
Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Circumvent the impossibility of FLP’85: Algorithms

Alain Cournier Stéphane Devismes

Université de Picardie Jules Verne

April 28, 2023

Cournier & Devismes Consensus Algorithms April 28, 2023 1 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 2 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 3 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Expressiveness vs. Type of Faults

Message Loss: Every distributed algorithm for fault-free environment
can be made tolerant to message losses using the
alternating bit protocol, provided that communication
links are fair lossy.

Process Crash: The deterministic (binary) consensus is impossible in
an asynchronous system where at most one process
may crash. Fischer, Lynch et Paterson (1985) [3]

Even if

the communication network is complete, and
links are reliable.

Now, the (binary) consensus is the simplest agreement problem . . .

Cournier & Devismes Consensus Algorithms April 28, 2023 4 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Expressiveness vs. Type of Faults

Message Loss: Every distributed algorithm for fault-free environment
can be made tolerant to message losses using the
alternating bit protocol, provided that communication
links are fair lossy.

Process Crash: The deterministic (binary) consensus is impossible in
an asynchronous system where at most one process
may crash. Fischer, Lynch et Paterson (1985) [3]

Even if

the communication network is complete, and
links are reliable.

Now, the (binary) consensus is the simplest agreement problem . . .

Cournier & Devismes Consensus Algorithms April 28, 2023 4 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Expressiveness vs. Type of Faults

Message Loss: Every distributed algorithm for fault-free environment
can be made tolerant to message losses using the
alternating bit protocol, provided that communication
links are fair lossy.

Process Crash: The deterministic (binary) consensus is impossible in
an asynchronous system where at most one process
may crash. Fischer, Lynch et Paterson (1985) [3]

Even if

the communication network is complete, and
links are reliable.

Now, the (binary) consensus is the simplest agreement problem . . .

Cournier & Devismes Consensus Algorithms April 28, 2023 4 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Tightness of FLP’85

The deterministic (binary) consensus is impossible in an asynchronous
system where at most one process may crash.

However,

1 Consensus is solvable in partially synchronous crash-prone systems:
FloodSet Algorithm in (fully) synchronous systems [4].

2 Probabilistic consensus is solvable in asynchronous crash-prone
systems: Ben-Or Algorithm [1].

3 Consensus is solvable in asynchronous systems prone to restrictive
crash patterns: FLP Algorithm (Initially Dead Crashes) [3].

4 Consensus may be solvable if information about crashes are available:
Failure Detectors [2].1

1A lesson will be dedicated to the theory of failure detectors.

Cournier & Devismes Consensus Algorithms April 28, 2023 5 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Tightness of FLP’85

The deterministic (binary) consensus is impossible in an asynchronous
system where at most one process may crash.

However,

1 Consensus is solvable in partially synchronous crash-prone systems:
FloodSet Algorithm in (fully) synchronous systems [4].

2 Probabilistic consensus is solvable in asynchronous crash-prone
systems: Ben-Or Algorithm [1].

3 Consensus is solvable in asynchronous systems prone to restrictive
crash patterns: FLP Algorithm (Initially Dead Crashes) [3].

4 Consensus may be solvable if information about crashes are available:
Failure Detectors [2].1

1A lesson will be dedicated to the theory of failure detectors.

Cournier & Devismes Consensus Algorithms April 28, 2023 5 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Tightness of FLP’85

The deterministic (binary) consensus is impossible in an asynchronous
system where at most one process may crash.

However,

1 Consensus is solvable in partially synchronous crash-prone systems:
FloodSet Algorithm in (fully) synchronous systems [4].

2 Probabilistic consensus is solvable in asynchronous crash-prone
systems: Ben-Or Algorithm [1].

3 Consensus is solvable in asynchronous systems prone to restrictive
crash patterns: FLP Algorithm (Initially Dead Crashes) [3].

4 Consensus may be solvable if information about crashes are available:
Failure Detectors [2].1

1A lesson will be dedicated to the theory of failure detectors.

Cournier & Devismes Consensus Algorithms April 28, 2023 5 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Tightness of FLP’85

The deterministic (binary) consensus is impossible in an asynchronous
system where at most one process may crash.

However,

1 Consensus is solvable in partially synchronous crash-prone systems:
FloodSet Algorithm in (fully) synchronous systems [4].

2 Probabilistic consensus is solvable in asynchronous crash-prone
systems: Ben-Or Algorithm [1].

3 Consensus is solvable in asynchronous systems prone to restrictive
crash patterns: FLP Algorithm (Initially Dead Crashes) [3].

4 Consensus may be solvable if information about crashes are available:
Failure Detectors [2].1

1A lesson will be dedicated to the theory of failure detectors.

Cournier & Devismes Consensus Algorithms April 28, 2023 5 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 6 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Definition

Synchronous systems = all processes & all links are synchronous

Partially synchronous systems = some processes & some links are
have synchrony properties

The (fully) synchronous system is a partially synchronous system

Cournier & Devismes Consensus Algorithms April 28, 2023 7 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Definition

Synchronous systems = all processes & all links are synchronous

Partially synchronous systems = some processes & some links are
have synchrony properties

The (fully) synchronous system is a partially synchronous system

Cournier & Devismes Consensus Algorithms April 28, 2023 7 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Synchronous links

If a message sent in the link is not lost, then it is delivered to its
destination within bound time:

A link is synchronous if ∃c ∈N, ∀t ∈N, if m is sent in the link at time
t , then m is delivered before t + c or lost.

(the bound may be known or unknown by processes)

Cournier & Devismes Consensus Algorithms April 28, 2023 8 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Eventually Synchronous and Asynchronous links

Eventually Synchronous Link: A link is eventually synchronous if
∃c, t0 ∈N, ∀t ≥ t0, if m is sent in the link at time t , then
m is delivered before t + c or lost.

(the bound may be known or unknown by processes)

Asynchronous Link: No timing guarantee, i.e., each sent message is
either delivered or lost within finite time.

Cournier & Devismes Consensus Algorithms April 28, 2023 9 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Synchronous Processes

Start: All (non-initially-dead) synchronous processes starts
within bounded time.

Steps: While not crashed, a synchronous process executes
steps within a (positive) bounded time.

Clock: The clock drifts of synchronous processes are bounded.

(those bounds may be known or unknown by processes)

We can define eventually synchronous processes similarly to
eventually synchronous links: there is an a priori unknown time from
which we have bounded time guarantees.

Cournier & Devismes Consensus Algorithms April 28, 2023 10 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Other Examples of Partially Synchronous Systems

A system where all processes are synchronous and where there
is at least one source.

A source is a (synchronous) correct process with reliable and
synchronous outgoing links.

A system where all processes are eventually synchronous and all
links are eventually reliable and synchronous.

The expressive power of those two systems is difficult to compare.

Cournier & Devismes Consensus Algorithms April 28, 2023 11 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Other Examples of Partially Synchronous Systems

A system where all processes are synchronous and where there
is at least one source.

A source is a (synchronous) correct process with reliable and
synchronous outgoing links.

A system where all processes are eventually synchronous and all
links are eventually reliable and synchronous.

The expressive power of those two systems is difficult to compare.

Cournier & Devismes Consensus Algorithms April 28, 2023 11 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

The Round Model
The simplest synchronous model!

The communication network is complete.

All (non-initially-dead) processes start simultaneously.

After an initialization phase, the execution proceeds in synchronous
rounds where the following three phases are synchronously performed:

Send Phase: Each non-crashed processes can broadcast a message
to all other processes2

Receive Phase: Messages sent during the current round are received
by non-crashed processes3

Compute Phase: Non-crashed processes make a local computation.

2The communication network is complete. However, a process may crash during the round. In this case, the message may be
sent to a part of processes only.

3Communications are synchronous and reliable.

Cournier & Devismes Consensus Algorithms April 28, 2023 12 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Constants & Variables

Processes are identified: a process and its identifier are used
equivalently

n: number of processes

f : maximum number of crashes

r ∈N: the round number

vp: a boolean (read-only) input, the value proposed by process p

dp ∈ {⊥,0,1}: the decision variable of process p

Vp[]: array indexed on the process IDs. ∀q ∈ V , Vp[q] ∈ {0,1,⊥}

Newp: set of pairs (v ,q) ∈ {0,1}×V

Cournier & Devismes Consensus Algorithms April 28, 2023 13 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

The Code
1: Vp ← [⊥, . . . ,⊥] /* Beginning of the initialization */
2: Vp[p]← vp
3: Newp ←{(vp,p)}
4: dp ←⊥ /* End of the initialization */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all other processes
8: Let Rp[q] be the set received from q during r (/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp[q] do
12: If Vp[k] =⊥ then
13: Vp[k]← v
14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f +1 then dp ← x where x is the first non-⊥ value in Vp
19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 14 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Result

Theorem 1

FloodSet solves the consensus in the (synchronous) round model if at most f < n
processes crash.

Consensus problem: for every process p

Input : vp ∈ {0,1}
Output : dp ∈ {⊥,0,1} initialized to ⊥

Requirements:

Integrity Every process decides, i.e., assigns its d-variable to a non-⊥ value,
at most once

Termination : Every correct process4 eventually decides

Validity : Every decided value is an initially proposed value, i.e., ∀p ∈ V ,
dp ̸=⊥⇒ dp ∈ {vq : q ∈ V}

(Uniform) Agreement : If two processes p and q decide, then they decide the same
value, i.e., dp = dq

4A process is correct if it never crashes; otherwise, it is faulty.

Cournier & Devismes Consensus Algorithms April 28, 2023 15 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Integrity

Every process decides, i.e., assigns its
d-variable to a non-⊥ value, at most once

Trivial: a process stops right after its
decision

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 16 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Termination

Every correct process eventually decides

Trivial: Each process executes a bounded
number of rounds

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 17 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Validity

Every decided value is an initially
proposed value, i.e., ∀p ∈ V ,
dp ̸=⊥⇒ dp ∈ {vq : q ∈ V}

Proof.

Every non-⊥ value in Vp is a initially
proposed value

There exists at least one non-⊥
value in Vp (Vp[p])

2

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 18 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

If two processes p and q decide, then they
decide the same value, i.e., dp = dq

Proof Outline:

Right before the decision (Line 18), we
have Vp = Vq for every pair of processes
(p, q) that will decide

This property is trivial for p = q.

So, assume now that p ̸= q

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 19 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Assume that ∃k ,Vp[k] = vk ̸=⊥ at the
end of the last round

(due to Line 2, such a value exists)

Let r be the round where p has received
(vk ,k) for the first time

(we let r = 0 if p = k)

2 cases: r < f +1 or r = f +1

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 20 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r < f +1

p inserts (vk ,k) in Newp during the round r

p sends it to q during the round r +1≤ f +1.

n.b., since p is assumed to eventually decide, it completes all rounds!

So, q receives (vk ,k) at the latest during the
round r +1≤ f +1.

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 21 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r < f +1

p inserts (vk ,k) in Newp during the round r

p sends it to q during the round r +1≤ f +1.

n.b., since p is assumed to eventually decide, it completes all rounds!

So, q receives (vk ,k) at the latest during the
round r +1≤ f +1.

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 21 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r < f +1

p inserts (vk ,k) in Newp during the round r

p sends it to q during the round r +1≤ f +1.

n.b., since p is assumed to eventually decide, it completes all rounds!

So, q receives (vk ,k) at the latest during the
round r +1≤ f +1.

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 21 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r < f +1

p inserts (vk ,k) in Newp during the round r

p sends it to q during the round r +1≤ f +1.

n.b., since p is assumed to eventually decide, it completes all rounds!

So, q receives (vk ,k) at the latest during the
round r +1≤ f +1.

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 21 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r = f +1

(vk ,k) has been relayed along a path of processes from k
to the process from which p receives (vk ,k) during Round
f +1

This path contains f +1 distinct processes since each
process relays each pair (value,ID) at most once

Init Round 1 Round 2

Round r ′

Round f Round f +1

k1 = k →
(vk ,k)

k2 →
(vk ,k)

k3 . . .

→
(vk ,k)

c

. . . →
(vk ,k)

kf+1 →
(vk ,k)

p

Since at most f processes eventually crash, this path
contains at least one correct process c

c has received (vk ,k) during a round r ′ < f +1

So, c sent (vk ,k) to q during Round r ′+1≤ f +1

Hence, q has received (vk ,k) at the latest during Round
r ′+1≤ f +1

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 22 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r = f +1

(vk ,k) has been relayed along a path of processes from k
to the process from which p receives (vk ,k) during Round
f +1

This path contains f +1 distinct processes since each
process relays each pair (value,ID) at most once

Init Round 1 Round 2

Round r ′

Round f Round f +1

k1 = k →
(vk ,k)

k2 →
(vk ,k)

k3 . . .

→
(vk ,k)

c

. . . →
(vk ,k)

kf+1 →
(vk ,k)

p

Since at most f processes eventually crash, this path
contains at least one correct process c

c has received (vk ,k) during a round r ′ < f +1

So, c sent (vk ,k) to q during Round r ′+1≤ f +1

Hence, q has received (vk ,k) at the latest during Round
r ′+1≤ f +1

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 22 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Case r = f +1

(vk ,k) has been relayed along a path of processes from k
to the process from which p receives (vk ,k) during Round
f +1

This path contains f +1 distinct processes since each
process relays each pair (value,ID) at most once

Init Round 1 Round 2 Round r ′ Round f Round f +1

k1 = k →
(vk ,k)

k2 →
(vk ,k)

k3 . . . →
(vk ,k)

c . . . →
(vk ,k)

kf+1 →
(vk ,k)

p

Since at most f processes eventually crash, this path
contains at least one correct process c

c has received (vk ,k) during a round r ′ < f +1

So, c sent (vk ,k) to q during Round r ′+1≤ f +1

Hence, q has received (vk ,k) at the latest during Round
r ′+1≤ f +1

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 22 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Agreement

Similarly, if Vq[k] = vk ̸=⊥ at the end of
the last round, then we also have
Vp[k] = vk at the end of this round

Hence, Vp = Vq when p and q decide,
and the agreement property follows. 2

1: Vp ← [⊥, . . . ,⊥] /* Initialization Beginning */

2: Vp [p]← vp

3: Newp ←{(vp ,p)}
4: dp ←⊥ /* Initialization End */

5: For all r from 1 to f +1 do /* Rounds */
6: Round Start
7: If Newp ̸= /0 then broadcast(Newp) to all

other processes
8: Let Rp [q] be the set received from q during r

(/0 if no message received from q)
9: Newp ← /0

10: For all process q ̸= p do
11: For all (v ,k) ∈ Rp [q] do

12: If Vp [k] =⊥ then

13: Vp [k]← v

14: Newp ← Newp ∪{(v ,k)}
15: End If
16: Done
17: Done
18: If r = f + 1 then dp ← x where x is the first

non-⊥ value in Vp

19: Round End
20: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 23 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Decision

Any boolean function on Vp fulfilling validity can be used

Examples:

Decide 0 if 0 appears more often than 1, decide 1 otherwise

Decide Vp[q] such that q is the minimum identifier satisfying
Vp[q] ̸=⊥

Cournier & Devismes Consensus Algorithms April 28, 2023 24 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Remarks
FloodSet can be emulated in the general synchronous model if

1 the network is complete and
2 bounds are known by processes.

It can be even emulated in a system where
1 all processes are synchronous and there is at least one

bi-source, i.e., a (synchronous) correct process whose all
(incoming and outgoing) links are reliable and synchronous

2 the network is complete, and
3 bounds are known by processes.

Consequently only n−1 reliable and synchronous bidirectional links
are sufficient instead of n(n−1)

2 .

Cournier & Devismes Consensus Algorithms April 28, 2023 25 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Definition & Examples
Model
The FloodSet Algorithm

Remarks
FloodSet can be emulated in the general synchronous model if

1 the network is complete and
2 bounds are known by processes.

It can be even emulated in a system where
1 all processes are synchronous and there is at least one

bi-source, i.e., a (synchronous) correct process whose all
(incoming and outgoing) links are reliable and synchronous

2 the network is complete, and
3 bounds are known by processes.

Consequently only n−1 reliable and synchronous bidirectional links
are sufficient instead of n(n−1)

2 .
Cournier & Devismes Consensus Algorithms April 28, 2023 25 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 26 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Initially Dead

A process is initially dead if it never participated to the processing of
the algorithm

Assumption on crashes: every faulty process is initially dead

Equivalently: every process is either correct or initially dead

Cournier & Devismes Consensus Algorithms April 28, 2023 27 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Other System Assumptions

1 A majority of processes (i.e., at least L = ⌈n+1
2 ⌉) is correct

2 Asynchronous processes

3 Asynchronous reliable links (not necessarily FIFO)

Cournier & Devismes Consensus Algorithms April 28, 2023 28 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Principles

2 Phases:

Phase 1: (distributedly) compute a digraph G = (V ,E) where
nodes represented correct processes and have an
in-degree L−15

Phase 2: (distributedly) compute the transitive closure G+ of G,
i.e., (i, j) is an arc of G+ IFF i is an ancestor of j in G.

Precisely, at the end of the phase, each correct process
“knows”

its predecessors in G+, i.e., its ancestors in G,
their incoming arcs,
as well as the value they propose.

5Recall that L is the majority value

Cournier & Devismes Consensus Algorithms April 28, 2023 29 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Phase 1

1 Each process broadcasts to all other processes its identifier
2 Each process collects the IDs in the L−1 first received messages

Each correct process receives at least L−1 messages since there is
at least L−1 other correct processes

In G = (V ,E), (i, j) ∈ E IFF j has received a Phase 1 message from i .

After Phase 1, each correct process knows its predecessors in G

Cournier & Devismes Consensus Algorithms April 28, 2023 30 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Phase 1

1 Each process broadcasts to all other processes its identifier
2 Each process collects the IDs in the L−1 first received messages

Each correct process receives at least L−1 messages since there is
at least L−1 other correct processes

In G = (V ,E), (i, j) ∈ E IFF j has received a Phase 1 message from i .

After Phase 1, each correct process knows its predecessors in G

Cournier & Devismes Consensus Algorithms April 28, 2023 30 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Phase 2
GOAL: compute the transitive closure G+ of G

Each process initiates Phase 2 by broadcasting to all other processes a message
containing

1 its ID,
2 the value it proposes, and
3 the IDs of its predecessors in G.

Phase 2 terminates at p when p has received a Phase 2 message from all ancestors
it hears about.

At the beginning, p only knows its predecessors. It then waits for Phase 2 messages
from them. After receiving such messages, p maybe discovers new ancestors (i.e.,
predecessors of predecessors). So, it waits messages from them, and so on so forth.

At the end of Phase 2, each correct process “knows”

its ancestors in G

their incoming arcs

the value they propose

Cournier & Devismes Consensus Algorithms April 28, 2023 31 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Phase 2
GOAL: compute the transitive closure G+ of G

Each process initiates Phase 2 by broadcasting to all other processes a message
containing

1 its ID,
2 the value it proposes, and
3 the IDs of its predecessors in G.

Phase 2 terminates at p when p has received a Phase 2 message from all ancestors
it hears about.

At the beginning, p only knows its predecessors. It then waits for Phase 2 messages
from them. After receiving such messages, p maybe discovers new ancestors (i.e.,
predecessors of predecessors). So, it waits messages from them, and so on so forth.

At the end of Phase 2, each correct process “knows”

its ancestors in G

their incoming arcs

the value they propose

Cournier & Devismes Consensus Algorithms April 28, 2023 31 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Decision
At the end of Phase 2, each correct process “knows”

its ancestors in G

their incoming arcs

the value they propose

Each (correct) process computes the arc of G+ going to its ancestors.

Each (correct) process then determines which of its ancestors belong
to the initial clique of G+.

An initial clique of G+ is a clique without incoming arcs, i.e. its a
subset of nodes V ′ satisfying:

V ′ is a clique of G+

There is no arc (i, j) in G+ such that i /∈ V ′ and j ∈ V ′

Cournier & Devismes Consensus Algorithms April 28, 2023 32 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Decision
At the end of Phase 2, each correct process “knows”

its ancestors in G

their incoming arcs

the value they propose

Each (correct) process computes the arc of G+ going to its ancestors.

Each (correct) process then determines which of its ancestors belong
to the initial clique of G+.

An initial clique of G+ is a clique without incoming arcs, i.e. its a
subset of nodes V ′ satisfying:

V ′ is a clique of G+

There is no arc (i, j) in G+ such that i /∈ V ′ and j ∈ V ′

Cournier & Devismes Consensus Algorithms April 28, 2023 32 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Result

Theorem 2
The FLP Algorithm solves the consensus in an asynchronous system
where at most f processes are initially dead with n > 2f .

Cournier & Devismes Consensus Algorithms April 28, 2023 33 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Proof Outline

Claim 1: There exists an initial clique in G+

Claim 2: G+ has a unique initial clique

Claim 3: The initial clique of G+ can be computed polynomially in n

1 Each correct process has all members of the initial
clique of G+ among its ancestors in G

2 A process k is in an initial clique of G+ IFF k is itself an
ancestor in G of every process j that is an ancestor of k
in G

Hence, all correct processes agree on the initial clique of G+ and know
values proposed by members of this clique: they decide the same valid value
according to this common knowledge.

Cournier & Devismes Consensus Algorithms April 28, 2023 34 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Proof Outline

Claim 1: There exists an initial clique in G+

Claim 2: G+ has a unique initial clique

Claim 3: The initial clique of G+ can be computed polynomially in n

1 Each correct process has all members of the initial
clique of G+ among its ancestors in G

2 A process k is in an initial clique of G+ IFF k is itself an
ancestor in G of every process j that is an ancestor of k
in G

Hence, all correct processes agree on the initial clique of G+ and know
values proposed by members of this clique: they decide the same valid value
according to this common knowledge.

Cournier & Devismes Consensus Algorithms April 28, 2023 34 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Basic Property

Let p and q be two distinct correct processes.

p is a predecessor of q in G,

q is a predecessor of p in G, or

p and q have a common predecessor in G.

Proof. By contradiction.

Let Pred(p) and Pred(q) be the set of p’s and q’s predecessors in G.

Then, (Pred(p)∪{p})∩ (Pred(q)∪{q}) = /0.

Now, |Pred(p)|= |Pred(p)|= L−1.

So, |Pred(p)∪{p}∪Pred(q)∪{q}|= 2(L−1)+2 = 2L > n, a
contradiction. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 35 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Basic Property

Let p and q be two distinct correct processes.

p is a predecessor of q in G,

q is a predecessor of p in G, or

p and q have a common predecessor in G.

Proof. By contradiction.

Let Pred(p) and Pred(q) be the set of p’s and q’s predecessors in G.

Then, (Pred(p)∪{p})∩ (Pred(q)∪{q}) = /0.

Now, |Pred(p)|= |Pred(p)|= L−1.

So, |Pred(p)∪{p}∪Pred(q)∪{q}|= 2(L−1)+2 = 2L > n, a
contradiction. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 35 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Basic Property

Let p and q be two distinct correct processes.

p is a predecessor of q in G,

q is a predecessor of p in G, or

p and q have a common predecessor in G.

Proof. By contradiction.

Let Pred(p) and Pred(q) be the set of p’s and q’s predecessors in G.

Then, (Pred(p)∪{p})∩ (Pred(q)∪{q}) = /0.

Now, |Pred(p)|= |Pred(p)|= L−1.

So, |Pred(p)∪{p}∪Pred(q)∪{q}|= 2(L−1)+2 = 2L > n, a
contradiction. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 35 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Basic Property

Let p and q be two distinct correct processes.

p is a predecessor of q in G,

q is a predecessor of p in G, or

p and q have a common predecessor in G.

Proof. By contradiction.

Let Pred(p) and Pred(q) be the set of p’s and q’s predecessors in G.

Then, (Pred(p)∪{p})∩ (Pred(q)∪{q}) = /0.

Now, |Pred(p)|= |Pred(p)|= L−1.

So, |Pred(p)∪{p}∪Pred(q)∪{q}|= 2(L−1)+2 = 2L > n, a
contradiction. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 35 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Basic Property

Let p and q be two distinct correct processes.

p is a predecessor of q in G,

q is a predecessor of p in G, or

p and q have a common predecessor in G.

Proof. By contradiction.

Let Pred(p) and Pred(q) be the set of p’s and q’s predecessors in G.

Then, (Pred(p)∪{p})∩ (Pred(q)∪{q}) = /0.

Now, |Pred(p)|= |Pred(p)|= L−1.

So, |Pred(p)∪{p}∪Pred(q)∪{q}|= 2(L−1)+2 = 2L > n, a
contradiction. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 35 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 1
There exists an initial clique in G+

Proof. In any digraph, there is at least one strongly connected
source component S, i.e., a strongly connected component in which
no node has a predecessor out of the component.6

In S,

(1) every node is an ancestor of each other

(2) no node has an ancestor out of the component

Hence, in the transitive closure of the digraph, nodes of S form a
clique (by (1)) and this clique is initial (by (2)).

2

6Otherwise, every node has at least one ancestor which is not one of its descendents: with a finite number of nodes, it is
impossible!

Cournier & Devismes Consensus Algorithms April 28, 2023 36 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 1
There exists an initial clique in G+

Proof. In any digraph, there is at least one strongly connected
source component S, i.e., a strongly connected component in which
no node has a predecessor out of the component.6

In S,

(1) every node is an ancestor of each other

(2) no node has an ancestor out of the component

Hence, in the transitive closure of the digraph, nodes of S form a
clique (by (1)) and this clique is initial (by (2)).

2
6Otherwise, every node has at least one ancestor which is not one of its descendents: with a finite number of nodes, it is

impossible!

Cournier & Devismes Consensus Algorithms April 28, 2023 36 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.1

Each correct process has all members of an initial clique of G+ among
its ancestors in G

Proof. Assume, by contradiction, that a process p of an initial clique
of G+ is not an ancestor in G of the process q in G.

Then, p is neither an ancestor nor a descendent of q in G.

Now, by definition, p and q are correct. So, from the basic property, we
know that p and q have some common predecessor r in G.

If r is not in the clique of p in G+, then this clique is not initial, a
contradiction.

If r is in the clique of p in G+, then p is an ancestor of r and so an
ancestor of q in G, a contradiction.

2

Cournier & Devismes Consensus Algorithms April 28, 2023 37 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.1

Each correct process has all members of an initial clique of G+ among
its ancestors in G

Proof. Assume, by contradiction, that a process p of an initial clique
of G+ is not an ancestor in G of the process q in G.

Then, p is neither an ancestor nor a descendent of q in G.

Now, by definition, p and q are correct. So, from the basic property, we
know that p and q have some common predecessor r in G.

If r is not in the clique of p in G+, then this clique is not initial, a
contradiction.

If r is in the clique of p in G+, then p is an ancestor of r and so an
ancestor of q in G, a contradiction.

2

Cournier & Devismes Consensus Algorithms April 28, 2023 37 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.1

Each correct process has all members of an initial clique of G+ among
its ancestors in G

Proof. Assume, by contradiction, that a process p of an initial clique
of G+ is not an ancestor in G of the process q in G.

Then, p is neither an ancestor nor a descendent of q in G.

Now, by definition, p and q are correct. So, from the basic property, we
know that p and q have some common predecessor r in G.

If r is not in the clique of p in G+, then this clique is not initial, a
contradiction.

If r is in the clique of p in G+, then p is an ancestor of r and so an
ancestor of q in G, a contradiction.

2

Cournier & Devismes Consensus Algorithms April 28, 2023 37 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.1

Each correct process has all members of an initial clique of G+ among
its ancestors in G

Proof. Assume, by contradiction, that a process p of an initial clique
of G+ is not an ancestor in G of the process q in G.

Then, p is neither an ancestor nor a descendent of q in G.

Now, by definition, p and q are correct. So, from the basic property, we
know that p and q have some common predecessor r in G.

If r is not in the clique of p in G+, then this clique is not initial, a
contradiction.

If r is in the clique of p in G+, then p is an ancestor of r and so an
ancestor of q in G, a contradiction.

2

Cournier & Devismes Consensus Algorithms April 28, 2023 37 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.1

Each correct process has all members of an initial clique of G+ among
its ancestors in G

Proof. Assume, by contradiction, that a process p of an initial clique
of G+ is not an ancestor in G of the process q in G.

Then, p is neither an ancestor nor a descendent of q in G.

Now, by definition, p and q are correct. So, from the basic property, we
know that p and q have some common predecessor r in G.

If r is not in the clique of p in G+, then this clique is not initial, a
contradiction.

If r is in the clique of p in G+, then p is an ancestor of r and so an
ancestor of q in G, a contradiction.

2

Cournier & Devismes Consensus Algorithms April 28, 2023 37 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 2

G+ has a unique initial clique

Proof. Assume, by contradiction, that two processes, p and q, are in
two different initial cliques of G+.

By definition, p and q are not ancestor of each other: a contradiction to
Claim 3.1. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 38 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 2

G+ has a unique initial clique

Proof. Assume, by contradiction, that two processes, p and q, are in
two different initial cliques of G+.

By definition, p and q are not ancestor of each other: a contradiction to
Claim 3.1. 2

Cournier & Devismes Consensus Algorithms April 28, 2023 38 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.2
A process k is in an initial clique of G+ IFF k is itself an ancestor in G of
every process j that is an ancestor of k in G

Proof.

By Claim 3.1, if k is in the initial clique of G+, then k is itself an ancestor
in G of every process j that is an ancestor of k in G

By definition, if k is itself an ancestor in G of every process j that is an
ancestor of k in G, then

k and its ancestors in G form a clique C in G+.
Moreover, k has no predecessor out of C in G+.

Assume the contrary. Then, k has a predecessor in G+, i.e., an
ancestor in G, that has not k as predecessor in G+, i.e., as
ancestor in G; a contradiction.

Hence, k is necessarily in the initial clique of G+

2

Cournier & Devismes Consensus Algorithms April 28, 2023 39 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.2
A process k is in an initial clique of G+ IFF k is itself an ancestor in G of
every process j that is an ancestor of k in G

Proof.

By Claim 3.1, if k is in the initial clique of G+, then k is itself an ancestor
in G of every process j that is an ancestor of k in G

By definition, if k is itself an ancestor in G of every process j that is an
ancestor of k in G, then

k and its ancestors in G form a clique C in G+.

Moreover, k has no predecessor out of C in G+.

Assume the contrary. Then, k has a predecessor in G+, i.e., an
ancestor in G, that has not k as predecessor in G+, i.e., as
ancestor in G; a contradiction.

Hence, k is necessarily in the initial clique of G+

2

Cournier & Devismes Consensus Algorithms April 28, 2023 39 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The FLP Algorithm

Claim 3.2
A process k is in an initial clique of G+ IFF k is itself an ancestor in G of
every process j that is an ancestor of k in G

Proof.

By Claim 3.1, if k is in the initial clique of G+, then k is itself an ancestor
in G of every process j that is an ancestor of k in G

By definition, if k is itself an ancestor in G of every process j that is an
ancestor of k in G, then

k and its ancestors in G form a clique C in G+.
Moreover, k has no predecessor out of C in G+.

Assume the contrary. Then, k has a predecessor in G+, i.e., an
ancestor in G, that has not k as predecessor in G+, i.e., as
ancestor in G; a contradiction.

Hence, k is necessarily in the initial clique of G+

2
Cournier & Devismes Consensus Algorithms April 28, 2023 39 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 40 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Randomization Approaches

Las Vegas: randomized algorithm that always gives correct results

but, the termination is not deterministically guaranteed:
it is guaranteed with a positive probability

→ Only the expected runtime should be finite

Monte Carlo: termination is deterministically guaranteed

but, the output may be incorrect with a certain (typically
small) probability

We now study the Ben-Or Algorithm (Las Vegas approach)

Cournier & Devismes Consensus Algorithms April 28, 2023 41 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Randomization Approaches

Las Vegas: randomized algorithm that always gives correct results

but, the termination is not deterministically guaranteed:
it is guaranteed with a positive probability

→ Only the expected runtime should be finite

Monte Carlo: termination is deterministically guaranteed

but, the output may be incorrect with a certain (typically
small) probability

We now study the Ben-Or Algorithm (Las Vegas approach)

Cournier & Devismes Consensus Algorithms April 28, 2023 41 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Assumptions

1 A majority of processes is correct: the maximal number of crashes f
satisfies n > 2f .

2 Asynchronous processes

3 Asynchronous reliable links (not necessarily FIFO)

4 Any process p can broadcast a message to all processes (p included!)

Cournier & Devismes Consensus Algorithms April 28, 2023 42 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Constants & Variables

n: number of processes

f : maximum number of crashes

vp: a boolean input, the value proposed by process p — vp may be modified

dp ∈ {⊥,0,1}: the decision variable of process p

r ∈N: the round number

Cournier & Devismes Consensus Algorithms April 28, 2023 43 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Randomization & Messages

Each process can use Random(0,1) which returns a random value 0
or 1 with uniform probability 1

2 .

Two types of message:

R: a report

P: a proposition

Cournier & Devismes Consensus Algorithms April 28, 2023 44 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

The Code
1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)
6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x then
8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x
15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x
18: else
19: vp ← Random(0,1)
20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 45 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Rounds
Each process executes an infinite loopa

Loop iteration = (asynchronous) round
r : current round number

Round = 2 phases:

Report Phase: Every (non-crashed)
process reports a value to all
processes
(R, r ,x) with x ∈ {0,1}: p reports
value x during Round r

Proposition Phase: Every
(non-crashed) process proposes a
value to all processes
(P, r ,x) with x ∈ {0,1,?}: p proposes
value x during Round r

N.B., each phase terminates at each correct
process since it waits for n− f messages and
the maximum number of crashes is f

aWe will see later how a process can halt this loop
without compromising the consensus specification.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 46 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Rounds
Each process executes an infinite loopa

Loop iteration = (asynchronous) round
r : current round number

Round = 2 phases:

Report Phase: Every (non-crashed)
process reports a value to all
processes
(R, r ,x) with x ∈ {0,1}: p reports
value x during Round r

Proposition Phase: Every
(non-crashed) process proposes a
value to all processes
(P, r ,x) with x ∈ {0,1,?}: p proposes
value x during Round r

N.B., each phase terminates at each correct
process since it waits for n− f messages and
the maximum number of crashes is f

aWe will see later how a process can halt this loop
without compromising the consensus specification.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 46 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Rounds
Each process executes an infinite loopa

Loop iteration = (asynchronous) round
r : current round number

Round = 2 phases:

Report Phase: Every (non-crashed)
process reports a value to all
processes
(R, r ,x) with x ∈ {0,1}: p reports
value x during Round r

Proposition Phase: Every
(non-crashed) process proposes a
value to all processes
(P, r ,x) with x ∈ {0,1,?}: p proposes
value x during Round r

N.B., each phase terminates at each correct
process since it waits for n− f messages and
the maximum number of crashes is f

aWe will see later how a process can halt this loop
without compromising the consensus specification.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 46 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Rounds
Each process executes an infinite loopa

Loop iteration = (asynchronous) round
r : current round number

Round = 2 phases:

Report Phase: Every (non-crashed)
process reports a value to all
processes
(R, r ,x) with x ∈ {0,1}: p reports
value x during Round r

Proposition Phase: Every
(non-crashed) process proposes a
value to all processes
(P, r ,x) with x ∈ {0,1,?}: p proposes
value x during Round r

N.B., each phase terminates at each correct
process since it waits for n− f messages and
the maximum number of crashes is f

aWe will see later how a process can halt this loop
without compromising the consensus specification.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 46 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Integrity

From the code, we can deduce

Remark 1

Every process decides at most one.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 47 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Propositions

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

Proof.

During Round r , at most n report
messages are broadcast.

So, if a process receives more than n
2 R

messages with the same value x during a
round, no other process can receive more
than n

2 R messages with value
(x +1) mod 2 during the same round.

Hence, only x and ? can be proposed
during Round r .

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 48 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Propositions

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

Proof. During Round r , at most n report
messages are broadcast.

So, if a process receives more than n
2 R

messages with the same value x during a
round, no other process can receive more
than n

2 R messages with value
(x +1) mod 2 during the same round.

Hence, only x and ? can be proposed
during Round r .

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 48 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Propositions

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

Proof. During Round r , at most n report
messages are broadcast.

So, if a process receives more than n
2 R

messages with the same value x during a
round, no other process can receive more
than n

2 R messages with value
(x +1) mod 2 during the same round.

Hence, only x and ? can be proposed
during Round r .

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 48 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Propositions

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

Proof. During Round r , at most n report
messages are broadcast.

So, if a process receives more than n
2 R

messages with the same value x during a
round, no other process can receive more
than n

2 R messages with value
(x +1) mod 2 during the same round.

Hence, only x and ? can be proposed
during Round r . 2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 48 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decide soon

Below, the value of vp at Round 0 is the
initial value of vp

Lemma 2

Let x ∈ {0,1}. Let r > 0. Let q be any
process that still has not decided at the end
of Round r −1 and that will complete
Round r .

If vp = x at the end of Round r −1 for
every process p that will send a report
during Round r , then q will decide x during
Round r .

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 49 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decide soon
Proof of Lemma 2

Proof. By hypothesis, every report
received during Round r reports value x .

Since every (non-crashed) process
receives at least n− f reports during
Round r and n− f > n

2 , every process that
completes Round r proposes the same
value x ̸=? during Round r .

Thus, every proposition send during Round
r will be only for x .

Since all correct processes (at least n− f)
will broadcast a proposition (for x) during
Round r and n− f > f , each process that
will terminate Round r will receive at least
f +1 propositions for x (and only for x)
during the round and so will decide x
during the round.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 50 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decide soon
Proof of Lemma 2

Proof. By hypothesis, every report
received during Round r reports value x .

Since every (non-crashed) process
receives at least n− f reports during
Round r and n− f > n

2 , every process that
completes Round r proposes the same
value x ̸=? during Round r .

Thus, every proposition send during Round
r will be only for x .

Since all correct processes (at least n− f)
will broadcast a proposition (for x) during
Round r and n− f > f , each process that
will terminate Round r will receive at least
f +1 propositions for x (and only for x)
during the round and so will decide x
during the round.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 50 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decide soon
Proof of Lemma 2

Proof. By hypothesis, every report
received during Round r reports value x .

Since every (non-crashed) process
receives at least n− f reports during
Round r and n− f > n

2 , every process that
completes Round r proposes the same
value x ̸=? during Round r .

Thus, every proposition send during Round
r will be only for x .

Since all correct processes (at least n− f)
will broadcast a proposition (for x) during
Round r and n− f > f , each process that
will terminate Round r will receive at least
f +1 propositions for x (and only for x)
during the round and so will decide x
during the round.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 50 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decide soon
Proof of Lemma 2

Proof. By hypothesis, every report
received during Round r reports value x .

Since every (non-crashed) process
receives at least n− f reports during
Round r and n− f > n

2 , every process that
completes Round r proposes the same
value x ̸=? during Round r .

Thus, every proposition send during Round
r will be only for x .

Since all correct processes (at least n− f)
will broadcast a proposition (for x) during
Round r and n− f > f , each process that
will terminate Round r will receive at least
f +1 propositions for x (and only for x)
during the round and so will decide x
during the round. 2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 50 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination

Lemma 3

If a process decides x during Round r , then
all processes that still has not decided at
the end of Round r and that will terminate
Round r +1 will decide x at the end of
Round r +1.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 51 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1.

2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Decision & Termination
Proof of Lemma 3

Proof. If a process p decides x during Round r , then p has
received at least f +1 propositions with x ̸=? during Round
r and these values are identical, by Lemma 1.

Let q be a process that sends a report at Round r +1.

q received at least n− f propositions during Round r .

q received at least one proposition for x since there are at
most n propositions during Round r and at least f +1 of
them are for x , so at most n− f −1 are not for x .

By Lemma 1, q did not receive any proposition for
(x +1) mod 2 during Round r . Hence, vq ← x during
Round r .

So, every process q that sends a report during Round r +1
satisfies vq = x at the end of Round r .

By Lemma 2, all processes that still has not decided at the
end of Round r and that will terminate Round r +1 will
decide x during Round r +1. 2

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 52 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Result

Theorem 3
The Ben-Or Algorithm solves the probabilistic consensus , i.e., it
satisfies:

Integrity

Validity,

Agreement, and

Termination with probability 1,

in an asynchronous system where at most f processes crash with
n > 2f

Cournier & Devismes Consensus Algorithms April 28, 2023 53 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3

Integrity:

Remark 1

Every process decides at most one.

Validity:

Lemma 2

Let x ∈ {0,1}. Let r > 0. Let q be any process that still has not decided at
the end of Round r −1 and that will complete Round r .

If vp = x at the end of Round r −1 for every process p that will send a report
during Round r , then q will decide x during Round r .

Recall that the value of vp at Round 0 is the initial value of vp. So, with r = 1,
we obtain the validity.

Cournier & Devismes Consensus Algorithms April 28, 2023 54 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3

Integrity:

Remark 1

Every process decides at most one.

Validity:

Lemma 2

Let x ∈ {0,1}. Let r > 0. Let q be any process that still has not decided at
the end of Round r −1 and that will complete Round r .

If vp = x at the end of Round r −1 for every process p that will send a report
during Round r , then q will decide x during Round r .

Recall that the value of vp at Round 0 is the initial value of vp. So, with r = 1,
we obtain the validity.

Cournier & Devismes Consensus Algorithms April 28, 2023 54 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Agreement

Consider the first round r where at least
one process decides.

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

All processes that decide during Round r ,
decide the same value x .

Lemma 3

If a process decides x during Round r , then
all processes that still has not decided at
the end of Round r and that will terminate
Round r +1 will decide x at the end of
Round r +1.

All processes that do not decide in Round r
and that will complete Round r +1 will also
decide x in Round r +1.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 55 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Agreement

Consider the first round r where at least
one process decides.

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

All processes that decide during Round r ,
decide the same value x .

Lemma 3

If a process decides x during Round r , then
all processes that still has not decided at
the end of Round r and that will terminate
Round r +1 will decide x at the end of
Round r +1.

All processes that do not decide in Round r
and that will complete Round r +1 will also
decide x in Round r +1.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 55 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Agreement

Consider the first round r where at least
one process decides.

Lemma 1

No two processes respectively propose 0
and 1 during the same round r .

All processes that decide during Round r ,
decide the same value x .

Lemma 3

If a process decides x during Round r , then
all processes that still has not decided at
the end of Round r and that will terminate
Round r +1 will decide x at the end of
Round r +1.

All processes that do not decide in Round r
and that will complete Round r +1 will also
decide x in Round r +1.

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 55 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Proof of Theorem 3
Termination with Probability 1

Let S = Sd ∪Sr be the set of processes that modify their
variable v at the end of Round r as follows.

Sd : processes that execute Line 17

Sr : processes that execute Line 19

By Lemma 1, all processes in Sd set their v variable to the
same value x .

∀p ∈Sr , p chooses x with probability 1
2 .

Thus, with a probability ≥ 1
2n , all process in S satisfy v = x

at the end of Round r .

By Lemma 2, all correct processes decides at Round r +1
with a probability ≥ 1

2n .

The probability P that every correct process decides at
Round r > 1 is ≥ 1

2n :

Termination with probability limr→∞ 1− (1−P)r−1 = 1

(O(2n) rounds at expectation)

1: dp ←⊥
2: r ← 0
3: While true do
4: r ++
5: broadcast (R, r ,vp) to all processes (p included)

6: wait to receive n− f messages (R, r ,_) where “_” is 0 or 1
7: If more than n

2 received messages (R, r ,x) with the same value x
then

8: broadcast (P, r ,x) to all processes (p included)
9: else

10: broadcast (P, r ,?) to all processes (p included)
11: End If
12: wait to receive n− f messages (P, r ,_) where “_” is 0, 1, or ?
13: If at least f +1 received messages (P, r ,x) with x ̸=? then
14: If dp =⊥ then dp ← x

15: End If
16: If at least 1 received message (P, r ,x) with x ̸=? then
17: vp ← x

18: else
19: vp ← Random(0,1)

20: End If
21: Done

Cournier & Devismes Consensus Algorithms April 28, 2023 56 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Leave the infinite loop

If p decides in Round r , all other correct processes decide at last
during Round r +1.

So, after deciding

p can broadcast the messages R and P for the Round r +1 with
value vp without waiting anything

and then leave the loop without compromising the specification.

Cournier & Devismes Consensus Algorithms April 28, 2023 57 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Model
The Ben-Or Algorithm

Leave the infinite loop

If p decides in Round r , all other correct processes decide at last
during Round r +1.

So, after deciding

p can broadcast the messages R and P for the Round r +1 with
value vp without waiting anything

and then leave the loop without compromising the specification.

Cournier & Devismes Consensus Algorithms April 28, 2023 57 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

Roadmap

1 Introduction

2 Partially Synchronous Systems
Definition & Examples
Model
The FloodSet Algorithm

3 Initially Dead Processes
Model
The FLP Algorithm

4 Probabilistic Consensus
Model
The Ben-Or Algorithm

5 References

Cournier & Devismes Consensus Algorithms April 28, 2023 58 / 59

Introduction
Partially Synchronous Systems

Initially Dead Processes
Probabilistic Consensus

References

References

[1] M. Ben-Or.
Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract).
In R. L. Probert, N. A. Lynch, and N. Santoro, editors, Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing, Montreal, Quebec, Canada,
August 17-19, 1983, pages 27–30. ACM, 1983.

[2] T. D. Chandra and S. Toueg.
Unreliable failure detectors for asynchronous systems (preliminary version).
In L. Logrippo, editor, Proceedings of the Tenth Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages 325–340.
ACM, 1991.

[3] M. J. Fischer, N. A. Lynch, and M. Paterson.
Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[4] N. A. Lynch.
Distributed Algorithms.
Morgan Kaufmann, 1st edition, 1996.

Cournier & Devismes Consensus Algorithms April 28, 2023 59 / 59

	Introduction
	Partially Synchronous Systems
	Definition & Examples
	Model
	The FloodSet Algorithm

	Initially Dead Processes
	Model
	The FLP Algorithm

	Probabilistic Consensus
	Model
	The Ben-Or Algorithm

	References

