GLOBAL LOGISTICS

Frédéric Gauthier

PART 1 -

 INTERNATIONAL LOGISTICS SCOPEFor ages
Physical flows
Fromorder information and financial flows

Within the company
Supply chain
Worldwide

PART 1 INTERNATIONAL LOGISTICS SCOPE

Economy, demand and fluctuation
Depending on products
Population : age and culture
Freer trade or ... not
Competition throughout the world
The right what ? ? ? ?
Quantity, time, place, quality...
Market location is changing
Transportation and worldwide communication make it possible

Sea way cheapest cost
Communication cost
And poles

12,000 kms long

PART 1 INTERNATIONAL LOGISTICS SCOPE

Customers, what they expect
A fair price
Quality looking for exceeding custom expectations
Delivery lead time
Better pre sale after sale service flexibility
Order qualifiers
You need them
and order winners
You select them
Depending on
Life cycle
country

PART I

- Manufacturing strategy
- Delivery lead time
- Engineer to order
- At the product design stage
- Make to order
- Raw material is available
- Assemble to order
- Parts are available
- Make to stock
- From finished goods inventory

PART I

The supply chain concept
Raw materials, manufacturing, finished goods Several companies within the supply / demand relationship
Several suppliers as well as several customers
A number of intermediaries
From the past to today
Internal management
Suppliers as business adversaries

The supplier partnership within the Just in Time management

Mutual analysis for cost reduction
Mutual product design
The speed of accurate information flow

PART I

- Conflicts in traditional systems
- Before separate functions
- Best customer service
- Lowest production cost
- Lowest inventory investment
- Lowest distribution costs
- To
- Marketing
- Finance
- Production...
- Against Finance
- Driven to conflicts
- Connections with goals
- To balance conflicting objectives

Sum up ...

- What are the three logistics flows
- What is logistics main goal
- What is the main problem logistics has to solve

Supply chain metrics

- A performance measure qualitative or quantitative,
- Control by superior
- Reporting of data
- Communication
- Learning to ...
- Improve

Today major challenges

- Customers are never satisfied
- A supply chain might be easily large
- A vast amount of data

Product life cycle is shorter and shorter
Profit margin are more squeezed
By the way an increasing number of alternatives

- Designing the flow management
- Product design
- Use, maintenance, analysis, plan, packaging
- Setting the objectives
- Assessment of service level, logistics categories
- Designing the information system
- Databases, software choice, telecommunication, EDI, codification
- Design of physical system
- Network, inventory level, transport alternatives
Designing the management
 system
- Forecast, ressource allocation, priority rules

Intensification of trade

> means
> concentration

Part II - Competing with Operations (materials management)

COMPETING WITH OPERATIONS Introduction

Operations management deals with processes
Creates departments connection with Operations
accounting, finance, human resources, management information system, marketing, operations...

Inputs, adding value, provide outputs

Cuts across boundaries

Process View of an Ad Agency

Nested Processes

Advertisement Design and Planning Process

Creative design process

- Receive work request
- Create team
- Prepare several designs
- Receive inputs from Account Executive
- Prepare final concept
- Revise concept per client's inputs

Media planning process

- Receive work request
- Prepare several media plans
- Receive inputs from Account Executive
- Prepare final plan
- Revise plan per client's inputs
- Customer supplier relationships
- End users and internal customers
- External suppliers and internal suppliers
- Service and manufacturing processes
- Services
- Intangible perishable outputs
- Finished goods inventory

Degree of customer contac \dagger High or low Management in service

Manufacturing and service comparison in the U.S.

Internal Value-Chain Linkages Showing Work and Information Flows

- Added value : a core process
- A support process : provides vital resources

Support Processes

Table 1.1 Examples of Support Processes

Capital Acquisition	The provision of financial resources for the organization to do its work and to execute its strategy
Budgeting	The process of deciding how funds will be allocated over a period of time
Recruitment and Hiring	The acquisition of people to do the work of the organization
Evaluation and Compensation	The assessment and payment of the people for the work and value they provide to the company
Human Resource Support and Development	The preparation of the people for their current jobs and future skill and knowledge needs
Regulatory Compliance	The process that insure the company if meeting all laws and legal obligations
Information Systemss	The movement and processing of data and information to expedite business operations and decisions
Enterprise and	The systems and activities that provide strategic direction and ensure effective execution of the work of the business
Functional	Management

Types of OM Decisions

- Strategic choices
- New Processes
- Quality
- Value Chains
- Operating Decisions
- Process

Management

- Project Management
- Inventory
- Scheduling

Growth of world trade, ... after Covid 19 ?

Multi poles world

- World Trade Organization (WTO) An international organization that promotes world trade by lowering barriers to the free flow of goods across borders.
- North American Free Trade Agreement (NAFTA) A free trade agreement between Canada, Mexico, and the United States.
- European Union (EU) A European trade group that has 27 member states...
- And now
- Indicator of performance in service as well as in manufacturing

Sum up

- Identify differences between services an manufacturing and what is their connection?
- Identify two main processes

Operations Management as a Function

Competitive advantage application

	Introduction	Growth	Maturity	Decline
	Best period to increase market share R\&D engineering is critical Life Cycle Curve Apple SmartWatch	Practical to change price or quality image Strengthen niche Hybrid Boeing 787 3D printers Electric vehic -D game players	Poor time to change image, price, or quality Compelitive costs become critical Defend market position hicles	Cost control critical mputers DVDs
8 $\frac{3}{8}$ $\frac{3}{8}$ $\frac{7}{8}$ $\frac{8}{0}$	Product design and development critical Frequent product and process design changes Short production runs High production costs Limited models Attention to quality	Forecasting critical Product and process reliability Competitive product improwements and options Increase capacily Shift toward product focus Enhance distribution	Standardization Fewer rapid product changes, more minor changes Optimum capacity Increasing stability of process Long production runs Product improvement and cost cutting	Little product differentiation Cost minimization Overcapacity in the industry Prune line to eliminate ilems not retuming good margin Reduce capacity

Figure 2.5

Product life cycle

Productivity

The ratio of outputs (goods and services) divided by one or more inputs (such as labor, capital, or management).

$$
\text { Productivity }=\frac{\text { Output }}{\text { Input }}
$$

The operations manager's job is to enhance (improve) this ratio of outputs to inputs. Improving productivity means improving efficiency

Productivity

Policies processed
Labor productivity $=$
Employee hours

Productivity

600 policies

Labor productivity $=$
(3 employees)(40 hours/employee)

Productivity

Labor productivity = 5 policies/hour

Productivity

Labor productivity = 5 policies/hour
Multifactor productivity $=$
Quantity at standard cost
Labor cost + Materials cost + Overhead cost

Productivity

Labor productivity $=5$ policies/hour
Multifactor productivity =

$$
\frac{(400 \text { units })(\$ 10 / \text { unit })}{\$ 400+\$ 1000+\$ 300}=\frac{\$ 4000}{\$ 1700}=2.35
$$

Productivity labor exercice

- Productivity can be measured in a variety of ways, such as by labor, capital, energy, material usage, and so on.
-AtModern Lumber, Inc., Art Binley, president and producer of apple crates sold to growers, has been able, with his current equipment, to produce 240 crates per 100 logs. He currently purchases 100 logs per day, and each log requires 3 labor-hours to process. He believes that he can hire a professional buyer who can buy a better-quality log at the same cost. If this is the case, he can increase his production to 260 crates per 100 logs. His labor-hours will increase by 8 hours per day.
- What will be the impact on productivity (measured in crates per labor-hour) if the buyer is hired?

Productivity Measures

1.Labor, which contributes about 10% of the annual increase.
2. Capital, which contributes about 38% of the annual increase.
3. Management, which contributes about 52% of the annual increase.

> Productivity of the service sector has proven

Ot difficult to improve because service-sector work is...

Productivity and service
\Leftrightarrow teaching)

8
2. Frequently focused on unique individual attributes or desires (e.g., investment advice).

```
3. Often an intellectual task performed by professionals (e.g., medical diagnosis).
```

4. Often difficult to mechanize and automate (e.g., a haircut).
5. Often difficult to evaluate for quality (e.g., performance of a law firm).

And

- Art Binley has decided to look at his productivity from a multifactor (total factor productivity) perspective.
- To do so, he has determined his labor, capital, energy, and material usage and decided to use dollars as the common denominator.
- His total labor-hours are now 300 per day and will increase to 308 per day. His capital and energy costs will remain constant at $\$ 350$ and $\$ 150$ per day, respectively. Material costs for the 100 logs per day are \$1,000 and will remain the same. Because he pays an average of $\$ 10$ per hour (with fringes), Binley determines his productivity increase as follows ...

Productivity

OM Explorer

Tutor 1.1—Productivity Measures

The state ferry service charges $\$ 18$ per ticket plus a $\$ 3$ surcharge to fund planned equipment upgrades. It expects to sell 4,700 tickets during the eight-week summer season. During that period, the ferry service will experience $\$ 110,000$ in labor costs. Materials required for each passage sold (tickets, a tourist-information sheet, and the like) cost $\$ 1.30$. Overhead during the period comes to $\$ 79,000$.
a. What is the multifactor productivity ratio?
b. If ferry-support staff work an average of 310 person-hours per week for the 8 weeks of the summer season, what is the labor productivity ratio? Calculate labor productivity on an hourly basis.

Productivity

Measures

Tutor 1.1—Productivity Measures

Enter data in yellow areas. Use Tab to advance from one input cell to the next.
a. Multifactor productivity is the ratio of the value of output to the value of input.

Step 1. Enter the number of tickets sold during a season, the price per ticket, and the surcharge per ticket. To compute value of output, multiply tickets sold by the sum of price and surcharge.

Tickets sold:
4.700

Price:
Surcharge:
Value of output:

Step 2. Enter labor dosts, materials costs per passenger, and overhead cost. For value of input, add together labor costs, materials costs times number of passengers, and overhead costs.

Labor costs:
\$110,000
Materials costs:
$\$ 1.30$
Overhead:
\$79,000

Step 3. To calculate multifactor productivity, divide value of output by value of input.

Multifactor productivity:

Productivity

Measures

Tutor 1.1-Productivity Measures

Enter data in yellow areas. Use Tab to advance from one input cell to the next.
b. Labor productivity is the ratio of the value of output to labor hours The value of output is computed in part a, step 1.

Step 1. Enter person-hours per week and the number of weeks in the season; multiply the two together to calculate labor hours of input.

Hours per week:
310 Weeks:

Labor hours of input:
Step 2. To calculate labor productivity, divide value of output by labor hours of input.
Labor productivity:

Productivity Measures

Tutor 1.1-Productivity Measures

Place cell pointer on green shaded areas to examine formulas.
a. Multifactor productivity is the ratio of the value of output to the value of input.

Step 1. Enter the number of tickets sold during a season, the price per ticket, and the surcharge per ticket. To compute value of output, multiply tickets sold by the sum of price and surcharge.

Tickets sold:
4,700
Price:
\$18
Surcharge:
\$3
Value of output: $\$ 98,700$

Step 2. Enter labor dosts, materials costs per passenger, and overhead cost. For value of input, add together labor costs, materials costs times number of passengers, and overhead costs.

Labor costs:
\$110,000
Materials costs:
$\$ 1.30$
Overhead:
\$79,000

Step 3. To calculate multifactor productivity, divide value of output by value of input.
Multifactor productivity:

Productivity

Measures

Tutor 1.1-Productivity Measures

Place cell pointer on green shaded areas to examine formulas.
b. Labor productivity is the ratio of the value of output to labor hours The value of output is computed in part a, step 1.

Step 1. Enter person-hours per week and the number of weeks in the season; multiply the two together to calculate labor hours of input.
Hours per week: $\quad 310$ Weeks: \square
Labor hours of input:
Step 2. To calculate labor productivity, divide value of output by labor hours of input.
Labor productivity: \$39.80

Figure 1.5c

Supply-Chain Design

Supply Chain Dynamics for Facial Tissue

External Value-Chain Linkages

First-Tier Supplier

Figure 9.1

Materials Management

 FG storage

Transformation process and WIP
storage

Materials Management

Production domain of responsibility

Purchasing domain of responsibility

Chocolate

 supplier supplier
Materials Management

Materials Management

Purchasing domain of responsibility supplier

Chocolate chips

 supplierMaintenance services supplier

Materials Management

Operations Roadmap to be developed ... later

Student tuition at Boehring University is $\$ 100$ per semester credit hour. The state supplements school revenue by matching student tuition dollar for dollar. Average class size for a typical three-credit course is 50 students. Labor costs are $\$ 4,000$ per class, materials costs are $\$ 20$ per student per class, and overhead costs are $\$ 25,000$ per class.
a. What is the multifactor productivity ratio for this course process?
b. If instructors work an average of 14 hours per week for 16 weeks for each three-credit class of 50 students, what is the labor productivity ratio?

Natalie Attired makes fashionable garments. During a particular week employees worked 360 hours to produce a batch of 132 garments, of which 52 were "seconds" (meaning that they were flawed). Seconds are sold for $\$ 90$ each at Attired's Factory Outlet Store. The remaining 80 garments are sold to retail distribution, at $\$ 200$ each. What is the labor productivity ratio of this manufacturing process?

