
Distrib Comput (1993) 7:35-42

Dr 5 s
�9 Springer-Verlag 1993

Stabilization and pseudo-stabilization
James E. Burns 1, Mohamed G. Gouda 2, Raymond E. Miller 3

1 Georgia Institute of Technology
2 Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188, USA
3 University of Maryland at College Park

Received June 1990/Accepted February 1991

James E. Burns received the B.S.
degree in mathematics from the
California Institute of Technology,
the M.B.I.S. degree from Georgia
State University, and the M.S. and
Ph.D. degrees in information and
computer science from the Georgia
Institute of Technology. He is cur-
rently an Associate Professor in the
College of Computing at the Geor-
gia Institute of Technology, having
served previously on the faculty at
Indiana University. He has broad
research in theoretical issues of dis-
tributed and parallel computing, es-
pecially relating to problems of syn-
chronization and fault tolerance.

Mohamed Gawdat Gouda was
born and raised in Egypt. His first
bachelor degree was in engineering,
and his second was in mathematics.
Both degrees are from Cairo Uni-
versity. After his graduation, he
moved to Canada where he ob-
tained an MA in mathematics from
York University, and a Master and
a Ph.D. in computing science from
the University of Waterloo. Later,
he moved to the United states of
America where he worked for the
Honeywell Corporate Technology
Center for three years. In 1980, he
moved to the University of Texas

at Austin, and has settled there ever since, except for one summer
at Bell Labs, one summer at MCC, and one winter at the Eindhoven
Technical University. Gouda currently holds the Mike A. Myer
Centennial Professorship in Computing Science at the University
of Texas at Austin. Gouda's area of research is distributed and
concurrent computing. In this area, he has been working on: ab-
straction, nondeterminism, atomicity, convergence, stability, for-
mality, correctness, efficiency, scientific elegance, and technical
beauty (not necessarily in that order). Gouda was the founding
Editor-in-Chief of the journal Distributed Computing, published
by Springer-Verlag in 1985. He was the program committee chair-

Correspondence to: M. G. Gouda

man of the 1989 SIGCOMM Conference sponsored by ACM. He
was the first program committee chairman for the International
Conference on Network Protocols, established by the IEEE Com-
puter Society in 1993. Gouda is an original member of the Austin
Tuesday Afternoon Club. In his spare time, he likes to design net-
work protocols and prove them correct for fun.

Raymond E. Miller received his
Ph.D. in 1957 from the University
of Illinois, Champaign-Urbana. He
was a Research Staff Member at
IBM, Thomas J. Watson Research
Center, Yorktown Heights, N.Y.,
from 1957 until 1980, Director of
the School of Information and
Computer Science at Georgia Tech
from 1980 until 1987, and is cur-
rently a professor of computer
science at the University of Mary-
land, College Park and Director of
the NASA Center of Excellence in
Space Data and Information Sci-
ences at Goddard Space Flight

Center. He has written over 90 technical papers in areas of theory
of computation, machine organization, parellel computation and
communication protocols. He is a Fellow of the IEEE and a Fellow
of the American Association for the Advancement of Science. He
has been active in the ACM and IEE/CS, and is a Board member
of the Computing Research Association. In the IEEE/CS, he is a
member of the Board of Governors and the 1991 Vice President
for Educational Activities.

Summary. A stabilizing system is one which if started at
any state is guaranteed to reach a state after which the
system cannot deviate f rom its in tended specification. In
this paper, we propose a new var ia t ion of this not ion,
called pseudo-stabil izat ion. A pseudo-stabilizing system is
one which if started at any state is guaranteed to reach
a state after which the system does no t deviate f rom its
in tended specification. Thus, the difference between the
two not ions comes down to the difference between "can-
no t" and "does no t" - a difference that hardly matters
in m a n y practical situations. As it happens, a n u m b e r of

36

well-known systems, for example the alternating-bit pro-
tocol, are pseudo-stabilizing but not stabilizing. We con-
clude that one should not try to make any such system
stabilizing, especially if stabilization comes at a high price.

Key words: Alternating-bit protocol - Communication
protocols - Convergence - Self-stabilization - System
specification

1 Introduction

We have been interested for some time now in classes of
systems that "well-behave" irrespective of their initial
states. Clearly, such systems are extremely robust in the
face of transient faults which may yield them in arbitrary
states; this should explain our interest in these systems.
Our aim in this paper is to investigate the criteria for
well-behaving in the context of arbitrary initialization.

The first criterion for the notion of well-behaving in
spite of arbitrary initialization can be traced back to Dijk-
stra's seminal paper on self-stabilization [5, 6]. Dijkstra's
criterion requires that if the system starts at an arbitrary
state, then it is guaranteed to reach, within a finite num-
ber of transitions, a state after which the system cannot
deviate from its intended specification. Many authors
have adopted Dijkstra's criterion since then; see for ex-
ample [2, 3, 4, 7, 9, 10, 11]. We refer to systems that
satisfy this criterion as stabilizing systems.

In this paper, we propose a new criterion for the no-
tion of well-behaving in spite of arbitrary initialization.
Our criterion requires that if the system starts at an ar-
bitrary state, then it is guaranteed to reach, within a finite
number of transitions, a state after which the system does
not deviate from its intended specification. We call sys-
tems that satisfy this criterion pseudo-stabilizing.

The "fragile" distinction between stabilization and
pseudo-stabilization is better illustrated by an example.
Consider a system with a state-transition diagram as
shown in Fig. 1. (In this diagram, circles represent system
states and arcs represent transitions between the states in
the usual way.) Starting from any state, this system is
guaranteed to reach, within one transition, either state p
or state q. From p, only one computation (p, p , . . .) can
be executed, and from q, only one computation (q, q)
can be executed. Thus, if the intended specification of
this system is F = { (p , p ), (q , q )}, then the system

Fig. 1. A stabilizing system

<2)
I <)

Fig. 2. A pseudo-stabilizing system

will reach within one transition a state (p or q) after which
no deviation from F is possible. Hence, the system is
stabilizing.

Now, consider a second system with a state-transition
diagram as shown in Fig. 2, and assume that the intended
specification of this system is the same F as before. This
system is not stabilizing because starting at state p, there
is no guarantee that the system will ever leave p, yet at
p the system can deviate from F by executing the com-
putation (p, q, q,.. .) which is not in F. On the other hand,
every computation of this system is in one of the following
forms:

(p , p ) ,

(P p , q , q )

(q , q , . . .) .

Thus, every computation has an infinite suffix in F.
In other words, along every computation the system is
guaranteed to reach a state after which the system does
not deviate from F (although it may have an infinite
number of chances to do so). Hence the system is pseudo-
stabilizing.

As we show later, pseudo-stabilization is strictly
weaker than stabilization, with "does not deviate" re-
placing "cannot deviate". Thus, every stabilizing system
is also pseudo-stabilizing but there are pseudo-stabilizing
systems that are not stabilizing. We contend, however,
that pseudo-stabilizing systems are adequate for most
practical purposes, and there is no real need to make
them stabilizing, especially if the price of stabilization is
high.

The rest of this paper is organized as follows. In Sect. 2,
we state our definitions of systems and their regions of
execution, and identify two types of regions called "at-
tractors" and "pseudo-attractors". In sect. 3, we define
what it means for a system to be stabilizing or pseudo-
stabilizing to a given specification. In Sect. 4, we discuss
an important relationship between (pseudo-) attraction
and (pseudo-) stabilization. In particular, we prove that
if a system has a (pseudo-) attractor where some speci-
fication is achieved, then the system (pseudo-) stabilizes
to that specification. This result gives a sufficient con-
dition for estabilishing that a given system stabilizes or
pseudo-stabilizes to a given specification. We use this
result, in Sect. 5, to show that the Alternating-Bit pro-
tocol pseudo-stabilizes to its specification. Concluding
remarks are in Sect. 6. For convenience, our discussion

of the Alternating-Bit protocol is divided into several
subsections. An informal presentation of the protocol is
given in 5.1, followed by a formal presentation in 5.2. A
specification of the protocol is presented in 5.3, and a
proof that the protocol pseudo-stabilizes to that specifi-
cation is outlined in 5.4. Up to this point, our protocol
can only tolerate message loss. Thus, we extend the pro-
tocol to tolerate message corruption in 5.5, and tolerate
message reorder in 5.6, while preserving its property of
pseudo-stabilization.

2 Attractors and pseudo-attractors

Let S be a system defined by a set of states, and a set of
transitions, where each transition is an ordered pair of
states.

A region of system S is a subset of the system states.
A region P is closed iff for every state p and q, if p is in
P and (p, q) is a transition then q is in P.

A computation of S is a nonempty maximal sequence
(Pl ,P2, . . .) , where each Pi is a system state and each
(Pi P~ + 1) is a system transition. The maximality condition
implies that if the last state in a finite computation is p
then for every system state q, (p, q) is not a system tran-
sition.

A computation leads to a region P iff it has a state
in P.

Definition 1. A region P of S is an attractor iff it satisfies
the following two conditions.

i. P is closed.
ii. Every computation of S leads to P.

Thus, each system computation eventually reaches
every system attractor. Moreover, once a computation
reaches an attractor, it stays there indefinitely.

Definition 2. An infinite sequence (P1, P2) of regions
of S is a pseudo-attractor iff it satisfies the following two
conditions.

i. For every k, k : l , 2 the region (() P i] is
closed, i= 1 \ - /

ii. Every computation of S leads to the region

Let (P1, P2) be a pseudo-attractor of some system.
Thus, for every system computation, there is k, k = 1, 2
such that the computation eventually reaches a region Pk
but never reaches any of the preceding regions
P1 Pk-1. In this case, the computation stays within

Pk indefinitely (since U Pi is closed).
i = 1

The next theorem, which follows directly from the
above definitions, states an interesting relationship be-
tween the attractors and pseudo-attractors of a system.

Theorem 1. Let P be a region of S and (P1, P2) be an
infinite sequence of regions of S.

i. I f P is an attractor of S,
then (P, P) is a pseudo-attractor of S.

ii. I f (P1, P 2 , ' ") is a pseudo-attractor of S,

then P is an attractor o f S.
i 1

37

3 Stabilization and pseudo-stabilization

A specification of a system S is a set of computations
of S.

Next, we define what it means for a system to be
stabilizing or pseudo-stabilizing to a given specification;
but first we adopt the following notation.

Notation. Let c be any computation that has at least i
states. Then, e.i denotes the i th state in c, and c?i denotes
the suffix of c starting with the i th state c.i.

Definition 3. A system S stabilizes to a specification F iff

(V computation c of S, 3 a positive integer i :
every computation of S that starts with the state c.i is
in F)

Definition 4. A system S pseudo-stabilizes to a specifica-
tion F iff

(V computation c of S, 3 a positive integer i :
the computation c$i is in F)

Informally, system S stabilizes to a specification F iff
starting from an arbitrary state, S is guaranteed to reach
a state after which F cannot be violated. By way of con-
trast, S pseudo-stabilizes to F iff starting from an arbi-
trary state, S is guaranteed to reach a state after which
F is not violated. Thus, the distinction between the two
definitions comes down to the difference between "can-
not" and "is not". This distinction cannot be detected or
observed by an external observer of the system. In par-
ticular, an external observer can observe only one com-
putation of the system, namely the computation that the
system executes. It can also observe that the intended
specification is not violated after some point in the com-
putation, but cannot observe that the intended specifi-
cation cannot be violated after some point. In other words,
an external observer can observe pseudo-stabilization but
not stabilization. This suggests that the two concepts of
stabilization and pseudo-stabilization are indistinguish-
able for all practical purposes. In principle, however, the
two concepts are distinct; in particular, stabilization is a
more strict property than pseudo-stabilization as shown
by the next theorem.

Theorem 2. Every system that stabilizes to some specifi-
cation F pseudo-stabilizes to the same F," the converse is
not necessarily true.

Proof From Definitions 3 and 4 and from the fact that
each computation c?i starts with the state c.i, it follows
that stabilization to F implies pseudo-stabilization to F.

We show next that the converse is not necessarily true
by exhibiting a system that pseudo-stabilizes, but does
not stabilize, to some specification.

38

Consider a system S where

states = {p, q}, and

transitions = { (p, p), (p, q), (q, q)}

Thus, the state-transition diagram of S is as shown in
Fig. 2.

A possible specification of S is the following F that
consists of two infinite computations

F = { (p , p ), (q, q,.. .)}

System S does not stabilize to F because the infinite
computation (p, p) of S has no state such that every
computation that starts from that state is in F.

On the other hand, S pseudo-stabilizes to F because
each computation of S is in one of the following forms:

(p ,p ) ,

(p ,p p , q , q , . . .) , or

(q,q) .

Thus, each computation of S has a suffix in F. []

The next theorem shows that stabilization has an ad-
vantage over pseudo-stabilization in systems with a finite
number of states. Specifically, the stabilization of a finite-
state system guarantees an upper bound on the number
of transitions that the system can execute starting from
an arbitrary state until the system starts to behave ac-
cording to its specifications. Pseudo-stabilization, on the
other hand, does not guarantee such an upper bound in
finite-state systems.

Theorem 3. Let S be a system with n states, and let F be
a specification o f S.

i. I f S stabilizes to F, then
(V computation c, 3 positive integer k: k<_n + 1 and
cSk is in F).

ii. The same consequence does not necessarily hoM i f S
merely pseudo-stabilizes to F.

Proof Part i: Let c be a computation of S. Because of
the stabilization of S, every computation of S, including
c, has a suffix in F, i.e., there is a positive integer k such
that c?k is in F. We now show that i f k > n + 1 then there
is a positive integer i smaller than k such that c$i is
in F. Let k be larger than n + 1. Thus, because S has
only n states, the first k - 1 states of c, namely
c. 1, c.2 c.(k - 1), include at least two identical states.
Therefore, there is an infinite computation d of S whose
states are all taken from {c.l ,c.2 c . (k - 1) } . Because
S stabilizes to F, then one of the states in d, say c.i, is
such that every computation that starts with c.i is in F.
Because c?i is a computation that starts at c.i, then c$i
is in F.

Part ii: Consider the system S and its specification F in
the proof of Theorem 2. Recall that S pseudo-stabilizes
to F. We need to show that

(3 computation c, V positive integer k :
k > n + l or c$k is not in F) .

Note that n -- 2 since S has two states. Consider the com-
putation c = (p, p, p, q, q, . . .) of S; it is straightforward
to check that (V positive integer k : k > 3 or c~k is not
in F). []

4 Relationship between attraction and stabilization

In this section, we present sufficient conditions for es-
tablishing that a given system S stabilizes or pseudo-
stabilizes to a given specification F. In particular, we
show that if S has a (pseudo-) attractor that satisfies
certain conditions involving F, then S (pseudo-) stabilizes
to F. An example of applying this method to establish
that a given system pseudo-stabilizes to its specification
is discussed in the next section.

Theorem 4. Let S be a system with a specification F. I f S
has an attractor P such that every computation of S whose
states are all in P is in F, then S stabilizes to F.

Proof Let c be any computation of S; we show that c
has a state p such that every computation that starts with
p is in F. Because P is an attractor, every computation
of S, including c, has a state in P. Let p be any state of
c that is also in P. Because p is in P and P is closed, then
the states of a computation that starts with p are all in
P. All such computations are in F. []

Theorem 5. Let S be a system with a specification F. I f S
has a pseudo-attractor (P1, P2) such that every com-
putation of S whose states are all in the same P~, i= 1, 2
has a suffix in F, then S pseudo-stabilizes to F.

Proof Let c be any computation of S; we show that c
has a suffix in F. Because (P1, P2) is a pseudo-attrac-
tor, every computation of S, including c, has a state in

O9

U Pi. Let Pk be the region in the pseudo-attractor
i = 1

(P1, P2) such that c has a state in Pk but does not
k - - 1

have a state in U P;. Also, let p be any state of c that
i = 1 k

is also in P~. Because p is in Pk, and U Pi is closed, and
k - - 1 i = 1

because no state of c is in U Pi, then each of the states
i = l

that follows p in c is also in P~. In other words, c has a
nonempty suffix whose states are all in Pk. Because every
computation whose states are all in Pk has a suffix in F,
c has a suffix in F. []

5 Case-study: the alternating-bit protocol

We show in this section that the well-known Alternating-
Bit Protocol [13] pseudo-stabilizes to its intended speci-
fication. Our objective of this exercise is two-fold. First,
we want to illustrate how Theorem 5 can be utilized in
verifying that a given system pseudo-stabilizes to a given
specification. Second, and more important, we wish to
point out that the stabilization properties of this impor-
tant protocol are not as bad as may have been suggested
by recent results [8, 12] which showed that this protocol

is not stabilizing, and so prompted "probabilistic ver-
sions" of the protocol in order to achieve stabilization
[11.

5.1 Informal presentation of the protocol

Consider a system of two processes s and r that com-
municate by exchanging messages over two channels.
Each channel is an unbounded first-in-first-out buffer
that stores the messages sent by one process until each
of them is either received by the other process or lost,
i.e. disappeared f rom the channel. (Note that channel
characteristics, e.g. unboundedness and the ability to lose
messages, are not under the control of the system de-
signer.) Despite the possibility of message loss, process s
is required to transfer reliably an infinite stream of data
messages to process r. The following protocol is adopted:

i. Process s sends the data messages one at a time. After
sending each message, s waits to receive an acknowl-
edgement (ack) message before sending the next data
message.
ii. I f after sending a data message process s does not
receive an ack message for some time, it concludes cor-
rectly that either the data message or its corresponding
ack message was lost. In this case, process s times out
and re-sends the last data message.
iii. Each data message has two fields:

data (t, b)

where t is the message text and b is either 0 or 1. When
s sends a data message for the first time, it assigns the
message a different b f rom that of the last data message.
I f later s re-sends the data message, the re-sent message
will have the same b (and same t) as the last message.

5.2 Formal presentation o f the protocol

The program of each of the two processes s and r is a set
of actions that has the form:

begin (a c t i o n) n ... 0 (a c t i o n) end

The symbol "0" is a separator that separates the different
actions in the program of a process. Each action has the
syntax

<guard) ~ <sequence of s tatements)

Each guard is in one of the following three forms:

(local g u a r d) ,
rcv (message) , or
timeout <global guard)

where a loal guard is a boolean expression over the local
variables of its process, and a global guard is a boolean
expression over the variables in the two processes s and
r, and the contents of the two channels between them.
The contents of a channel is a sequence of messages.
Sending of a message consists of adding the message to
the "tail" of the sequence, while receiving a message con-
sists of removing the "head" message from the sequence.

39

The content of the channel f rom s to r, denoted Csr , is a
sequence of data messages. The content of the channel
from r to s, denoted Cry, is a sequence of ack messages.

The program for process s is as follows.

process s
const in: array [integer] of text {*text of all messages

to be sent*}
var ns: integer init 0 {*index of array

"in"*}
;readys: boolean init true {*ready to send next

data message*}
;bs: (0, 1) init 0 {*the alternating bit*}

beff-m readys ---* readys: = false; send data
(in [ns], bs)

n rev ack ---* ns, readys, bs: = ns + 1,
true, 1 -- bs

0 timeout -7 readys ^ -7 readyr ^
c~=<) ^ c,.~=< >
send data (in [ns], bs)

end s

Process s has three actions. In the first action, s sends
the next data message to r and waits for an ack message.
In the second action, s receives an ack message (presum-
ably for the last data message it has sent) and gets ready
to send the next data message. In the third action, when
neither process can send and the two channels between
them are empty (indicating a message loss), process s
times out and re-sends the last data message.

The program for process r is as follows.

process r
var out : array [integer] of

text
; nr: integer
; r eadyr : boolean init

false
; br: (0, 1) init 0

; t: text
; b : (0,1)

begin rcv data (t, b)

[] readyr
end r

{*text of all received
messages* }

{*index of array "out"* }
{*ready to reply by an

ack*}
{*expected alternating

bit*}
[*received text*}
{*received alternating

bit*}
if b = br then out [nr], nr,
br:=t, nr+ l, 1 - b r f i ;
readyr: = true

, r e a d y r : = false; send ack

Process r has two actions. In the first action, r receives
a data message and checks whether it is an original mes-
sage that should be stored or it is a repetition of the last
received message and should be discarded. In either case,
r gets ready to reply with an ack message which is then
sent in the second action of r.

5.3 Specification of the protocol

A state of the protocol is defined by a value for each
variable in the two processes, and by a sequence of data
messages for the forward channel f rom s to r, and by a

40

sequence of ack messages for the backward channel f rom
r to s .

An action in one of the two processes is enabled at a
given state iff either its guard is a (local or global) predi-
cate whose value is true at the given state or its guard is
of the form rcv (message) and the input channel of its
process has at least one message at the given state.

A state q of the protocol follows a state p iff at least
one action in one of the two processes is enabled at p
and executing the sequence of statements of an enabled
action starting f rom p yields q.

A computation of the protocol is an infinite sequence
of protocol states: p l , P2 such that each Pi+l follows
pg. (Notice that the protocol has no terminating states;
thus all its computat ions are infinite.)

Let p be a state of the protocol. For convenience,
let in, ns, out, and nr denote respectively the values of
variables in, ns, out, and nr at state p. Also, let ms and
mr be two integers. State p is (ms, mr)-safe iff the follow-
ing condition holds:

(ms N ns) ^

(mr <_ nr) ^

(Vi: O <_i < nr--mr:in[ms + i]=out[mr + i]).

A computat ion of the protocol is successful iff variable
nr is incremented infinitely often along the computation,
and there are two integers ms and mr such that each state
in the computat ion is (ms, mr)-safe.

The protocol is specified by the set F of all succcessful
computations.

5.4 Pseudo-stabilization of the protocol

Consider a system that consists of the two processes s
and r, and a "message loss" action which when executed
discards one message, if any, f rom one of the two chan-
nels between s and r. We assume that along every (infi-
nite) computat ion of the system, if the same message is
sent over and over by one process, then it is eventually
received by the other process.

In this section, we apply Theorem 5 to show that this
system pseudo-stabilizes to specification F. In particular,
we show that the system has a pseudo-attractor
(P~, P2) such that every system computat ion whose
states are all in the same Pi, i = 1, 2 has a suffix in F.

Define a function "rank" that assigns to each state p
of the system a natural number rank.p as follows.

rank.p = the number of data messages in the
channel f rom s to r at p

+ the number of ack messages in the
channel f rom r to s at p

+X.p
+ Y.p

where

X.p = 0 if readys = false at state p
1 otherwise, and

Y.p = 0 if readyr-- false at state p
1 otherwise.

Notice that each action in the two processes of the
protocol either reduces the value of rank by 1 or keeps
it unchanged. The message loss action reduces the value
of rank by 1.

Consider the infinite sequence (P~, P2,. . .) , where

P1---= {P[P is a system state where either rank.p = 0

or rank.p = 1},

and for i = 2, 3

P~= {p[p is a system state where rank.p = i}

I t is straightforward to show that (P1, P2) is a
pseudo-attractor of the system. First, each action in the
system, other than the t imeout action, either reduces the
value of rank or keeps it unchanged. The timeout action
increases the value of rank from 0 to 1 but still keeps the

system state within P1. Therefore, the region U Pi is
i = 1

closed for every k, k -- 1,2 Second, since the value of
rank.p is a natural number for each system state p, each
system state is in some Pi. Hence, each system compu-

oo

tation leads (trivially) to the region U Pi. This completes
i=~

the proof that (P1, P2) is a pseudo-attractor of the
system.

It remains now to show that every system computat ion
whose states are all in the same Pg, i = 1,2 has a suffix
in F. Consider a computat ion whose states are all in the
same P~. We discuss the two cases of i = 1 and i > 1 sep-
arately. I f i = 1, then at each state in the computat ion
there is at most one message in the two channels between
s and r. It is straightforward to show that such a com-
putation has a suffix in F (provided that every message
that is sent over and over is eventually received).

I f i > 1, then every state in the computat ion has the
same rank i which means that the message loss action is
never executed (because it reduces the rank). Moreover,
the t imeout action in process s is never enabled, and so
is never executed. Along the computation, process s
merely keeps on receiving an ack message then sending
the next data message (with a bit value different f rom
that of the last data message), and process r keeps on
receiving a data message with the expected alternating
bit, storing it in array out, then sending back an ack
message. It is straightforward to show that this compu-
tation has a suffix in F.

5.5 Dealing with message corruption

We have assumed so far that each sent message can either
be lost or received correctly; hence the protocol is de-
signed to deal only with message loss. We now discuss
how to extend the protocol to deal with message corrup-
tion as well as message loss.

The corruption of a sent message, whether data or
ack, consists of changing the message into a special mes-
sage "error" before it is received. (Note that the form of
corruption that changes a message into another message
of the same type can already be countered by the pseudo-

stabilization properties of the protocol. Hence, this form
of corruption is not considered here any further.)

To deal with the "error" message that may result from
message corruption, the following action is added to each
of the process s and r:

rcv error > skip

With this action, each process discards all the corrupted
messages it receives. In effect, each message corruption
is eventually transformed into a message loss.

Now, consider a system that consists of the new pro-
cesses s and r, and a message loss action (similar to that
defined in Sect. 5.4), and a message corruption action
which when executed changes a message in one of the
two chanels, if any, into an error message. We assume
that along every (infinite) computation of the system, if
the same message is sent over and over by one process,
then it is eventually received correctly by the other pro-
cess. It is straightforward to show that this system pseudo-
stabilizes to specification F. (The proof is similar to the
one given in Sect. 5.4; in fact, it is based on the same
pseudo-attractor (PI, Pe), and the same definition of
rank in the earlier proof.)

5.6 Deal ing with message reorder

We now discuss how to extend the protocol to handle
message reorder along with message loss and corruption.
A message reorder consists of swapping two consecutive
messages in the same channel. Because ack messages are
all identical, the reordering of ack messages in the channel
from r to s has no effect on the protocol. Thus, we need
only to consider reordering of data messages in the chan-
nel from s to r.

We assume that along every (infinite) computation,
infinitely many original data messages are not reordered,
corrupted, or lost after they are sent. (Recall that each
sent data message is either an original or a repetition of
the last sent message.) This assumption guarantees that
every message reorder is eventually followed by a message
loss or corruption (which reduces the value of rank), or
eventually causes process r to receive two consecutive
data messages that are original and have the same alter-
nating-bit value. In the latter case, if process r can detect
the reception of these two messages, it can discard the
second message causing a message loss (which reduces
the value of rank). Thus in either case, each message
reorder eventually reduces the value of rank which en-
sures pseudo-stabilization of the system as discussed in
Sect. 5.4 and as utilized later in Sect. 5.5.

Note that without message reorder, process r can still
receive two consecutive data messages with the same al-
ternating-bit value. In this situation, however, the second
of these two messages is a "repetition" of the first mes-
sage. This fact differentiates between this situation and
the earlier situation caused by message reorder. Hence
process r should be able to detect whether a received data
message is an original or a repetition.

This can be achieved by adding an extra bit c to each
data message:

41

c = 0 if the data message is an original
1 if the data message is a repetition

Consequently, the first and third actions of process s are
changed to become:

readys , r e a d y s : = false; send data (in [ns], bs, '0')

timeout -'1 readys ^ "-q readyr ^ C~r = () ^ Crs = ()

, send data(in [ns], bs, '1 ')

Moreover, the first action of process r is changed to be-
come:

rcv data (t, b, e) > if b = br v e = 1
then readyr : = true fi ;
i f b = br
then out [nr], nr , br : = t, nr + 1,

1 - b r fi

The first if-statement guarantees that every original data
message with an unexpected alternating bit is not ac-
knowledged reducing the value of rank.

It is straightforward to verify pseudo-stabilization of
the system consisting of the modified processes s and r
and the three actions of message loss, corruption, and
reorder that satisfy the following two constraints along
every (infinite) computation:

i. If the same message is sent over and over by one proc-
ess, then it is eventually received correctly by the other
process.
ii. Infinitely many original data messages are not lost,
corrupted, or reordered after they are sent.

The proof of pseudo-stabilization is similar to the one
given in Sect. 5.4 using the same pseudo-attractor
(P1, P2,. . .) and the same definition of rank.

6 Concluding remarks

Achieving stabilization can be an expensive proposition
in some application domains. For example, it is shown
in [8, 12] that stabilization of communication protocols
can be achieved only by using unbounded sequence num-
bers - a feature that most system designers try to avoid.
When it is clear that the cost of achieving stabilization is
high, system designers should strive to meet weaker cri-
teria. We believe that pseudo-stabilization is one such
criterion.

On one hand, the notion of pseudo-stabilization is
reasonably close to that of stabilization. On the other
hand, pseudo-stabilization is clearly not as demanding as
stabilization. After all, pseudo-stabilizing communica-
tion protocols can be achieved without unbounded se-
quence numbers, as evidenced by our case study of the
alternating-bit protocols.

The alternating-bit protocol in this paper is new and
intriguing. In this protocol, the sender process sends one
additional bit per data message to identify whether the
data message is an original or a repetition. This identi-
fication is utilized by the receiver process to ensure that
each message reorder is eventually followed by a message

42

loss, hence guaran tee ing pseudo-s t ab i l i za t ion in the pres-
ence o f message reorder . I t wou ld be h a r d to mot iva t e
o r expla in this p r o t o c o l wi thou t resor t ing to the no t i on
o f pseudo-s tab i l i za t ion .

Acknowledgements. We are thankful to Anish Arora for discussions
that led to Theorem 3, to the referees for suggesting a number of
improvements in the presentation, and to K.F. Carbone for care-
fully preparing the manuscript.

References

1. Afek Y, Brown G: Self-stabilization of the alternating-bit
protocol. In: xx (ed) Proc 8th Symp on Reliable Distributed
System, pp 80-83, 1989

2. Bastani F, Yen I, Chen I: Class of inherently fault-tolerant
distributed programs. IEEE Trans Software Eng 14(10):
1432-1442 (1988)

3. Brown G, Gouda M, Wu C: Token systems that self-stabilize.
IEEE Trans Comput 36(6): 845-852 (1989)

4. Burns J, Pachl J: Uniform self-stabilizing rings. ACM Trans
Program Lang Syst 11(2): 330-344 (1989)

5. Dijkstra EW: EWD 391, Self-stabilization in spite of distributed
control (1973) Reprinted in: xx (ed) Selected writings on
computing: a personal perspective. Springer, Berlin Heidelberg
New York, 1982, pp 41-46

6. Dijkstra EW: Self-stabilizating systems in spite of distributed
control. Commun ACM 17:643-644 (1974)

7. Gouda M, Evangelist M: Convergence/response tradeoffs in
concurrent systems. Tech Rep TR-88-39, Dept of Computer
Sciences, University of Texas at Austin, 1988 (also being revised
for the ACM Trans Comput Syst Lang, 1989)

8. Gouda M, Multari N: Stabilizing communication protocols.
IEEE Trans Comput 40(4): 448-458 (1991)

9. Gouda M, Howell R, Rosier L: The instability of self-
stabilization. Act Inf 27:697-724 (1990)

10. Katz S, Perry K: Self-stabilizating extensions for message passing
systems. MCC workshop on Self-stabilization, August 1988

11. Lamport L: The mutual exclusion problem: Part II - statement
and solutions. J ACM 33:327-348 (1986)

12. Multari N: Towards a theory for self-stabiling protocols. Ph.D.
dissertation, Dept of Computer Sciences, University of Texas
at Austin, 1989

13. Stalling W: Data and Computer Communications. Macmillan,
1985, pp 133-140

