is valid if all packets forwarded using the interval routing algorithm eventually reach their final destination.

A valid ILS for arbitrary connected networks Tool: Depth-First Search (DFS) spanning tree T

Property: For every two neighbors u and v in G, either $u \in T(v)$, or $v \in T(u)$. **Distributed Construction:** Leader election + token circulation (O(mn) messages, O(m) rounds, and $O(\delta_u + B)$ bits, where B the number of bits to store an identifier, *cf.*, distributed computing courses)

A. Cournier & S. Devismes (UPJV)

Labeling and Routing

Node labeling

A network of n = 12 nodes

Node labeling

A network of n = 12 nodes

Preorder DFS traversal

(computed by a token circulation in 2m rounds)

Node labeling

A network of n = 12 nodes

Preorder DFS traversal + node labeling

Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of u outgoing to v.

Remark: If v is a non-parent neighbor of $u_1, \alpha_v(u) = l_v$ since $l_v < n$.

A. Cournier & S. Devismes (UPJV)

²In this case, the non-tree edge is labeled 0 at *u* by the rule 1, so assigning $A_v(u)$ to $l_u + |T(u)|$ would lead to two channels at *u* with the same label!

Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of u outgoing to v.

12 nodes, computed together with the node labeling

Remark: If v is a non-parent neighbor of u, $\alpha_v(u) = l_v$ since $l_v < n$.

A. Cournier & S. Devismes (UPJV)

²In this case, the non-tree edge is labeled 0 at u by the rule 1, so assigning $A_v(u)$ to $l_u + |T(u)|$ would lead to two channels at u with the same label!

Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of u outgoing to v.

12 nodes, computed together with the node labeling

Remark: If v is a non-parent neighbor of u, $\alpha_v(u) = l_v$ since $l_v < n$.

Like for the tree-labeling scheme, we let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_v(u)$.

²In this case, the non-tree edge is labeled 0 at u by the rule 1, so assigning $A_v(u)$ to $l_u + |T(u)|$ would lead to two channels at u with the same label!

Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of u outgoing to v.

Yet, A_v(u) is set as follows:
if {u, v} is a non-tree edge, A_v(u) = I_v
If v is a child of u, A_v(u) = I_v
If v is the parent of u, A_v(u) = I_u + |T(u)| unless I_u + |T(u)| = n and u has a non-tree edge to the root²
If v is the parent of u, I_u + |T(u)| = n, and u has a non-tree edge to the root,

12 nodes, computed together with the node labeling

Remark: If v is a non-parent neighbor of u, $\alpha_v(u) = l_v$ since $l_v < n$.

Like for the tree-labeling scheme, we let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_v(u)$.

Generalization: if G is a tree, G is labeled as with the tree-labeling scheme.

A. Cournier & S. Devismes (UPJV)

 $A_{v}(u) = I_{v}$

²In this case, the non-tree edge is labeled 0 at u by the rule 1, so assigning $A_v(u)$ to $l_u + |T(u)|$ would lead to two channels at u with the same label!

Channel labeling

Like for the tree-labeling scheme, for every node u, for every neighbor v of u, we assign the label $\alpha_v(u) = A_v(u) \mod n$ to the channel of u outgoing to v.

Remark: If v is a non-parent neighbor of u, $\alpha_v(u) = l_v$ since $l_v < n$.

Like for the tree-labeling scheme, we let $\alpha_1(u), \ldots, \alpha_{\delta_u}(u)$ be the channel label at u sorted in increasing order according to values $A_v(u)$.

Generalization: if G is a tree, G is labeled as with the tree-labeling scheme.

A. Cournier & S. Devismes (UPJV)

²In this case, the non-tree edge is labeled 0 at u by the rule 1, so assigning $A_v(u)$ to $I_u + |T(u)|$ would lead to two channels at u with the same label!

Example of Interval Routing

Routing from 4 to 9

46 / 73

Example of Interval Routing

46 / 73

 Locally at each node, the union of intervals is equal to Z_n (the proof is identical to the one for the tree-labeling scheme)

$$^{5}(a,b) < (c,d) \equiv [a < c \lor (a = c \land b < d)]$$

2

● Locally at each node, the union of intervals is equal to Z_n (the proof is identical to the one for the tree-labeling scheme)

So, when u has a packet for $v \neq u$, u finds a destination w for the next hop.

$$^{5}(a,b) < (c,d) \equiv [a < c \lor (a = c \land b < d)]$$

~

 Locally at each node, the union of intervals is equal to Z_n (the proof is identical to the one for the tree-labeling scheme)

So, when u has a packet for $v \neq u$, u finds a destination w for the next hop.

2) If
$$I_u > I_v$$
, $I_w < I_u$

In the path 10,0,1,2,3: $l_u = 10 > l_v = 3$ and $l_w = 0 < l_u = 10$ In the path 7,5,1: $l_u = 7 > l_v = 1$ and $l_w = 5 < l_u = 7$ At the next hop, $l_u = 5 > l_v = 1$ and $l_w = 1 < l_u = 5$

$$^{3}(a,b) < (c,d) \equiv [a < c \lor (a = c \land b < d)]$$

~

47 / 73

● Locally at each node, the union of intervals is equal to Z_n (the proof is identical to the one for the tree-labeling scheme)

So, when u has a packet for $v \neq u$, u finds a destination w for the next hop.

2 If
$$l_u > l_v$$
, $l_w < l_u$
3 If $l_u < l_v$, $l_w \le l_v$

See the paths 0,10,9,11 and 2,1,5,7

$$^{5}(a,b) < (c,d) \equiv [a < c \lor (a = c \land b < d)]$$

~

 Locally at each node, the union of intervals is equal to Z_n (the proof is identical to the one for the tree-labeling scheme)

So, when *u* has a packet for $v \neq u$, *u* finds a destination *w* for the next hop.

$$If I_u > I_v, I_w < I_u$$

3) If
$$I_u < I_v$$
, $I_w \le I_v$

Let lca(u, v) be the label of the lowest common ancestor of u and v and $f_v(u) = (-lca(u, v), l_u).^3$

(4) If
$$I_u < I_v$$
, $f_v(w) < f_v(u)$

In the path 0,10,9,11: take $l_u = 0$ and $l_w = 10$, we have $f_v(w) = (-9, 10) < f_v(u) = (0, 0)$

In the path 2,1,5,7: $l_u = 2$ and $l_w = 1$, we have $f_v(w) = (-1,1) < f_v(u) = (-1,2)$

$$^{3}(a,b) < (c,d) \equiv [a < c \lor (a = c \land b < d)]$$

A. Cournier & S. Devismes (UPJV)

~

47 / 73

If $\alpha_w(u) \leq I_v$.

- First, w is not a proper descendent of u since otherwise $\alpha_w(u) = l_w > l_u > l_v$.
- So, w is a proper ancestor of u: $I_w < I_u$.

If $\alpha_w(u) \leq l_v$.

- First, w is not a proper descendent of u since otherwise $\alpha_w(u) = l_w > l_u > l_v$.
- So, w is a proper ancestor of u: $I_w < I_u$.

Otherwise, every label α at u satisfies $\alpha > I_v$ and $\alpha_w(u)$ is the larger label at u.

• *u* is not the root since $l_u > l_v \ge 0$.

• Let f be the parent of u. Since every label α at u satisfies $\alpha > l_v \ge 0$, $\alpha_f(u) = (l_u + |T(u)|) \mod n$. Again, $\alpha_f(u) \ne 0$ since $\alpha_f(u) > l_v \ge 0$. Thus, $\alpha_f(u) = l_u + |T(u)|$ is the largest channel label at u and so w = f.

Indeed, the label at u of any channel from u to any of its proper ancestor $w' \neq f$ is $l_{w'} < l_u$ and the label at u of any channel from u to any of its proper descendent w' is $l_{w'} < l_u + |T(u)|$.

As w is the father of u, we have $I_w < I_u$.

If $v \in T(u)$, let w' be the child of u such that $v \in T(w')$. We have $\alpha_{w'}(u) = l_{w'} \leq l_v$ and this implies that $\alpha_{w'}(u) \leq \alpha_w(u) \leq l_v < l_{w'} + |T(w')|$. So, w is not the father f of u (indeed, either $\alpha_f(u) = l_f < l_u < l_{w'}$, $\alpha_f(u) = 0 < l_{w'}$, or $\alpha_f(u) = l_u + |T(u)| \geq l_{w'} + |T(w')|$) and $l_w = \alpha_w(u) \leq l_v$.

If $v \in T(u)$, let w' be the child of u such that $v \in T(w')$. We have $\alpha_{w'}(u) = l_{w'} \leq l_v$ and this implies that $\alpha_{w'}(u) \leq \alpha_w(u) \leq l_v < l_{w'} + |T(w')|$. So, w is not the father f of u (indeed, either $\alpha_f(u) = l_f < l_u < l_{w'}, \alpha_f(u) = 0 < l_{w'}$, or $\alpha_f(u) = l_u + |T(u)| \geq l_{w'} + |T(w')|$) and $l_w = \alpha_w(u) \leq l_v$.

Otherwise $v \notin T(u)$ and as $l_v > l_u$, we also have $l_v \ge l_u + |T(u)|$

- Since $l_u + |T(u)| \le l_v \le n 1$, the label of channel from u to its parent is $l_u + |T(u)|$.
- The channel from u to one of its proper descendent w' is labeled at u with $l_{w'} < l_u + |T(u)|$.
- The channel from u to one of its non-parent proper ancestor w' is labeled at u with $l_{w'} < l_u < l_u + |T(u)|$.
- So, w is the father of u and $I_w < I_u < I_v$.

Proof: If $v \in T(u)$, $lca(u, v) = l_u$. Let w' the child of u such that $v \in T(w')$. As in the proof of Property 3, we have $l_{w'} \leq l_w < l_{w'} + |T(w')|$. Thus, $w \in T(w')$ and so $lca(w, v) \geq l_{w'} > l_u = lca(u, v)$. Hence, $f_v(w) < f_v(u)$.
Proof: If $v \in T(u)$, $lca(u, v) = l_u$. Let w' the child of u such that $v \in T(w')$. As in the proof of Property 3, we have $l_{w'} \le l_w < l_{w'} + |T(w')|$. Thus, $w \in T(w')$ and so $lca(w, v) \ge l_{w'} > l_u = lca(u, v)$. Hence, $f_v(w) < f_v(u)$.

Otherwise $v \notin T(u)$ and $l_v \ge l_u + |T(u)|$ since $l_v > l_u$. As in the proof of Property 4, w is the parent of u and so $l_w < l_u$. Now, $v \notin T(u)$ implies lca(w, v) = lca(u, v). Hence, $f_v(w) < f_v(u)$.

- By Property 2 (if $l_u > l_v, l_w < l_u$), after a finite number of hops, the packet reaches a node u such that $l_u \le l_v$
- By Property 3 (if $I_u < I_v$, $I_w \le I_v$), the property $I_u \le I_v$ is invariant
- By Property 4 (if $l_u < l_v, f_v(w) < f_v(u)$), the packet is deliver to its destination within a finite number of hops after the property $l_u \le l_v$ becomes true

- By Property 2 (if $l_u > l_v, l_w < l_u$), after a finite number of hops, the packet reaches a node u such that $l_u \le l_v$
- By Property 3 (if $l_u < l_v$, $l_w \le l_v$), the property $l_u \le l_v$ is invariant
- By Property 4 (if $l_u < l_v, f_v(w) < f_v(u)$), the packet is deliver to its destination within a finite number of hops after the property $l_u \le l_v$ becomes true

Complexity: At most n-1 hops

(the correctness implies the absence of cycles)

A valid ILS for arbitrary connected networks Pros and Cons

Pros:

2 Load-balancing

(every link is used by at least one route)

Memory Usage: δ_u + 1 labels for node u, *i.e.*, (δ_u + 1) × [log n] bits

A valid ILS for arbitrary connected networks Pros and Cons

Pros:

- More robust than tree-labeling scheme
- 2 Load-balancing

(every link is used by at least one route)

Memory Usage: δ_u + 1 labels for node u, *i.e.*, (δ_u + 1) × [log n] bits

Cons:

 Robustness: in case of topological changes, the DFS spanning tree may have to be totally recomputed.

A more robust solution: prefix routing (presented in the next section

2 Efficiency: in arbitrary connected networks, the route length can be greater than the distance between the source and the destination.

In the previous example: nodes of labels 4 and 2 are neighbors but the route from 4 to 2 go through the node of label 1!

Lower bound: in the worst case the interval routing algorithm chooses a route of length at least $\frac{3}{2}$ of the network diameter [1]

A valid ILS for arbitrary connected networks Pros and Cons

Pros:

- More robust than tree-labeling scheme
- 2 Load-balancing

(every link is used by at least one route)

Memory Usage: $\delta_u + 1$ labels for node u, *i.e.*, $(\delta_u + 1) \times \lceil \log n \rceil$ bits

Cons:

 Robustness: in case of topological changes, the DFS spanning tree may have to be totally recomputed.

A more robust solution: prefix routing (presented in the next section

2 Efficiency: in arbitrary connected networks, the route length can be greater than the distance between the source and the destination.

In the previous example: nodes of labels 4 and 2 are neighbors but the route from 4 to 2 go through the node of label 1!

Lower bound: in the worst case the interval routing algorithm chooses a route of length at least $\frac{3}{2}$ of the network diameter [1]

However, hop-optimal in many regular topologies, e.g., rings and $L \times L$ -grids

A hop-optimal valid ILS for rings

Labeling:

- Solution Nodes are labeled from 0 to n − 1 in clockwise order
- For each node labeled i, the clockwise channel is labeled (i + 1) mod n
- Sor each node labeled i, the anticlockwise channel is labeled (i + [n/2]) mod n

A hop-optimal valid ILS for rings

Labeling:

- Solution Nodes are labeled from 0 to n − 1 in clockwise order
- For each node labeled i, the clockwise channel is labeled (i + 1) mod n
- Sor each node labeled i, the anticlockwise channel is labeled (i + [n/2]) mod n

Routing:

- Packets for nodes i + 1, ..., (i + ⌈n/2⌉) 1 routed via the clockwise channel
- Packets for nodes (i + ⌈n/2⌉), ..., i − 1 routed via the anticlockwise channel

A hop-optimal valid ILS for $(L \times L)$ -grids $(n = L \times L)$

Labeling:

- The node at the *i*th column and *j*th row is labeled (j-1)L + (i-1)
- 2 The channels of the node at the *i*th column and the *j*th row are labeled as follows

A hop-optimal valid ILS for $(L \times L)$ -grids $(n = L \times L)$

Labeling:

- The node at the *i*th column and *j*th row is labeled (j-1)L + (i-1)
- 2 The channels of the node at the *i*th column and the *j*th row are labeled as follows

Routing:

- If v is in a row higher that u, u sends the packet up
- If v is in a row lower that u, u sends the packet down
- If v is in the same row as u but to the left, u sends the packet to the left
- If v is in the same row as u but to the right, u sends the packet to the right

Roadmap

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

O Prefix Routing

4) Conclusion

5 References

Based on an arbitrary spanning tree T to increase robustness:

- If a link is added between two nodes, the spanning tree remains a spanning tree and the new link is a non-tree edge
- If a new node is added together with new links connecting it to existing nodes, the spanning tree is extended using one of the links,⁴ the other are non-tree edges

 $^{^{4}}e.g.$, the one with the extremity that is closest to the root

Based on an arbitrary spanning tree T to increase robustness:

- If a link is added between two nodes, the spanning tree remains a spanning tree and the new link is a non-tree edge
- If a new node is added together with new links connecting it to existing nodes, the spanning tree is extended using one of the links,⁴ the other are non-tree edges

Efficiency can be improved starting from a BFS spanning tree

A. Cournier & S. Devismes (UPJV)

Labeling and Routing

⁴*e.g.*, the one with the extremity that is closest to the root

Principle

- Node and channels labels: strings on some alphabet Σ (*e.g.*, port numbers)
- 2 Σ^* : set of all strings over Σ
- **3** ϵ : the empty string
- $\alpha \lhd \beta$: α is a prefix of β

Principle

- Node and channels labels: strings on some alphabet Σ (*e.g.*, port numbers)
- **2** Σ^* : set of all strings over Σ
- \bullet : the empty string
- $\alpha \lhd \beta$: α is a prefix of β

Packet forwarding

Consider all channels whose label is prefix of the destination label and select the longest one.

Principle

- Node and channels labels: strings on some alphabet Σ (e.g., port numbers)
- **2** Σ^* : set of all strings over Σ
- \bullet : the empty string

Packet forwarding

Consider all channels whose label is prefix of the destination label and select the longest one.

Example: If the destination label is aabbc and the current node has channel labels: aabb, abba, aab, aabc, aa.

aabb, aab, aa are prefix and the channel labeled **aabb** is selected for the next hop.

A. Cournier & S. Devismes (UPJV)

Given a packet p with destination label d at node u.

```
if d = l_u then
deliver p
else
```

```
let \alpha_i(u) := the longest channel label such that \alpha_i(u) \triangleleft d
send p via the channel labeled with \alpha_i(u)
end if
```

1 If *u* is the root, *u* is labeled with $l_u = \epsilon$

If w is the child of u, I_w extends I_u by one letter: if u₁, ..., I_k are the children of u, then I_{ui} = I_u.a_i, where a₁, ..., a_k are k distinct letters from Σ

Node Labeling

1) If u is the root, u is labeled with $l_u = \epsilon$

If w is the child of u, l_w extends l_u by one letter: if u₁, ..., l_k are the children of u, then l_{ui} = l_u.a_i, where a₁, ..., a_k are k distinct letters from Σ

Remark: It may be distributedly computed using (BFS) spanning tree construction (with initialization and termination detection at the root) (O(H) rounds, O(n.m) messages of $O(H. \log |\Sigma|)$ bits, and $O(\log \Delta + H. \log |\Sigma|)$ bits per node)

(H is the height of the tree)

(If we use port numbers as alphabet, $\Sigma = O(\Delta)$ where Δ is the degree of the network)

1 If $\{u, v\}$ is a non-tree edge, $\alpha_v(u) = l_v$

- 2 If v is a child of u, $\alpha_v(u) = I_v$
- 3 If v is the parent of u and u has no non-tree edge to the root, ${}^5 \alpha_v(u) = \epsilon$
- If v is the parent of u and u has a non-tree edge to the root, $\alpha_v(u) = l_v$

⁵Otherwise, the non-tree edge is labeled 0 at u by the rule 1, so assigning $\alpha_v(u)$ to ϵ would lead to two channels at u with the same label!

- 1 If $\{u, v\}$ is a non-tree edge, $\alpha_v(u) = l_v$
- 2 If v is a child of u, $\alpha_v(u) = l_v$
- 3 If v is the parent of u and u has no non-tree edge to the root, ${}^5 \alpha_v(u) = \epsilon$
- If v is the parent of u and u has a non-tree edge to the root, $\alpha_v(u) = l_v$

⁵Otherwise, the non-tree edge is labeled 0 at u by the rule 1, so assigning $\alpha_v(u)$ to ϵ would lead to two channels at u with the same label!

If $\{u, v\}$ is a non-tree edge, $\alpha_v(u) = l_v$

- 2) If v is a child of $u, \alpha_v(u) = l_v$
- 3 If v is the parent of u and u has no non-tree edge to the root, ${}^5 \alpha_v(u) = \epsilon$
- If v is the parent of u and u has a non-tree edge to the root, $\alpha_v(u) = l_v$

Property: *v* is an ancestor of *u* if and only if $l_v \triangleleft l_u$

⁵Otherwise, the non-tree edge is labeled 0 at u by the rule 1, so assigning $\alpha_v(u)$ to ϵ would lead to two channels at u with the same label!

If {u, v} is a non-tree edge, α_v(u) = l_v
 If v is a child of u, α_v(u) = l_v
 If v is the parent of u and u has no

non-tree edge to the root,⁵ $\alpha_v(u) = \epsilon$ If v is the parent of u and u has a

non-tree edge to the root, $\alpha_v(u) = I_v$

Property: *v* is an ancestor of *u* if and only if $l_v \triangleleft l_u$

Remark: It may be distributedly computed using PIF in the tree (O(H) rounds, O(n) messages, and $O(\Delta.H.\log |\Sigma|)$ bits per node

(If we use port numbers as alphabet, $\Sigma = O(\Delta)$) and so we have $O(\Delta.H.\log \Delta)$ bits per node

A. Cournier & S. Devismes (UPJV)

⁵Otherwise, the non-tree edge is labeled 0 at u by the rule 1, so assigning $\alpha_v(u)$ to ϵ would lead to two channels at u with the same label!

Local View

Example of Prefix Routing

Routing from 11 to 22

Example of Prefix Routing

Routing from 11 to 22

Sor all nodes u and v such that u ≠ v, there is a channel at u labeled with a prefix of l_v

Sor all nodes u and v such that u ≠ v, there is a channel at u labeled with a prefix of l_v

So, when u has a packet for $v \neq u$, uuniquely determines a destination w for the next hop

(channel labels are unique at u, and so is the one that is the longest prefix of l_V)

2 If $u \in T(v)$, w is an ancestor of u See, e.g., 211, 21, 2 and 31, ϵ

For all nodes u and v such that u ≠ v, there is a channel at u labeled with a prefix of l_v

So, when u has a packet for $v \neq u$, uuniquely determines a destination w for the next hop

(channel labels are unique at u, and so is the one that is the longest prefix of l_v)

- If $u \in T(v)$, w is an ancestor of u See, e.g., 211, 21, 2 and 31, ϵ
- If u is an ancestor of v, w is an ancestor of v closer to v than u See, e.g., 2, 21, 212

Sor all nodes u and v such that u ≠ v, there is a channel at u labeled with a prefix of l_v

So, when u has a packet for $v \neq u$, u uniquely determines a destination w for the next hop

(channel labels are unique at u, and so is the one that is the longest prefix of l_V)

- 2 If $u \in T(v)$, w is an ancestor of u See, e.g., 211, 21, 2 and 31, ϵ
- If u is an ancestor of v, w is an ancestor of v closer to v than u See, e.g., 2, 21, 212
- If $u \notin T(v)$, w is an ancestor of v or w is the parent of u See, e.g., 11, 1, 2 and 12, 1, 2, 22

For all nodes u and v such that $u \neq v$, there is a channel at u labeled with a prefix of I_v

If u is not the root, u has a channel ϵ which is a prefix of I_v .

Otherwise, *u* is the root, $v \in T(u)$, and has a child *w* such that $v \in T(w)$. By construction, $\alpha_w(u) = l_w \triangleleft l_v$.

If $\alpha_w(u) = \epsilon$, w is an ancestor of u.

Otherwise, $l_w = \alpha_w(u) \triangleleft l_v \triangleleft l_u$ and so w is an ancestor of u.

Let w' be the child of u such that $v \in T(w')$. $\alpha_{w'}(u) = I_{w'}$ is a non-empty prefix of I_v . As $\alpha_w(u)$ is the longest prefix of I_v at u, we have $\alpha_{w'}(u) = I_{w'} \lhd \alpha_w(u) = I_w \lhd I_v$: w is an ancestor of v below u.

If $\alpha_w(u) = \epsilon$, w is the parent of u or the root. Now, the root is an ancestor of v.

Otherwise, $\alpha_w(u) = I_w \triangleleft I_v$: *w* is an ancestor of *v*.

Correctness & Complexity

Assume u sends a packet to v

Assume u sends a packet to v

If u is an ancestor of v, v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
Assume u sends a packet to v

- If u is an ancestor of v, v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
- If u is a descendent of v, an ancestor of v is reached within at most H hops by Property 2 (if u ∈ T(v), w is an ancestor of u); then v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)

Assume u sends a packet to v

- If u is an ancestor of v, v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
- If u is a descendent of v, an ancestor of v is reached within at most H hops by Property 2 (if u ∈ T(v), w is an ancestor of u); then v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
- If u is neither an ancestor nor a descendent of v, the packet reaches an ancestor of v in at most H hops by Property 4 (if u ∉ T(v), w is an ancestor of v or w is the parent of u)⁶ and then at most H additional hops are required to reach v by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)

⁶In case w is the parent of u, we have $w \notin T(v)$

Assume u sends a packet to v

- If u is an ancestor of v, v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
- If u is a descendent of v, an ancestor of v is reached within at most H hops by Property 2 (if u ∈ T(v), w is an ancestor of u); then v is reached within at most H hops by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)
- If u is neither an ancestor nor a descendent of v, the packet reaches an ancestor of v in at most H hops by Property 4 (if u ∉ T(v), w is an ancestor of v or w is the parent of u)⁶ and then at most H additional hops are required to reach v by Property 3 (if u is an ancestor of v, w is an ancestor of v closer to v than u)

Overall, a packet for v initiated at u reaches v within at most 2H hops.

⁶In case w is the parent of u, we have $w \notin T(v)$

Pros.

- Correct
- Robust

Cons.

• Memory usage: $O(\Delta.H. \log |\Sigma|)$ bits per node

 $(O(\Delta.H. \log \Delta)$ bits per node if we use port numbers)

Roadmap

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4 Conclusion

5 References

A good labeling allows to save space in routing algorithms.

O No optimal solution

Optimization criteria for "good" routing are often conflicting: most of algorithms perform well only *w.r.t.* a subset of them.

71 / 73

Roadmap

Introduction

2 Routing using Labels

- Tree-labeling Scheme
- Interval Routing

3 Prefix Routing

4 Conclusion

72 / 73

[1] P. Ruzicka.

On efficiency of interval routing algorithms.

In M. Chytil, L. Janiga, and V. Koubek, editors, *Mathematical Foundations of Computer Science 1988, MFCS'88, Carlsbad, Czechoslovakia, August 29 - September 2, 1988, Proceedings*, volume 324 of *Lecture Notes in Computer Science*, pages 492–500. Springer, 1988.

- [2] N. Santoro and R. Khatib. Labelling and implicit routing in networks. *Comput. J.*, 28(1):5–8, 1985.
- [3] G. Tel.

Introduction to Distributed Algorithms. Cambridge University Press, USA, 2nd edition, 2001.

 [4] J. van Leeuwen and R. B. Tan. Interval routing. *Comput. J.*, 30(4):298–307, 1987.

73 / 73