
Distrib Comput (1993) 7:27-34

�9 Springer-Verlag 1993

Self-stabilization over unreliable communication media*
Yehuda Afek 1, Geoffrey M. Brown 2

1 Computer Science Department, Tel-Aviv University and AT&T Bell Laboratories
2 School of Electrical Engineering, 334 Engineering and Theory Center Building, Cornell University, Ithaca, NY 14853-7501, USA

Received February 1990/Accepted November 1991

Yehuda Afek received a B.Sc. in
Electrical Engineering from the
Technion and an M.S. and Ph.D.
in Computer Science from the Uni-
versity of California, Los Angeles.
In 1985 he joined the Distributed
Systems research Department in
AT&T Bell Laboratories and in
1988 he joined the Department of
Computer Science in Tel-Aviv Uni-
versity. His interests include com-
munication protocols, distributed
systems, and asynchronous shared
memories.

Geoffrey M. Brown received the
BS degree in Engineering from
Swarthmore College in 1982, the
MS degree in Electrical Engineer-
ing from Stanford University in
1983, and the Ph.D. degree in Elec-
trical Engineering from the Univer-
sity of Texas at Austin in 1987.
From 1983 to 1984 he worked for
Motorola in Austin, TX. Currently
he is an Assistant Professor in the
School of Electrical Engineering at
Cornell University. In 1990, Brown
was named a Presidential Young
Investigator by the National Sci-
ence Foundation.

Summary. A self-stabilizing system has the property that
it will converge to a desirable state when started from
any state. Most previous researchers assumed that pro-
cesses in self-stabilizing systems may communicate
through shared variables while those that studied message
passing systems allowed messages with unbounded size.
This paper discusses the development of self-stabilizing
systems which communicate through message passing,
and in which messages may be lost in transit. The systems

* This work supported in part by NSF grant CCR-9058180

Correspondence to: G. M. Brown

presented all use fixed size message headers. First, a self-
stabilizing version of the Alternating Bit Protocol, a fun-
damental communication protocol for transmitting data
across an unreliable communication medium, is pre-
sented. Secondly, the alternating-bit protocol is used to
construct a self-stabilizing token ring.

Key words: Self-stabilizing - Protocol - Alternating Bit

1 Introduction

Since the development of the first self-stabilizing systems
by Dijkstra in the early 1970's [Dij74, Dij82] most re-
searchers have considered systems in which the processes
communicate through shared variables [Kru79, Lain84,
BGW87, BGW89, BP89]. In this paper we present three
self-stabilizing systems, two data-link protocols and a
token ring, which communicate over unreliable message
channels.

The Alternating Bit protocol is a fundamental data-
link protocol for reliably transferring data between a
transmitter and a receiver across an unreliable transmis-
sion medium [BSW69, Ste76]. The reliable transmission
of data by the Alternating Bit protocol requires that the
transmitter, the receiver, and the communication medium
remain tightly synchronized. In the event that synchro-
nization is lost, it might never be recovered.

The Alternating Bit protocol is a special case of the
sliding-window protocol [Tan81, BS83]. Gouda and Mul-
tari have developed a self-stabilizing sliding window pro-
tocol (and hence an Alternating Bit protocol) [GM91].
Their protocol requires the use of unbounded sequence
numbers which would result in an unbounded message
size. Furthermore, they have proved that it is impossible
to develop a self-stabilizing version of the sliding window
protocol that uses bounded sequence numbers and de-
terminisitic finite state transmitter and receiver. Katz and
Perry have also developed self-stabilizing systems which

28

communicate through message passing and use un-
bounded sequence numbers [KP89].

Gouda and Multari essentially proved, although did
not directly argue so, that any self-stabilizing sliding win-
dow protocol requires some kind of an "infinite re-
source". We present two self-stabilizing variations of the
Alternating Bit protocol. Both use bounded sequence
numbers (message headers) and the "unbounded re-
source" in each is confined to a particular oracle at the
transmitter. In the first protocol the oracle generates an
aperiodic string of sequence numbers taken from a
bounded size alphabet and in the second it generates a
string of random sequence numbers over the same al-
phabet. In both cases each number in the string generated
by the oracle is different from its predecessor. Thus, in
the first protocol the transmitter is an infinite state ma-
chine and in the second it is a probabilistic finite state
machine.

An interesting and desirable property of our random-
ized algorithm is the speed at which it converges to a legal
state. Specifically, the expected time for our randomized
alternating bit protocol to stabilize as a function of h,
the message header size in bits, is O(2-h) . The expected
stabilization time is also dependent on the number of
messages in transit in the initial state, in which case the
dependence is linear. From a practical point of view we
note in Sect. 6 that the unbounded resource in our pro-
tocols can be trivially replaced by a bounded resource
whenever a bound on the link capacity is given.

Finally, a self-stabilizing token ring is presented by
augmenting the Alternating Bit protocols. This demon-
strates the broader applicability of the techniques used
to make the Alternating Bit protocols self-stabilizing.

The paper is organized as follows. The system model
and problem statement for data-link protocols are pre-
sented in Sect. 2. In Sect. 3 the Alternating Bit protocols
are presented and, in Sect. 4, a proof that they are self-
stabilizing together with their analysis is given. Finally
the token ring protocol is described in Sect. 5. Practical
applications of the protocols and possible extensions are
discussed in Sect. 6.

2 Self-stabilizing protocols

The basic definition of a self-stabilizing system is one
which will converge to a legal state when started from
any state. The first step in the design of such a system is
to identify the "legal" states. At the specification level,
the legal states are identified by the properties which must
hold when the system is in a legal state. It is then the
designer's duty to prove that an implementation stabilizes
to a set of system states that satisfy the properties required
by the specification. In the remainder of this section a
self-stabilizing data link protocol is specified.

The purpose of a data-link protocol is to reliably
transmit messages from one end of an error prone com-
munication medium to the other end [BSW69, AUWY82,
BS83, LMF88]. By reliably we mean that messages arrive
error free, without duplication or loss, and in the order
sent.

The system consists of two processes, the transmitter
T and the receiver R, connected by two directed com-
munication links, T-R and R-T, oriented in opposing di-
rections. Messages transmitted over the links may be lost 1 ;
however, those that are not lost arrive error free and in
the order sent (FIFO). Although timeouts may be used
by the protocol, no bound on the transmission delay is
assumed.

In a data-link protocol the transmitter has an input
tape with an infinite sequence I = (Do, D1) of data ele-
ments. The transmitter reads these data elements and tries
to transmit them to the receiver. The receiver must write
these data elements onto an output tape O. The goal is
to design a protocol such that, safety: 0 is always a prefix
of I and liveness: under reasonable fairness conditions,
every data element D i is eventually written to O.

This paper considers a system consisting of a trans-
mitter, a receiver, and communication links that are sub-
ject to transient errors at arbitrary times (e.g. host
crashes). The transmitter and receiver are deterministic
finite state machines; however, the transmitter has access
to a choose oracle. After a transient error the transmitter,
receiver, oracle, and links are in arbitrary states. Note
that losing a message on a link is not considered an error,
it is a possible behavior of the system that the protocol
should tolerate in normal operation. To model long pe-
riods of time during which all components operate with-
out errors, we assume that eventually, after an arbitrary
number of errors, the transmitter, receiver and links enter
a last operational interval (in which there are no more
faults aside from message loss) that is infinitely long
[AAG87]. The last operational interval consists of two
periods, a convergence period, and an infinitely long sta-
ble period, called the final interval. In the convergence
period the protocol automatically moves the system from
the arbitrary global state at which it began to a legal
global state which guarantees its correct operation there-
after, i.e. it is guaranteed to remain in a legal state in the
future unless additional faults occur.

The goal is to design a data-link protocol that satifies
the safety and liveness conditions above and which is self-
stabilizing, i.e. that following a sequence of faults will
converge into a legal state in finite time. The safety and
liveness conditions above were specified for a system that
does not fail. When the system is subject to transient
errors at arbitrary times it is required to behave correctly
only during the final interval, i.e. (a) safety: the sequence
of data elements written ot O during the final interval is
always a prefix of the sequence of data elements read
from I during the final interval, and (b) liveness: in the
final interval it is always true that within a finite time
one more data element will be written to O.

3 A generic data-link protocol

The two Alternating Bit protocols are variants of a single
"generic" data-link protocol which is much like the orig-

1 Message corruption is treated as message loss by assuming the
use of error detecting codes

Transmitter T: :

seq int init 0;
i int;
msg data; read~next(msg): /*initialize */

timeout

rev (i)

, send (seq, msg);
reset_timeout
if (seq = i)
then seq:= choose (X/seq);

read_next (msg);
send (seq, msg)

fi;
reset_timeout

Receiver R: :

ack int init 1;
j int;
rmsg data;

rcv (j, rmsg) , if ack =/=j
then ack: = j;

write_next (rmsg)
fi;
send (ack)

Ng. 1. The generic alternating bit protocol

inal protocol of [BSW69]. In the original protocol mes-
sage sequence numbers are either 0 or 1, that is the size
of the sequence numbers alphabet, 27, is 2. In the two
variants the size of the sequence number alphabet is at
least 3, e.g. {0, 1, 2}. Furthermore, the series of sequence
numbers selected by these protocols is aperiodic in one
and random in the other variant.

The generic data-link protocol, called Protocol G,
consists of two processes, a transmitter T and a receiver
R. The code for each process consists of a set of actions
(see Fig. 1). Each action may be enabled or disabled de-
pending on the state of the system. An enabled action
may be executed at any time with the restriction that the
actions of the system (both T and R) are executed one
at a time, i.e. atomically.

Each action has the form guard , command The
guard may be either a boolean expression or a receive
statement of the form roy(_). The guard timeom refers to
a boolean variable set by a timeout mechanism. This
mechanism is assumed to consist of a free running clock
which periodically sets timeout to true. The timeout mech-
anism is assumed to be self-stabilizing. The commands
are constructed from primitive commands using sequenc-
ing and alternative constructs. The primitive commands
consist of: assignment statements, send commands of the
form send(_), input commands of the form read(_), out-
put commands of the form write(_), and the function
choose (N/x) which selects an element other than x from
27 - the set of sequence numbers used by the protocol.
In addition the command rese t_ t imeout reinitializes the
timeout clock and resets the timeout boolean variable.

An action of process T (R) is enabled if its guard is a
boolean expression which evaluates to true or its guard

29

is a receive statement and there is a message in the R-T
(T-R) link.

Execution of an action of T (R) consists of receiving
a message from the R-T (T-R) link if the guard is a receive
statement, and then executing the command. Execution
of a send statement by T (R) causes a message to be added
to the T-R (R-T) link. Execution of a read command reads
the next input from I. Execution of a write command
writes to output O.

The protocol works as follows. The transmitter and
the receiver each hold a sequence number - initially dif-
ferent. To transmit the current message from the input
to the output, the transmitter tags the message with its
current sequence number, seq, and sends it periodically
(using timeouts) to the receiver until it receives an ack-
nowledgment from the receiver with its current sequence
number. The receiver writes to its output any message
which arrives with a sequence number different from its
own (ack). The transmitter may, at any time, retransmit
its current message (e.g. due to a timeout).

The variable seq is used to hold the current sequence
number (initially 0), lnsg holds the current data message,
and i is used to receive acknowledgment messages. The
initial values of seq, ack a n d m s g are not necessary since
the protocol is self-stabilizing; however, we include them
so that the system will start in a legal state under normal
use.

The behavior of Protocol G depends on the specifi-
cation of the choose function. In the deterministic Alter-
nating Bit protocol, choose produces an aperiodic se-
quence (e.g. the sequence of digits representing an irra-
tional number). The probabilistic protocol is a special
case in which the sequence produced by choose is random.
Note that if X = { 0 , 1} then Protocol G is the standard
Alternating Bit protocol [BSW69].

The safety and liveness properties of Protocol G with
X = { 0 , 1}, and no failures are proved in [AUWY82,
Hai85, Gou85]. In the following section we prove that
Protocol G is a self-stabilizing data-link protocol if
I•[> 2 .

4 Propert ies o f protocol G

In this section we demonstrate that protocol G is self-
stabilizing provided that the sequence of numbers selected
by choose is aperiodic. (In Sect. 6, we demonstrate that
the choose oracle can be implemented as a deterministic
finite state process if the communication links have finite
capacity.) The expected cost of stabilization for the prob-
abilistic version is analyzed.

We begin some definitions and notation necessary for
the analysis of the protocol. Since our interest is not with
individual states but with classes of states (in particular
the legal states), we develop a classification scheme for
states. In Subsect. 4.1 the self-stabilization proof is given
and Subsect. 4.2 the performance of the probabilistic pro-
tocol is evaluated.

Since protocol G is data-oblivious, the state of the
processes and the links will be represented by the se-

30

quence numbers on them leaving out the data elementsfl
The state of the transmitter is represented by the value
of its current sequence number, seq, and the state of the
receiver by the value of its current acknowledgment se-
quence number, aek. Thus the number of states of each
is IZl .

The state of the T-R link is denoted by the (possibly
empty) sequence ulcc2.. .~,0ce~2;, and the state of the
R-T link is denoted by the (possibly empty) sequence
/~1 /~2"" "/~m,/~i ~ z~, for some m, n _> 0. The system state s
is the concatenation of the states of the processors and
the links:

s = s e q I I ackl fll fl2"''~m

Given this characterization of the system states, we
represent all allowable actions of the system by a tran-
sition relation & : S • S, where S is the state space. This
transition relation has six types of transitions (01, 02, 03,
04, &s, and 06). If s I &~s 2, for some state s 2 then we say
that 0~ is applicable to state s 1 . These transitions represent
the following six possible events:

01:

02:

03:

04:

&5(i):

&6(J):

The transmitter retransmits a message.

The transmitter receives an acknowledgment
which equals seq and it sends a new message with
a new sequence number.

The transmitter receives an acknowledgment
which does not equal seq.

The receiver receives a message and it sends an
acknowledgment.

Losing the i-th message on the T-R link.

Losing the j - th message on the R-T link.

More precisely:

01: seq I C~l...c~.] aek I B~...Bm
seq I seq oq.--c~n I ack I/71..-Bin

&2: seqlo~l...c~n]acklB1...flm
----* seq' [seq'c~ 1. . .~n] aek I i l l . . , f l .~- 1

where tim = seq and seq' = choose (s

03: seqlo~l. . .~laek[f l l . . . f l m
--- ' seq I ~l. . .~n I aekl ~ l ' ' '~m-- 1

where Bm ~ seq

04: seq I ~l...c~n I ack I/~l.../~m

05(0: seq I ~ . . . c% Iack I B1...Bm
seq] c~ 1...~i_ lC~i+ 1...
~ l a e k] fll. . .Bm

06(]) : seq I ~1...~,, [ack [B1...flm
seq] ~ 1 . . . ~ .] aek I i l l . . .
/~+ ~/~++1-.-/~

Where m,n>_ O, 1 <_iNn, and 1 <_j <_m.

In Sect. 4.1, when considering the safety requirement of our pro-
tocol, we will need to consider the data elements; however, it sim-
plifies the discussion to ignore them for now

A schedule is a finite or infinite sequence of transitions.
A schedule tr is applicable to a configuration s if every
transition in o- is applicable in turn to the resulting in-
termediate configurations starting with s. The configu-
ration resulting from the application of a finite schedule
o- to a configuration s is denoted sa.

In data-link protocols it is perfectly legal to have states
in which sequences of identical messages are in transit.
In order to further characterize the system state, we will
ignore the length of such sequences and consider only
their pattern. The system state s is compressed into a
"compact state" CS(s) by first treating it as one long
string of sequence numbers:

seq cr 1 cr 2.. . e n ack fl l f12.., tim

and second by replacing each maximal contiguous seg-
ment of equal sequence numbers by one instance of that
sequence number. For example, if

s = 2 1 2 2 2 0 0 0 1 1 1 1 1 1 1

then

CS (s) = 2 0 1

The compact state of state s and of sO i may be the
same in many cases, e.g. C S (s) = CS(sOt) . A transition
&i that does change the compact state of the system is
denoted as ~i, e.g. CS(s)~e CS(s~2). Note for example
that &l never effects the compact state of the system while
02 always will and thus will be denoted ~2.

A length function l (s)= I CS (s)] is associated with
each state s, i.e. the number of different blocks of identical
sequence numbers in the system. A Rank function is sim-
ilarly defined:

l(s) + 1 if first (s) = last (s)
Rank (s) = (. l (s) otherwise

The legal states of the system are those states whose
rank is 2, in which all the messages with the same se-
quence number have the same data field, and the mes-
sages with sequence number seq from the transmitter code
have msg in their data field. To prove that the protocol
self-stabilizes we first show that the rank function is de-
creasing with time until Rank (s) = 2. This proof depends
upon the following fairness assumptions.

Fairness assumption on the transmitter and the receiver. If
an action of the transmitter or receiver is continuously
enabled, then eventually it will be executed.

Fairness assumption on communication links. If a process
repeatedly sends the same message over a link, eventually
a copy of the message will reach the other end of the link
without being lost.

Recall our assumption that all components operate with-
out error in the last operational interval.

The following observation about a liveness property
of the protocol can be easily proved from the above as-
sumptions and the assumption that read_next(msg) is

31

continuously enabled. Similar properties with a proof-
outline are given in Theorem 2.

Observation 1. In an infinite schedule of the protocol d 2
and ~4 appear infinitely often.

4.1 Self-stabilization with infinite aperiodic sequences

In this section we show that a deterministic version of
the protocol converges to a legal state if a sequence of
calls to choose returns an aperiodic series of sequence
numbers, ap. The sequence ap is aperiodic iff:

---1(3 ~, fl :a, fl E Z, + :ap=af l ~)

Theorem 1. I f Rank (s) > 2 and eiloose returns an aperiodic
series of sequence numbers, then Rank (s) never increases
and is eventually reduced

Proof Assume the contrary, i.e. there exists an infinite
schedule a such that for any prefix a' of a,
Rank (sa ') >_ Rank (s) > 2 and the sequence of numbers
returned by the calls to choose in a is aperiodic. Since
none of the six transitions ~1... ~6 increases Rank, it must
be that Rank (sa") = Rank (s) > 2.

By Observation 1, d 2 appears infinitely often in a.
Thus, the execution of the protocol under schedule a has

~ 1 ~ 2 ~ 3 ~ i the form:]AoSl(~2[A1S2(~2[12S3(~21113...[.li_lSi~2[,li...~
where ~s is the i th occurrence of ~2 in a and the/~'s are
~2-free alternating sequences of states and transitions. We
claim that for any i, the sequence number returned by
choose in (f~ equals the next to the last sequence number
in CS(si). Proving this claim completes the proof of the
theorem because, Rank (si) is the same for all i while, by
the claim, the system behaves like a cyclic shift register
whose next to last number is fed into the front. Thus
contradicting the assumption that choose returns an ape-
riodic sequence of numbers.

The claim is also proved by contradiction. Assume
that the claim does not hold for i=k . Let CS(sk)
= e~'"c~n- 1 c~1, then ~0, the number returned by choose

�9 ~ k " ' m ~2, is different from both c~n_ 1 and c~ 1. Since tt k is
~2-free and S 2 is the only transition that changes seq, ao
is the first element in CS(sk+ 1). Since ~2 is applicable to
sk+ I the last number in CS(sk+l) equals c% and thus is
neither ~ _ ~ nor e~, i.e. c~ 1 and c%_ 1 must have been
deleted from the end of CS(sk) by the transitions in/~k.
Because no transition aside from d 2 adds a number to
the system state, l (sk)>l (sk+ 0 and thus Rank(sx)
= I (s k) + 1 > l (s k + 1) + 1 >_ Rank (s k + ~), which contra-
dicts our assumption that Rank (sa ') = Rank (s). []

Theorem 2. In a state s such that Rank (s) = 2, the protocol
satisfies its liveness requirement. Furthermore, the system
is guaranteed to reach a legal state from which point on
the protocol satifies its safety requirement.

Proof outline. There are three types of compact states
CS (s) with Rank (s)= 2. We will show that in a correct
operation and under the fairness assumptions above the
system must cycle between the first and third type (pos-
sibly going through the second one). The three types are:

(1) eft where a c k = f l , (2) c~fl where a e k = e , and (3) c~,
where c~, fl ~ X, ~ ~e fl, and aek is the receiver aek variable.
We consider each possibility separately.

1. CS (s) = c~B ^ aek = ft. By the fairness assumptions,
since the sender repeatedly sends a message with se-
quences number u, a message with sequence number
will eventually be received by the receiver. Thus the sys-
tem eventually reaches either state s ' such that CS(s ')
=c~fl ^ aek = c~, or a state s" such that CS (s ") =~. From
the code, this also implies that the receiver writes the
message that corresponds to a to output O.
2. C S (s) = a f l ^ a e k = a . By the fairness assumption on
transmitter and receiver, every message sent is either lost
or received. Thus, the system must eventually reach a
state s ' where CS (s') = c~.
3. CS(s) = a. By the fairness assumptions, repeated trans-
missions of a message will eventually result in a copy of
the message being received. Thus, the system must even-
tually reach a state s' where CS (s) = ~ 'c~ ^ ack = a. The
required liveness property follows from 1. Furthermore,
from this point foward, every data message with sequence
number seq (from the sender's code) has data msg.

From the preceding argument, the system eventually
reach a state s in which CS (s) = ~ and every message has
data msg. The required safety property, that the data
sequence written to O is a subsequence of the data se-
quence read f r o m / , holds from this point on. []

Suppose that 2; = {a, b, c}, then the sequence abeabab-
cabababc.., has the required property. Although this
string certainly satisfies the requirements, it may not pro-
duce the most desirable convergence rates. The quies-
cence time complexity (the time it takes the system to
converge into a legal state) of the deterministic protocol
highly depends on the characteristics of the aperiodic
sequence. Hence, in the next subsection a randomized
choose is used to achieve faster convergence rates.

4.2 Probabilistic self-stabilization

We are interested in establishing bounds on the length of
the convergence period and on the number of erroneous
messages received or the number of messages lost during
the convergence period. These bounds depend upon the
state of the system at the beginning of the convergence
period. In particular upon the length of the compact state
(I CSI) .

First the expected number of times the transmitter
receives a "correct" acknowledgment and hence transmits
a new message during the convergence period is calcu-
lated�9 The number of new messages transmitted during
the convergence period is the number of times d2 is ap-
plied to the system. The protocol guarantees that the
transmitter will not have to wait to transmit a new mes-
sage for longer than the round-trip delay between the
transmitter and receiver�9 (A longer wait would imply that
all messages with sequence numbers different from seq
had been lost or received and hence the system had sta-
bilized.) Thus, this gives a bound on the expected con-
vergence time. In the probabilistic version of Protocol G
choose selects a sequence number at random, i.e.,

32

1
Prob (choose (S) = a) = ~ V a E S

We assume that sequence numbers appear in the compact
state with equal probabili ty at the beginning of the con-
vergence period.

Claim 1. Let e (n) be the expected of new messages trans-
mitted by the transmitter (through ~ 2 transitions) during
the convergence period of a system which starts at a state
s such that [CS (s) [= n. Then

(n - 2)
e(n)<_ (1)

(1271 - 2)

Proof of Claim. We are interested in deriving a bound
for e (n). Thus, we do not consider the effects of transi-
tions which fortuitously reduce the rank of the system
(e.g. through message loss). In particular, we consider
schedules in which the only transitions which alter the
compact state are ~2 and d3. By Observation 1, ~ 2 o c c u r s

infinitely often. Thus computing e(n) is equivalent to
solving the following combinatorial problem:

Given an initial string of length n, such that each two
successive elements in the string are different, add a new
element to the front of the string whenever the two ends
of the string are equal and delete an element from the
tail of the string whenever the two ends are different. The
problem is to determine e (n), the expected number of
times an element is added to the front of the string before
the string length becomes two. All additions are chosen
f rom alphabet X using a uniform distribution (preserving
the property that no two adjacent elements are equal).
Furthermore, we assume that the elements in the string
are initially chosen from this alphabet using a uniform
distribution. 3

Let Q; be the probabili ty that the two ends of a ran-
dom string of length i are equal and let t = [2; [. Clearly,
Q 2 = 0 and Q 3 = 1 / (t - 1). In general Q~ depends on i. I f
we construct a string of length i f rom a string of length
i - 1 whose ends are equal, then the ends of the new string
are equal with probabili ty 0. However, if we start with a
string of length i - 1 whose ends are different, we will get

1
a string whose ends are equal with probabili ty t - 1 "
Thus,

1
Q~=(1 - Qi-1) - - (t - 1)

Since Q2 = 0:

Z
j = 0

1 \ l - - t /
- - (2)

t

3 There are seemingly trivial ways to solve this combinatorial prob-
lem; however, as one of the anonymous referees made clear, the
probability distribution of the strings involved depends upon string
length and alphabet size in subtle ways

Let eq (i) be the expected number of additions per-
formed on a random string of length i whose ends are
equal. In order to prove the claim we first derive an
expression for eq (i). In this case we start with a string
of the form

i

a 1 . . . a 1

and add a number to yield a string of the form

i

a o a 1 ... a 1

We can compute e q (i) by calculating the probability that,
once we have performed the addition, we will get to delete
numbers until we end up with a string of length k whose
ends are again equal, eq (i) then involves a sum of these
terms.

The probabili ty for a random string to have the form:

k i - - k

aoal . . .ao aj_~ al
=B a o

is:

1
for an arbitrary aa. Where is due to the fact that we

t - 1
chose a o out of the set 2 7 - a 1

The conditional probability for a string with the above
form, given a random string of length i whose ends are
equal is:

(t - 2 ~ ~-k

Q(i)

We can now calculate eq(i), by considering all the
cases and adding because we have to perform at least the
first addition.

~, O(k) \ t - l / eq(k)
eq(i)= k=3 ~- 1

Q(i)

(t_2y-
~, Q(k) \ t - 1 / eq(k)

k = 3 t - 1
4 - - -

t - -2 t - -2 Q(i)

i - -1

~, Q(k)
1 k=3 t - - 1

t - -2 Q(i) t - 2

To prove the last equality it suffices to demonstrate that:

~, Q (k) = ~ Q(k) \~ - -1 , / eq(k)
k = 3 k = 3

which follows f rom induction on i.

To prove the claim, consider a random string of length
n. The probability that (n - k) sequence numbers are re-
moved before the first addition is

(t - 2 ~ n -~ - I
Q(k) \ ~ - l J

for k < n and Q(n) for k=n. As with eq(i), we consider
all cases in computing e (n):

n - , (t _ 2 ~ n - k - I
e (n) = ~ Q(k) \7---lJ eq(k)+Q(n)eq(n)

k = 3

_ t - 1 ~-1 t - -1 1 ~-1
t -2 ~' Q(k)+~-2 Q(n)+t-2 ~, O(k)

k = 3 k = 3

_ l " Q (n)

t -2 ~' Q(k)- t - ~
k - - 3

We now prove (t - 2) e (n) = (n - 2).

n

t ~, Q(k)-Q(n) = n - 2
k = 3

n

t ~, Q(k) =n-2+Q(n)
k = 3

n ((1 ~k--2~
~, 1 - \ ~ / /=n-2+Q(n)

k = 3

- ~ , ~ = Q (n)
k = l

Which follows (2). []

The fact that the time to stabilize is a function both
of the initial state and of the size of the sequence number
domain is not surprising. Note that for reasonable values
of n and 1271 the system stabilizes very rapidly. Even if
started with a large number k of erroneous messages on
the links, the system will converge to a legal state in

expected O round trip delays.

Note that (n - 2 + e (n)) bounds the expected number
of messages that may be lost during the convergence pe-
riod, where (n - 2) of those were on the links at the be-
ginning of the convergence period and e (n) where trans-
mitted during the convergence period.

Unlike the expected number of messages transmitted
during the convergence period the expected number of
duplicate receptions is O(n), since all the messages on
the links could be received by the receiver at this time.
To avoid this problem of large number of duplicates the
Probe technique that is suggested in [AG88] could be
employed. Essentially, in this modified protocol a process
posts each message that it should send on a bulletin board
instead of sending it (i.e., the transmitter posts the mes-
sages while the receiver posts its acknowledgments). Each
processor is then responsible to probe (to read) the mes-
sages for it from the bulletin board of the other processor.

33

The sequence of probe operations of each processor is
implemented in the same way that the alternating bit
protocols of this paper are. That is, each processor re-
peatedly sends a request to read the other's bulletin board,
changing the sequence number on the requests each time
it starts a new probe.

5 A s e l f - s t a b i l i z i n g t o k e n ring

The alternating bit protocols of the previous sections can
be extended to develop self-stabilizing token rings in
which processes communicate asynchronously through
FIFO links. A token ring consists of a cycle of processes
which circulate a single privilege or token. Possession of
the token is required to perform some action, e.g. ac-
cessing a shared bus. Although numerous previous papers
have dealt with the problem of developing self-stabilizing
token rings, these systems have assumed that the pro-
cesses can read the states of their neighbors [Dij74, Dij82,
Kru79, BGW87, BGW89, BP89].

First it is shown that the alternating-bit protocols pre-
sented can be viewed as degenerate token rings consisting
of two processes. Then it is shown that a token ring can
be created by introducing additional links and receiver
processes. Consider the following "stripped down" ver-
sion of protocol G in which the input and output have
been removed and the statement eritieaLseetion has been
added to both processes in Fig. 2.

The statement "critical_section" in each process's code
denotes the commands to be executed when the process
holds the token. Notice that the transmitter may enter its
critical section only when it receives a message with a
sequence number containing its current state and the re-
ceiver may enter its critical section only when it receives
a message with a sequence number different than its cur-
rent state. Further, when the transmitter is in the critical
section then its timeout is diabled, so it does not send

Transmitter T' : :

seq int init 0;
i int;
timeout ~ send (seq);

r e s e t ~ m e o u t
rcv (i) ~ if (seq = i)

then critical_section;
s e q : = choose (2?/seq);
send (seq);

fi,
reset timeout

Receiver R' : :

ack int init 1 ;
j int;

rcv (j) ~ if ack =~ j
then crit ical_section;

a c k : = j
fi;
send (ack)

Fig. 2. The protocol for the token ring processors, T' is the leader
and R' are all the other processors

34

any messages while it is in the critical section. In those
system states where Rank = 2, at mos t one o f these two
may be in the critical section at a time. Fur thermore , the
system is guarenteed to converge to such a state.

A general token ring is created by adding receiver
processes to the ring. The stabilization p r o o f that has
been previously presented is still valid: consider a ring
form f rom one transmitter T ' and n processes R ; ,
0 < i < n. The state o f this system is given by an expres-
sion o f the form:

T' .seq [to... t s I R~ .ack I rl...r.~ I ... I R,~ .ack I r~...r~

The transitions o f the system can then be modeled by
~1...fi6 given previously where ack in the definitions o f
f i l . . .~6 is the ack variable o f any of the n receivers. By
using the same ranking funct ion and p r o o f for the alter-
nating-bit protocols , we can prove the following corol lary
to Theorem 1.

Corollary 3. A token ring formed f rom a transmitter pro-
cess T" and n receiver processes R ' is guaranteed to
converge to a state s where R a n k (s) = 2 provided that
choose returns an aperiodic series o f sequence numbers.

In any state where Rank = 2, at m o s t one process is
enabled to enter its critical section. Fur thermore , pro-
vided that each process continues to execute enabled ac-
tions, eventually each process will enter its critical section.

6 Discussion

Al though the presented protocols require that the trans-
mitter generate an infinite aperiodic sequence o f numbers,
in practice, this may not be required. Whenever a bound
y is given on the number o f messages that can simulta-
neously be in transit, the protocol can be used with a
sequence o f numbers ap whose period is larger than y
i.e.:

--q (3 ~ , / / : a e r + , B e - r < - ~ : a p = e B ~)

The probabilistic version o f pro tocol G is a good prac-
tical solution to the link initialization problem in several
applications. Fo r example: in voice, video, or real time
applications the crash and recovery would result in the
loss o f one data point, which in mos t cases is insignificant
in the overall behavior o f the system. Clearly, pro tocol
G can be extended to a sliding window protocol with
similar properties by running W copies o f pro tocol G
with W distinct sets o f sequence numbers [PS88].

As a final note, Burns, Gouda , and Miller have re-
cently studied "pseudo self-stabilizing" protocols
[BGM90]. Al though the original Alternat ing Bit proto-
col is not self-stabilizing, it is pseudo self-stabilizing in the
following sense. F r o m an illegal state with rank K + 2
the system may lose K messages at arbi t rary times, but
otherwise it behaves legally. One of the anonymous ref-
erees has pointed out that use o f the original Alternat ing
Bit protocol for a token ring results in a protocol which
is no t even pseudo self-stabilizing.

Acknowledgements. We would like to thank the referees for helpful
comments. In particular the comments of referee C led us to some
improvements in the analysis, and saved us from some embarrassing
errors.

References

[AAG871

[AG881

[AUWY821

[BGM90]

[BGW871

[BGW89]

[Be89]

[B883]

[BSW691

[Dij74]

[Dij821

[GM91]

[Gou85]

[Hai85]

[KP891

[Kru79]

[LamB4]

[LMF88]

[PS881

[Ste76]

[Tan81]

Afek Y, Awerbuch B, Gafni E: Applying static network
protocols to dynamic networks. Proc 28th IEEE
Annual Symposium on Foundation of Computer
Science, pp 358-370, 1987
Afek Y, Gafni E: End-to-end communication in
unreliable networks. Proc 7th ACM Symposium on
Principles of Distributed Computing, pp 131-148, 1988
Aho AV, Ullman JD, Wyner AD, Yannakakis M:
Bounds on the size and transmission rate of
communication protocols. Comp Math Appl
8(3): 205-214 (1982)
Burns JE, Gouda MG, Miller RE: Stabilization and
pseudo stabilization. Tech Rep TR-90-13, University
of Texas at Austin, 1990
Brown GM, Gouda MG, Wu C-l: A self-stabilizing
token system. Hawaii Int Conf on System Sciences,
pp 218-223, 1987
Brown GM, Gouda MG, Wu C-l: Token systems that
self-stabilize. IEEE Trans Comput c38(6): 845-852
(1989)
Burns J, Pachl J: Uniform self-stabilizing rings. ACM
Trans Program Lang Syst 11 : 330-344 (1989)
Baratz AE, Segall A: Reliable link initialization
procedures. In: Rudin H, West CH (eds) IFIP 3rd
Workshop on Protocol Specification, Testing and
Verification. IEEE Transact Commun 36(2): 144-152
(1988)
Bartlett K.A, Scantlebury RA, Wilkinson PT: A note
on reliable full-duplex transmission over half-duplex
links. Commun ACM 12:260-261 (1969)
Dijkstra EW: Self-stabilizing systems in spite of
distributed control. Commun ACM 17(11): 643-644
(1974)
Dijkstra EW: EWD 391 self-stabilization in spite of
distributed control. Lect Notes Comput Sci, vo192.
Springer, Berlin Heidelberg New York 1982, pp 41-46
Gouda MG, Multari N: Stabilizing communications
protocols. IEEE Trans Comput tc-40(4):448-458
(1991)
Gouda MG: On a 'simple protocol whose proof isn't':
the state machine approach. IEEE Trans Commun
com-33(4): 380-383 (1985)
Halpern B: A simple protocol whose proof isn't. IEEE
Trans Commun com-33(4): 330-337 (1985)
Katz S, Perry KJ: Self-stabilizing extensions for
message-passing systems. In: Evangelist M, Katz S
(eds) MCC Tech Rep Number STP-379-89, Proc MCC
Workshop on Self-Stabilizing Systems, 1989. (Also in
PODC-90)
Kruijer HSM: Self-stabilization (in spite of distributed
control) in tree-structured systems. Inf Process Lett
8(2): 91-95 (1979)
Lamport L: The mutual exclusion problem: Part II -
statement and solutions. J ACM 33(2): 327 - 348 (1984)
Lynch N, Mansour Y, Fekete A: The data link layer:
two impossibility results. Proc ACM Symposium on
Principles of Distributed Computing, pp 149-i70, 1988
Paliwoda K, Sanders JW: The sliding-window protocol
in CSP. Tech Rep PRG-66, Oxford University
Computing Laboratory, 1988
Stenning MV: A data transfer protocol. Comput
Networks 1:99-110 (1976)
Tanenbaum AS: Comput Networks 2:223-239 (1988)

