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Summary. A self-stabilizing system has the property that 
it will converge to a desirable state when started from 
any state. Most  previous researchers assumed that pro- 
cesses in self-stabilizing systems may communicate 
through shared variables while those that studied message 
passing systems allowed messages with unbounded size. 
This paper  discusses the development of  self-stabilizing 
systems which communicate through message passing, 
and in which messages may be lost in transit. The systems 
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presented all use fixed size message headers. First, a self- 
stabilizing version of the Alternating Bit Protocol, a fun- 
damental  communication protocol for transmitting data 
across an unreliable communication medium, is pre- 
sented. Secondly, the alternating-bit protocol is used to 
construct a self-stabilizing token ring. 
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1 Introduction 

Since the development of  the first self-stabilizing systems 
by Dijkstra in the early 1970's [Dij74, Dij82] most  re- 
searchers have considered systems in which the processes 
communicate through shared variables [Kru79, Lain84, 
BGW87, BGW89, BP89]. In this paper  we present three 
self-stabilizing systems, two data-link protocols and a 
token ring, which communicate over unreliable message 
channels. 

The Alternating Bit protocol is a fundamental data- 
link protocol for reliably transferring data between a 
transmitter and a receiver across an unreliable transmis- 
sion medium [BSW69, Ste76]. The reliable transmission 
of data by the Alternating Bit protocol requires that the 
transmitter, the receiver, and the communication medium 
remain tightly synchronized. In the event that synchro- 
nization is lost, it might never be recovered. 

The Alternating Bit protocol is a special case of  the 
sliding-window protocol [Tan81, BS83]. Gouda  and Mul- 
tari have developed a self-stabilizing sliding window pro- 
tocol (and hence an Alternating Bit protocol) [GM91]. 
Their protocol requires the use of  unbounded sequence 
numbers which would result in an unbounded message 
size. Furthermore,  they have proved that it is impossible 
to develop a self-stabilizing version of the sliding window 
protocol that uses bounded sequence numbers and de- 
terminisitic finite state transmitter and receiver. Katz  and 
Perry have also developed self-stabilizing systems which 
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communicate through message passing and use un- 
bounded sequence numbers [KP89]. 

Gouda and Multari essentially proved, although did 
not directly argue so, that any self-stabilizing sliding win- 
dow protocol requires some kind of an "infinite re- 
source". We present two self-stabilizing variations of  the 
Alternating Bit protocol. Both use bounded sequence 
numbers (message headers) and the "unbounded re- 
source" in each is confined to a particular oracle at the 
transmitter. In the first protocol the oracle generates an 
aperiodic string of  sequence numbers taken from a 
bounded size alphabet and in the second it generates a 
string of random sequence numbers over the same al- 
phabet. In both cases each number in the string generated 
by the oracle is different from its predecessor. Thus, in 
the first protocol the transmitter is an infinite state ma- 
chine and in the second it is a probabilistic finite state 
machine. 

An interesting and desirable property of  our random- 
ized algorithm is the speed at which it converges to a legal 
state. Specifically, the expected time for our randomized 
alternating bit protocol to stabilize as a function of h, 
the message header size in bits, is O(2-h) .  The expected 
stabilization time is also dependent on the number of 
messages in transit in the initial state, in which case the 
dependence is linear. From a practical point of  view we 
note in Sect. 6 that the unbounded resource in our pro- 
tocols can be trivially replaced by a bounded resource 
whenever a bound on the link capacity is given. 

Finally, a self-stabilizing token ring is presented by 
augmenting the Alternating Bit protocols. This demon- 
strates the broader applicability of  the techniques used 
to make the Alternating Bit protocols self-stabilizing. 

The paper is organized as follows. The system model 
and problem statement for data-link protocols are pre- 
sented in Sect. 2. In Sect. 3 the Alternating Bit protocols 
are presented and, in Sect. 4, a proof  that they are self- 
stabilizing together with their analysis is given. Finally 
the token ring protocol is described in Sect. 5. Practical 
applications of the protocols and possible extensions are 
discussed in Sect. 6. 

2 Self-stabilizing protocols 

The basic definition of a self-stabilizing system is one 
which will converge to a legal state when started from 
any state. The first step in the design of such a system is 
to identify the "legal" states. At the specification level, 
the legal states are identified by the properties which must 
hold when the system is in a legal state. It is then the 
designer's duty to prove that an implementation stabilizes 
to a set of  system states that satisfy the properties required 
by the specification. In the remainder of this section a 
self-stabilizing data link protocol is specified. 

The purpose of  a data-link protocol is to reliably 
transmit messages from one end of an error prone com- 
munication medium to the other end [BSW69, AUWY82, 
BS83, LMF88]. By reliably we mean that messages arrive 
error free, without duplication or loss, and in the order 
sent. 

The system consists of two processes, the transmitter 
T and the receiver R, connected by two directed com- 
munication links, T-R and R-T, oriented in opposing di- 
rections. Messages transmitted over the links may be lost 1 ; 
however, those that are not lost arrive error free and in 
the order sent (FIFO). Although timeouts may be used 
by the protocol, no bound on the transmission delay is 
assumed. 

In a data-link protocol the transmitter has an input 
tape with an infinite sequence I =  (Do, D1 .... ) of  data ele- 
ments. The transmitter reads these data elements and tries 
to transmit them to the receiver. The receiver must write 
these data elements onto an output tape O. The goal is 
to design a protocol such that, safety: 0 is always a prefix 
of I and liveness: under reasonable fairness conditions, 
every data element D i is eventually written to O. 

This paper considers a system consisting of  a trans- 
mitter, a receiver, and communication links that are sub- 
ject to transient errors at arbitrary times (e.g. host 
crashes). The transmitter and receiver are deterministic 
finite state machines; however, the transmitter has access 
to a choose oracle. After a transient error the transmitter, 
receiver, oracle, and links are in arbitrary states. Note 
that losing a message on a link is not considered an error, 
it is a possible behavior of the system that the protocol 
should tolerate in normal operation. To model long pe- 
riods of time during which all components operate with- 
out errors, we assume that eventually, after an arbitrary 
number of errors, the transmitter, receiver and links enter 
a last operational interval (in which there are no more 
faults aside from message loss) that is infinitely long 
[AAG87]. The last operational interval consists of  two 
periods, a convergence period, and an infinitely long sta- 
ble period, called the final interval. In the convergence 
period the protocol automatically moves the system from 
the arbitrary global state at which it began to a legal 
global state which guarantees its correct operation there- 
after, i.e. it is guaranteed to remain in a legal state in the 
future unless additional faults occur. 

The goal is to design a data-link protocol that satifies 
the safety and liveness conditions above and which is self- 
stabilizing, i.e. that following a sequence of faults will 
converge into a legal state in finite time. The safety and 
liveness conditions above were specified for a system that 
does not fail. When the system is subject to transient 
errors at arbitrary times it is required to behave correctly 
only during the final interval, i.e. (a) safety: the sequence 
of data elements written ot O during the final interval is 
always a prefix of the sequence of  data elements read 
from I during the final interval, and (b) liveness: in the 
final interval it is always true that within a finite time 
one more data element will be written to O. 

3 A generic data-link protocol 

The two Alternating Bit protocols are variants of a single 
"generic" data-link protocol which is much like the orig- 

1 Message corruption is treated as message loss by assuming the 
use of error detecting codes 



Transmitter T: : 

seq int init 0; 
i int; 
msg data; read~next(msg): /*initialize */ 

timeout 

rev (i) 

, send (seq, msg); 
reset_timeout 
if (seq = i) 
then seq:= choose (X/seq); 

read_next (msg); 
send (seq, msg) 

fi; 
reset_timeout 

Receiver R: : 

ack int init 1; 
j int; 
rmsg data; 

rcv (j, rmsg) , if ack =/=j 
then ack: = j; 

write_next (rmsg) 
fi; 
send (ack) 

Ng. 1. The generic alternating bit protocol 

inal protocol of  [BSW69]. In the original protocol mes- 
sage sequence numbers are either 0 or 1, that is the size 
of  the sequence numbers alphabet, 27, is 2. In the two 
variants the size of  the sequence number alphabet is at 
least 3, e.g. {0, 1, 2}. Furthermore, the series of sequence 
numbers selected by these protocols is aperiodic in one 
and random in the other variant. 

The generic data-link protocol, called Protocol G, 
consists of two processes, a transmitter T and a receiver 
R. The code for each process consists of a set of actions 
(see Fig. 1). Each action may be enabled or disabled de- 
pending on the state of  the system. An enabled action 
may be executed at any time with the restriction that the 
actions of the system (both T and R) are executed one 
at a time, i.e. atomically. 

Each action has the form guard , command The 
guard may be either a boolean expression or a receive 
statement of  the form roy(_). The guard timeom refers to 
a boolean variable set by a timeout mechanism. This 
mechanism is assumed to consist of  a free running clock 
which periodically sets timeout to true. The timeout mech- 
anism is assumed to be self-stabilizing. The commands 
are constructed from primitive commands using sequenc- 
ing and alternative constructs. The primitive commands 
consist of: assignment statements, send commands of the 
form send(_), input commands of the form read(_), out- 
put commands of  the form write(_), and the function 
choose  (N/x)  which selects an element other than x from 
27 - the set of sequence numbers used by the protocol. 
In addition the command rese t_ t imeout  reinitializes the 
timeout clock and resets the timeout boolean variable. 

An action of  process T (R) is enabled if its guard is a 
boolean expression which evaluates to true or its guard 
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is a receive statement and there is a message in the R-T 
(T-R) link. 

Execution of an action of T (R) consists of receiving 
a message from the R-T (T-R) link if the guard is a receive 
statement, and then executing the command. Execution 
of a send statement by T (R) causes a message to be added 
to the T-R (R-T) link. Execution of a read command reads 
the next input from I. Execution of a write command 
writes to output O. 

The protocol works as follows. The transmitter and 
the receiver each hold a sequence number - initially dif- 
ferent. To transmit the current message from the input 
to the output, the transmitter tags the message with its 
current sequence number, seq, and sends it periodically 
(using timeouts) to the receiver until it receives an ack- 
nowledgment from the receiver with its current sequence 
number. The receiver writes to its output any message 
which arrives with a sequence number different from its 
own (ack). The transmitter may, at any time, retransmit 
its current message (e.g. due to a timeout). 

The variable seq is used to hold the current sequence 
number (initially 0), lnsg holds the current data message, 
and i is used to receive acknowledgment messages. The 
initial values of seq, ack  a n d  m s g  are not necessary since 
the protocol is self-stabilizing; however, we include them 
so that the system will start in a legal state under normal 
use. 

The behavior of Protocol G depends on the specifi- 
cation of the choose function. In the deterministic Alter- 
nating Bit protocol, choose  produces an aperiodic se- 
quence (e.g. the sequence of digits representing an irra- 
tional number). The probabilistic protocol is a special 
case in which the sequence produced by choose is random. 
Note that if X = { 0 ,  1} then Protocol G is the standard 
Alternating Bit protocol [BSW69]. 

The safety and liveness properties of Protocol G with 
X = { 0 ,  1}, and no failures are proved in [AUWY82, 
Hai85, Gou85]. In the following section we prove that 
Protocol G is a self-stabilizing data-link protocol if 
I•[ > 2 .  

4 Propert ies  o f  protocol  G 

In this section we demonstrate that protocol G is self- 
stabilizing provided that the sequence of numbers selected 
by choose is aperiodic. (In Sect. 6, we demonstrate that 
the choose oracle can be implemented as a deterministic 
finite state process if the communication links have finite 
capacity.) The expected cost of  stabilization for the prob- 
abilistic version is analyzed. 

We begin some definitions and notation necessary for 
the analysis of  the protocol. Since our interest is not with 
individual states but with classes of states (in particular 
the legal states), we develop a classification scheme for 
states. In Subsect. 4.1 the self-stabilization proof  is given 
and Subsect. 4.2 the performance of  the probabilistic pro- 
tocol is evaluated. 

Since protocol G is data-oblivious, the state of the 
processes and the links will be represented by the se- 
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quence numbers on them leaving out the data elementsfl 
The state of the transmitter is represented by the value 
of its current sequence number, seq, and the state of the 
receiver by the value of  its current acknowledgment se- 
quence number, aek. Thus the number of  states of  each 
is IZl .  

The state of the T-R link is denoted by the (possibly 
empty) sequence ulcc2.. .~,0ce~2;,  and the state of the 
R-T link is denoted by the (possibly empty) sequence 
/~1 /~2"" "/~m,/~i ~ z~, for some m, n _> 0. The system state s 
is the concatenation of the states of the processors and 
the links: 

s = s e q  I I ackl fll fl2"''~m 

Given this characterization of the system states, we 
represent all allowable actions of  the system by a tran- 
sition relation & : S •  S, where S is the state space. This 
transition relation has six types of  transitions (01, 02, 03, 
04, &s, and 06). If  s I &~s 2, for some state s 2 then we say 
that 0~ is applicable to state s 1 . These transitions represent 
the following six possible events: 

01: 

02: 

03: 

04: 

&5(i): 

&6(J): 

The transmitter retransmits a message. 

The transmitter receives an acknowledgment 
which equals seq and it sends a new message with 
a new sequence number. 

The transmitter receives an acknowledgment 
which does not equal seq. 

The receiver receives a message and it sends an 
acknowledgment. 

Losing the i-th message on the T-R link. 

Losing the j - th  message on the R-T link. 

More precisely: 

01: seq I C~l...c~. ] aek I B~...Bm 
seq I seq oq.--c~n I ack I/71..-Bin 

&2: seqlo~l...c~n]acklB1...flm 
----* seq' [ seq'c~ 1. . .~n ] aek I i l l . . ,  f l .~-  1 

where tim = seq and seq' = choose ( s  

03: seqlo~l. . .~laek[ f l l . . . f l  m 
--- '  seq I ~l. . .~n I aekl ~ l ' ' '~m--  1 

where Bm ~ seq 

04: seq I ~l...c~n I ack I/~l.../~m 

05(0:  seq I ~ . . . c% Iack I B1...Bm 
seq ] c~ 1...~i_ lC~i+ 1... 
~ l a e k ]  fll. . .Bm 

06(]) :  seq I ~1...~,, [ack [ B1...flm 
seq ] ~ 1 . . . ~ .  ] aek I i l l . . .  
/~+ ~/~++1-.-/~ 

Where m,n>_ O, 1 <_iNn, and 1 <_j <_m. 

In Sect. 4.1, when considering the safety requirement of our pro- 
tocol, we will need to consider the data elements; however, it sim- 
plifies the discussion to ignore them for now 

A schedule is a finite or infinite sequence of transitions. 
A schedule tr is applicable to a configuration s if every 
transition in o- is applicable in turn to the resulting in- 
termediate configurations starting with s. The configu- 
ration resulting from the application of  a finite schedule 
o- to a configuration s is denoted sa.  

In data-link protocols it is perfectly legal to have states 
in which sequences of identical messages are in transit. 
In order to further characterize the system state, we will 
ignore the length of such sequences and consider only 
their pattern. The system state s is compressed into a 
"compact state" CS(s )  by first treating it as one long 
string of  sequence numbers: 

seq cr 1 cr 2.. .  e n ack fl l  f12.., tim 

and second by replacing each maximal contiguous seg- 
ment of equal sequence numbers by one instance of that 
sequence number. For  example, if 

s = 2 1 2 2 2 0 0 0 1 1 1 1 1 1 1  

then 

CS (s) = 2 0 1 

The compact state of state s and of sO i may be the 
same in many cases, e.g. C S ( s ) =  CS(sOt) .  A transition 
&i that does change the compact state of the system is 
denoted as ~i, e.g. CS(s)~e CS(s~2).  Note for example 
that &l never effects the compact state of the system while 
02 always will and thus will be denoted ~2. 

A length function l ( s )=  I CS (s)] is associated with 
each state s, i.e. the number of  different blocks of identical 
sequence numbers in the system. A Rank function is sim- 
ilarly defined: 

l(s) + 1 if first (s) = last (s) 
Rank (s) = (. l (s) otherwise 

The legal states of the system are those states whose 
rank is 2, in which all the messages with the same se- 
quence number have the same data field, and the mes- 
sages with sequence number seq from the transmitter code 
have msg in their data field. To prove that the protocol 
self-stabilizes we first show that the rank function is de- 
creasing with time until Rank (s) = 2. This proof  depends 
upon the following fairness assumptions. 

Fairness assumption on the transmitter and the receiver. If  
an action of the transmitter or receiver is continuously 
enabled, then eventually it will be executed. 

Fairness assumption on communication links. If a process 
repeatedly sends the same message over a link, eventually 
a copy of the message will reach the other end of the link 
without being lost. 

Recall our assumption that all components operate with- 
out error in the last operational interval. 

The following observation about a liveness property 
of  the protocol can be easily proved from the above as- 
sumptions and the assumption that read_next(msg) is 
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continuously enabled. Similar properties with a proof- 
outline are given in Theorem 2. 

Observation 1. In an infinite schedule of  the protocol d 2 
and ~4 appear infinitely often. 

4.1 Self-stabilization with infinite aperiodic sequences 

In this section we show that a deterministic version of 
the protocol converges to a legal state if a sequence of 
calls to choose returns an aperiodic series of sequence 
numbers, ap. The sequence ap is aperiodic iff: 

---1(3 ~, fl :a, fl E Z, + :ap=af l  ~) 

Theorem 1. I f  Rank (s) > 2 and eiloose returns an aperiodic 
series of  sequence numbers, then Rank (s) never increases 
and is eventually reduced 

Proof Assume the contrary, i.e. there exists an infinite 
schedule a such that for any prefix a'  of a,  
Rank ( sa ' )  >_ Rank (s) > 2 and the sequence of numbers 
returned by the calls to choose in a is aperiodic. Since 
none of the six transitions ~1... ~6 increases Rank, it must 
be that Rank (sa") = Rank (s) > 2. 

By Observation 1, d 2 appears infinitely often in a. 
Thus, the execution of the protocol under schedule a has 

~ 1  ~ 2  ~ 3  ~ i  the form: ]AoSl(~2[A1S2(~2[12S3(~21113...[.li_lSi~2[,li...~ 
where ~s is the i th occurrence of ~2 in a and the/~'s are 
~2-free alternating sequences of states and transitions. We 
claim that for any i, the sequence number returned by 
choose in (f~ equals the next to the last sequence number 
in CS(si). Proving this claim completes the proof  of the 
theorem because, Rank (si) is the same for all i while, by 
the claim, the system behaves like a cyclic shift register 
whose next to last number is fed into the front. Thus 
contradicting the assumption that choose returns an ape- 
riodic sequence of numbers. 

The claim is also proved by contradiction. Assume 
that the claim does not hold for i=k .  Let CS(sk) 
= e~'"c~n- 1 c~1, then ~0, the number returned by choose 

�9 ~ k  " ' m ~2, is different from both c~n_ 1 and c~ 1. Since tt k is 
~2-free and S 2 is the only transition that changes seq, ao 
is the first element in CS(sk+ 1). Since ~2 is applicable to 
sk+ I the last number in CS(sk+l) equals c% and thus is 
neither ~ _ ~  nor e~, i.e. c~ 1 and c%_ 1 must have been 
deleted from the end of CS(sk) by the transitions in/~k. 
Because no transition aside from d 2 adds a number to 
the system state, l ( sk )>l (sk+ 0 and thus Rank(sx) 
= I (s k) + 1 > l (s k + 1) + 1 >_ Rank (s k + ~), which contra- 
dicts our assumption that Rank ( sa ' )  = Rank (s). [] 

Theorem 2. In a state s such that Rank (s) = 2, the protocol 
satisfies its liveness requirement. Furthermore, the system 
is guaranteed to reach a legal state from which point on 
the protocol satifies its safety requirement. 

Proof outline. There are three types of compact states 
CS (s) with Rank ( s )=  2. We will show that in a correct 
operation and under the fairness assumptions above the 
system must cycle between the first and third type (pos- 
sibly going through the second one). The three types are: 

(1) eft  where a c k = f l ,  (2) c~fl where a e k = e ,  and (3) c~, 
where c~, fl ~ X, ~ ~e fl, and aek is the receiver aek variable. 
We consider each possibility separately. 

1. CS (s) = c~B ^ aek = ft. By the fairness assumptions, 
since the sender repeatedly sends a message with se- 
quences number u, a message with sequence number 
will eventually be received by the receiver. Thus the sys- 
tem eventually reaches either state s '  such that CS(s ' )  
=c~fl ^ aek = c~, or a state s" such that CS ( s " )  =~.  From 
the code, this also implies that the receiver writes the 
message that corresponds to a to output O. 
2. C S ( s ) = a f l  ^ a e k = a .  By the fairness assumption on 
transmitter and receiver, every message sent is either lost 
or received. Thus, the system must eventually reach a 
state s '  where CS (s') = c~. 
3. CS(s) = a. By the fairness assumptions, repeated trans- 
missions of  a message will eventually result in a copy of 
the message being received. Thus, the system must even- 
tually reach a state s' where CS ( s ) =  ~ 'c~ ^ ack = a. The 
required liveness property follows from 1. Furthermore, 
from this point foward, every data message with sequence 
number seq (from the sender's code) has data msg. 

From the preceding argument, the system eventually 
reach a state s in which CS (s) = ~ and every message has 
data msg. The required safety property, that the data 
sequence written to O is a subsequence of the data se- 
quence read f r o m / ,  holds from this point on. [] 

Suppose that 2; = {a, b, c}, then the sequence abeabab- 
cabababc.., has the required property. Although this 
string certainly satisfies the requirements, it may not pro- 
duce the most desirable convergence rates. The quies- 
cence time complexity (the time it takes the system to 
converge into a legal state) of the deterministic protocol 
highly depends on the characteristics of the aperiodic 
sequence. Hence, in the next subsection a randomized 
choose is used to achieve faster convergence rates. 

4.2 Probabilistic self-stabilization 

We are interested in establishing bounds on the length of 
the convergence period and on the number of erroneous 
messages received or the number of messages lost during 
the convergence period. These bounds depend upon the 
state of the system at the beginning of the convergence 
period. In particular upon the length of  the compact state 
(I CSI) .  

First the expected number of times the transmitter 
receives a "correct" acknowledgment and hence transmits 
a new message during the convergence period is calcu- 
lated�9 The number of new messages transmitted during 
the convergence period is the number of times d2 is ap- 
plied to the system. The protocol guarantees that the 
transmitter will not have to wait to transmit a new mes- 
sage for longer than the round-trip delay between the 
transmitter and receiver�9 (A longer wait would imply that 
all messages with sequence numbers different from seq 
had been lost or received and hence the system had sta- 
bilized.) Thus, this gives a bound on the expected con- 
vergence time. In the probabilistic version of Protocol G 
choose selects a sequence number at random, i.e., 
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1 
Prob (choose (S) = a) = ~ V a E S 

We assume that sequence numbers appear in the compact  
state with equal probabili ty at the beginning of the con- 
vergence period. 

Claim 1. Let e (n) be the expected of new messages trans- 
mitted by the transmitter (through ~ 2  transitions) during 
the convergence period of  a system which starts at a state 
s such that [ CS (s) [ = n. Then 

(n - 2) 
e(n)<_ (1) 

(1271 - 2 )  

Proof of Claim. We are interested in deriving a bound 
for e (n). Thus, we do not consider the effects of  transi- 
tions which fortuitously reduce the rank of the system 
(e.g. through message loss). In particular, we consider 
schedules in which the only transitions which alter the 
compact  state are ~2 and d3. By Observation 1, ~ 2  o c c u r s  

infinitely often. Thus computing e(n) is equivalent to 
solving the following combinatorial  problem: 

Given an initial string of length n, such that each two 
successive elements in the string are different, add a new 
element to the front of  the string whenever the two ends 
of the string are equal and delete an element from the 
tail of  the string whenever the two ends are different. The 
problem is to determine e (n), the expected number  of  
times an element is added to the front of  the string before 
the string length becomes two. All additions are chosen 
f rom alphabet X using a uniform distribution (preserving 
the property that no two adjacent elements are equal). 
Furthermore,  we assume that  the elements in the string 
are initially chosen from this alphabet using a uniform 
distribution. 3 

Let Q; be the probabili ty that the two ends of a ran- 
dom string of  length i are equal and let t = [2; [. Clearly, 
Q 2 = 0  and Q 3  = 1 / ( t -  1). In general Q~ depends on i. I f  
we construct a string of length i f rom a string of length 
i -  1 whose ends are equal, then the ends of  the new string 
are equal with probabili ty 0. However, if we start with a 
string of length i -  1 whose ends are different, we will get 

1 
a string whose ends are equal with probabili ty t - 1 "  
Thus, 

1 
Q~=(1 - Qi-1) - -  ( t -  1) 

Since Q2 = 0: 

Z 
j = 0  

1 \ l - - t /  
- -  ( 2 )  

t 

3 There are seemingly trivial ways to solve this combinatorial prob- 
lem; however, as one of the anonymous referees made clear, the 
probability distribution of the strings involved depends upon string 
length and alphabet size in subtle ways 

Let eq (i) be the expected number of  additions per- 
formed on a random string of length i whose ends are 
equal. In order to prove the claim we first derive an 
expression for eq (i). In this case we start with a string 
of the form 

i 

a 1 . . . a  1 

and add a number to yield a string of the form 

i 

a o a 1 ... a 1 

We can compute e q (i) by calculating the probability that, 
once we have performed the addition, we will get to delete 
numbers until we end up with a string of length k whose 
ends are again equal, eq (i) then involves a sum of these 
terms. 

The probabili ty for a random string to have the form: 

k i - - k  

aoal . . .ao aj_~ al 
=B a o 

is: 

1 
for an arbitrary aa. Where is due to the fact that we 

t - 1  
chose a o out of  the set 2 7 -  a 1 

The conditional probability for a string with the above 
form, given a random string of length i whose ends are 
equal is: 

( t - 2 ~  ~-k 

Q(i) 

We can now calculate eq(i), by considering all the 
cases and adding because we have to perform at least the 
first addition. 

~, O(k)  \ t - l /  eq(k)  
eq( i )= k=3 ~- 1 

Q(i) 

(t_2y-  
~, Q(k)  \ t -  1 /  eq(k)  

k = 3  t - 1  
4 - - -  

t - -2  t - -2  Q(i) 

i - -1  

~, Q(k)  
1 k=3 t - - 1  

t - -2  Q(i) t - 2  

To prove the last equality it suffices to demonstrate that: 

~, Q ( k ) =  ~ Q(k)  \~ - -1 , /  eq(k)  
k = 3  k = 3  

which follows f rom induction on i. 



To prove the claim, consider a random string of length 
n. The probability that ( n -  k) sequence numbers are re- 
moved before the first addition is 

( t - 2 ~  n -~ - I  
Q(k) \ ~ - l J  

for k < n and Q(n) for k=n. As with eq(i), we consider 
all cases in computing e (n): 

n - ,  ( t _ 2 ~ n - k - I  
e ( n ) =  ~ Q(k) \7---lJ eq(k)+Q(n)eq(n) 

k = 3  

_ t - 1  ~-1 t - -1  1 ~-1 
t -2  ~' Q(k)+~-2 Q(n)+t-2 ~, O(k) 

k = 3  k = 3  

_ l " Q ( n )  

t -2  ~' Q(k)- t - ~  
k - - 3  

We now prove (t - 2) e (n) = (n - 2). 

n 

t ~, Q(k)-Q(n) = n - 2  
k = 3  

n 

t ~, Q(k) =n-2+Q(n) 
k = 3  

n ( ( 1 ~k--2~ 
~, 1 - \ ~ /  /=n-2+Q(n)  

k = 3  

- ~ ,  ~ = Q ( n )  
k = l  

Which follows (2). [] 

The fact that the time to stabilize is a function both 
of the initial state and of the size of the sequence number 
domain is not surprising. Note that for reasonable values 
of n and 1271 the system stabilizes very rapidly. Even if 
started with a large number k of  erroneous messages on 
the links, the system will converge to a legal state in 

expected O round trip delays. 

Note that ( n -  2 + e (n)) bounds the expected number 
of messages that may be lost during the convergence pe- 
riod, where (n - 2) of those were on the links at the be- 
ginning of the convergence period and e (n) where trans- 
mitted during the convergence period. 

Unlike the expected number of  messages transmitted 
during the convergence period the expected number of 
duplicate receptions is O(n), since all the messages on 
the links could be received by the receiver at this time. 
To avoid this problem of  large number of duplicates the 
Probe technique that is suggested in [AG88] could be 
employed. Essentially, in this modified protocol a process 
posts each message that it should send on a bulletin board 
instead of  sending it (i.e., the transmitter posts the mes- 
sages while the receiver posts its acknowledgments). Each 
processor is then responsible to probe (to read) the mes- 
sages for it from the bulletin board of the other processor. 
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The sequence of probe operations of each processor is 
implemented in the same way that the alternating bit 
protocols of this paper are. That is, each processor re- 
peatedly sends a request to read the other's bulletin board, 
changing the sequence number on the requests each time 
it starts a new probe. 

5 A s e l f - s t a b i l i z i n g  t o k e n  ring 

The alternating bit protocols of the previous sections can 
be extended to develop self-stabilizing token rings in 
which processes communicate asynchronously through 
FIFO links. A token ring consists of a cycle of processes 
which circulate a single privilege or token. Possession of 
the token is required to perform some action, e.g. ac- 
cessing a shared bus. Although numerous previous papers 
have dealt with the problem of developing self-stabilizing 
token rings, these systems have assumed that the pro- 
cesses can read the states of  their neighbors [Dij74, Dij82, 
Kru79, BGW87, BGW89, BP89]. 

First it is shown that the alternating-bit protocols pre- 
sented can be viewed as degenerate token rings consisting 
of two processes. Then it is shown that a token ring can 
be created by introducing additional links and receiver 
processes. Consider the following "stripped down" ver- 
sion of protocol G in which the input and output have 
been removed and the statement eritieaLseetion has been 
added to both processes in Fig. 2. 

The statement "critical_section" in each process's code 
denotes the commands to be executed when the process 
holds the token. Notice that the transmitter may enter its 
critical section only when it receives a message with a 
sequence number containing its current state and the re- 
ceiver may enter its critical section only when it receives 
a message with a sequence number different than its cur- 
rent state. Further, when the transmitter is in the critical 
section then its timeout is diabled, so it does not send 

Transmitter T' : : 

seq int init 0; 
i int; 
timeout ~ send (seq); 

r e s e t ~ m e o u t  
rcv (i) ~ if (seq = i) 

then critical_section; 
s e q : =  choose (2?/seq); 
send (seq); 

fi, 
reset timeout 

Receiver R' : : 

ack int init 1 ; 
j int; 

rcv (j) ~ if  ack =~ j 
then crit ical_section; 

a c k : = j  
fi; 
send (ack) 

Fig. 2. The protocol for the token ring processors, T' is the leader 
and R' are all the other processors 
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any messages while it is in the critical section. In those 
system states where Rank = 2, at mos t  one o f  these two 
may  be in the critical section at a time. Fur thermore ,  the 
system is guarenteed to converge to such a state. 

A general token ring is created by adding receiver 
processes to the ring. The stabilization p r o o f  that  has 
been previously presented is still valid: consider a ring 
form f rom one transmitter  T '  and n processes R ; ,  
0 < i < n. The state o f  this system is given by an expres- 
sion o f  the form:  

T' .seq [ to... t s I R~ .ack I rl...r.~ I ... I R,~ .ack I r~...r~ 

The transitions o f  the system can then be modeled by 
~1...fi6 given previously where ack in the definitions o f  
f i l . . .~6 is the ack variable o f  any of  the n receivers. By 
using the same ranking funct ion and p r o o f  for the alter- 
nating-bit  protocols ,  we can prove the following corol lary 
to Theorem 1. 

Corollary 3. A token ring formed f rom a transmitter pro- 
cess T" and n receiver processes R '  is guaranteed to 
converge to a state s where R a n k ( s ) = 2  provided that 
choose returns an aperiodic series o f  sequence numbers. 

In any state where Rank = 2, at m o s t  one process is 
enabled to enter its critical section. Fur thermore ,  pro-  
vided that  each process continues to execute enabled ac- 
tions, eventually each process will enter its critical section. 

6 Discussion 

Al though  the presented protocols  require that  the trans- 
mitter generate an infinite aperiodic sequence o f  numbers,  
in practice, this may  not  be required. Whenever  a bound  
y is given on the number  o f  messages that  can simulta- 
neously be in transit, the protocol  can be used with a 
sequence o f  numbers  ap whose period is larger than y 
i.e.: 

--q (3 ~ , / / : a  e r + , B e - r < - ~ : a p = e B ~ )  

The probabilistic version o f  pro tocol  G is a good  prac- 
tical solution to the link initialization problem in several 
applications. Fo r  example:  in voice, video, or  real time 
applications the crash and recovery would  result in the 
loss o f  one data  point,  which in mos t  cases is insignificant 
in the overall behavior  o f  the system. Clearly, pro tocol  
G can be extended to a sliding window protocol  with 
similar properties by running W copies o f  pro tocol  G 
with W distinct sets o f  sequence numbers  [PS88]. 

As a final note, Burns, Gouda ,  and Miller have re- 
cently studied "pseudo self-stabilizing" protocols  
[BGM90].  Al though  the original Alternat ing Bit proto-  
col is not  self-stabilizing, it is pseudo self-stabilizing in the 
following sense. F r o m  an illegal state with rank  K +  2 
the system may  lose K messages at arbi t rary times, but  
otherwise it behaves legally. One of  the anonymous  ref- 
erees has pointed out  that  use o f  the original Alternat ing 
Bit protocol  for a token ring results in a protocol  which 
is no t  even pseudo self-stabilizing. 

Acknowledgements. We would like to thank the referees for helpful 
comments. In particular the comments of referee C led us to some 
improvements in the analysis, and saved us from some embarrassing 
errors. 
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