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Summary. A stabilizing system is one which if started at 
any state is guaranteed to reach a state after which the 
system cannot  deviate f rom its in tended specification. In  
this paper,  we propose a new var ia t ion  of this not ion,  
called pseudo-stabil izat ion.  A pseudo-stabilizing system is 
one which if started at any  state is guaranteed to reach 
a state after which the system does no t  deviate f rom its 
in tended specification. Thus,  the difference between the 
two not ions  comes down to the difference between "can- 
no t"  and  "does no t"  - a difference that  hardly matters  
in m a n y  practical situations. As it happens,  a n u m b e r  of 
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well-known systems, for example the alternating-bit pro- 
tocol, are pseudo-stabilizing but not stabilizing. We con- 
clude that one should not try to make any such system 
stabilizing, especially if stabilization comes at a high price. 

Key words: Alternating-bit protocol - Communication 
protocols - Convergence - Self-stabilization - System 
specification 

1 Introduction 

We have been interested for some time now in classes of 
systems that "well-behave" irrespective of their initial 
states. Clearly, such systems are extremely robust in the 
face of transient faults which may yield them in arbitrary 
states; this should explain our interest in these systems. 
Our aim in this paper is to investigate the criteria for 
well-behaving in the context of arbitrary initialization. 

The first criterion for the notion of well-behaving in 
spite of arbitrary initialization can be traced back to Dijk- 
stra's seminal paper on self-stabilization [5, 6]. Dijkstra's 
criterion requires that if the system starts at an arbitrary 
state, then it is guaranteed to reach, within a finite num- 
ber of transitions, a state after which the system cannot  
deviate from its intended specification. Many authors 
have adopted Dijkstra's criterion since then; see for ex- 
ample [2, 3, 4, 7, 9, 10, 11]. We refer to systems that 
satisfy this criterion as stabilizing systems. 

In this paper, we propose a new criterion for the no- 
tion of well-behaving in spite of arbitrary initialization. 
Our criterion requires that if the system starts at an ar- 
bitrary state, then it is guaranteed to reach, within a finite 
number of transitions, a state after which the system does 
not  deviate from its intended specification. We call sys- 
tems that satisfy this criterion pseudo-stabilizing. 

The "fragile" distinction between stabilization and 
pseudo-stabilization is better illustrated by an example. 
Consider a system with a state-transition diagram as 
shown in Fig. 1. (In this diagram, circles represent system 
states and arcs represent transitions between the states in 
the usual way.) Starting from any state, this system is 
guaranteed to reach, within one transition, either state p 
or state q. From p, only one computation (p, p , . . . )  can 
be executed, and from q, only one computation (q, q .... ) 
can be executed. Thus, if the intended specification of 
this system is F = { ( p , p  . . . .  ), ( q , q  . . . .  )}, then the system 

Fig. 1. A stabilizing system 
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Fig. 2. A pseudo-stabilizing system 

will reach within one transition a state (p or q) after which 
no deviation from F is possible. Hence, the system is 
stabilizing. 

Now, consider a second system with a state-transition 
diagram as shown in Fig. 2, and assume that the intended 
specification of this system is the same F as before. This 
system is not stabilizing because starting at state p, there 
is no guarantee that the system will ever leave p, yet at 
p the system can deviate from F by executing the com- 
putation (p, q, q,.. .) which is not in F. On the other hand, 
every computation of this system is in one of the following 
forms: 

( p , p  .... ) ,  

(P . . . . .  p , q , q  . . . .  ) 

( q , q , . . . ) .  

Thus, every computation has an infinite suffix in F. 
In other words, along every computation the system is 
guaranteed to reach a state after which the system does 
not deviate from F (although it may have an infinite 
number of chances to do so). Hence the system is pseudo- 
stabilizing. 

As we show later, pseudo-stabilization is strictly 
weaker than stabilization, with "does not deviate" re- 
placing "cannot deviate". Thus, every stabilizing system 
is also pseudo-stabilizing but there are pseudo-stabilizing 
systems that are not stabilizing. We contend, however, 
that pseudo-stabilizing systems are adequate for most 
practical purposes, and there is no real need to make 
them stabilizing, especially if the price of stabilization is 
high. 

The rest of this paper is organized as follows. In Sect. 2, 
we state our definitions of systems and their regions of 
execution, and identify two types of regions called "at- 
tractors" and "pseudo-attractors". In sect. 3, we define 
what it means for a system to be stabilizing or pseudo- 
stabilizing to a given specification. In Sect. 4, we discuss 
an important relationship between (pseudo-) attraction 
and (pseudo-) stabilization. In particular, we prove that 
if a system has a (pseudo-) attractor where some speci- 
fication is achieved, then the system (pseudo-) stabilizes 
to that specification. This result gives a sufficient con- 
dition for estabilishing that a given system stabilizes or 
pseudo-stabilizes to a given specification. We use this 
result, in Sect. 5, to show that the Alternating-Bit pro- 
tocol pseudo-stabilizes to its specification. Concluding 
remarks are in Sect. 6. For convenience, our discussion 



of the Alternating-Bit protocol is divided into several 
subsections. An informal presentation of the protocol is 
given in 5.1, followed by a formal presentation in 5.2. A 
specification of the protocol is presented in 5.3, and a 
proof  that the protocol pseudo-stabilizes to that specifi- 
cation is outlined in 5.4. Up to this point, our protocol 
can only tolerate message loss. Thus, we extend the pro- 
tocol to tolerate message corruption in 5.5, and tolerate 
message reorder in 5.6, while preserving its property of 
pseudo-stabilization. 

2 Attractors and pseudo-attractors 

Let S be a system defined by a set of states, and a set of 
transitions, where each transition is an ordered pair of 
states. 

A region of system S is a subset of  the system states. 
A region P is closed iff for every state p and q, if p is in 
P and (p, q) is a transition then q is in P. 

A computation of S is a nonempty maximal sequence 
(Pl ,P2, . . . ) ,  where each Pi is a system state and each 
(Pi P~ + 1) is a system transition. The maximality condition 
implies that if the last state in a finite computation is p 
then for every system state q, (p, q) is not a system tran- 
sition. 

A computation leads to a region P iff it has a state 
in P. 

Definition 1. A region P of S is an attractor iff it satisfies 
the following two conditions. 

i. P is closed. 
ii. Every computation of S leads to P. 

Thus, each system computation eventually reaches 
every system attractor. Moreover, once a computation 
reaches an attractor, it stays there indefinitely. 

Definition 2. An infinite sequence (P1, P2 .... ) of  regions 
of S is a pseudo-attractor iff it satisfies the following two 
conditions. 

i. For  every k, k : l , 2  . . . . .  the region ( ( ) P i ]  is 
closed, i= 1 \ -  / 

ii. Every computation of S leads to the region 

Let (P1, P2 .... ) be a pseudo-attractor of some system. 
Thus, for every system computation, there is k, k = 1, 2 ..... 
such that the computation eventually reaches a region Pk 
but never reaches any of the preceding regions 
P1 .. . . .  Pk-1.  In this case, the computation stays within 

Pk indefinitely (since U Pi is closed). 
i = 1  

The next theorem, which follows directly from the 
above definitions, states an interesting relationship be- 
tween the attractors and pseudo-attractors of a system. 

Theorem 1. Let P be a region of  S and (P1, P2 .. . .  ) be an 
infinite sequence of  regions of  S. 

i. I f  P is an attractor of  S, 
then (P, P .... ) is a pseudo-attractor of  S. 

ii. I f  (P1, P 2 , ' " )  is a pseudo-attractor of  S, 

then P is an attractor o f  S. 
i 1 
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3 Stabilization and pseudo-stabilization 

A specification of  a system S is a set of computations 
of S. 

Next, we define what it means for a system to be 
stabilizing or pseudo-stabilizing to a given specification; 
but first we adopt the following notation. 

Notation. Let c be any computation that has at least i 
states. Then, e.i denotes the i th state in c, and c?i denotes 
the suffix of c starting with the i th state c.i. 

Definition 3. A system S stabilizes to a specification F iff 

(V computation c of S, 3 a positive integer i : 
every computation of S that starts with the state c.i is 
in F )  

Definition 4. A system S pseudo-stabilizes to a specifica- 
tion F iff 

(V computation c of S, 3 a positive integer i : 
the computation c$i is in F )  

Informally, system S stabilizes to a specification F iff 
starting from an arbitrary state, S is guaranteed to reach 
a state after which F cannot be violated. By way of con- 
trast, S pseudo-stabilizes to F iff starting from an arbi- 
trary state, S is guaranteed to reach a state after which 
F is not violated. Thus, the distinction between the two 
definitions comes down to the difference between "can- 
not" and "is not". This distinction cannot be detected or 
observed by an external observer of the system. In par- 
ticular, an external observer can observe only one com- 
putation of the system, namely the computation that the 
system executes. It can also observe that the intended 
specification is not violated after some point in the com- 
putation, but cannot observe that the intended specifi- 
cation cannot be violated after some point. In other words, 
an external observer can observe pseudo-stabilization but 
not stabilization. This suggests that the two concepts of 
stabilization and pseudo-stabilization are indistinguish- 
able for all practical purposes. In principle, however, the 
two concepts are distinct; in particular, stabilization is a 
more strict property than pseudo-stabilization as shown 
by the next theorem. 

Theorem 2. Every system that stabilizes to some specifi- 
cation F pseudo-stabilizes to the same F," the converse is 
not necessarily true. 

Proof From Definitions 3 and 4 and from the fact that 
each computation c?i starts with the state c.i, it follows 
that stabilization to F implies pseudo-stabilization to F. 

We show next that the converse is not necessarily true 
by exhibiting a system that pseudo-stabilizes, but does 
not stabilize, to some specification. 
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Consider a system S where 

states = {p, q}, and 

transitions = { (p, p), (p, q), (q, q)} 

Thus, the state-transition diagram of S is as shown in 
Fig. 2. 

A possible specification of  S is the following F that 
consists of two infinite computations 

F = { ( p , p  .... ), (q, q,.. .)} 

System S does not stabilize to F because the infinite 
computation (p, p .... ) of  S has no state such that every 
computation that starts from that state is in F. 

On the other hand, S pseudo-stabilizes to F because 
each computation of S is in one of  the following forms: 

(p ,p  .... ) ,  

(p ,p  . . . . .  p , q , q , . . . ) ,  or 

(q,q .... ) .  

Thus, each computation of S has a suffix in F. [] 

The next theorem shows that stabilization has an ad- 
vantage over pseudo-stabilization in systems with a finite 
number of  states. Specifically, the stabilization of a finite- 
state system guarantees an upper bound on the number 
of transitions that the system can execute starting from 
an arbitrary state until the system starts to behave ac- 
cording to its specifications. Pseudo-stabilization, on the 
other hand, does not guarantee such an upper bound in 
finite-state systems. 

Theorem 3. Let S be a system with n states, and let F be 
a specification o f  S. 

i. I f  S stabilizes to F, then 
(V computation c, 3 positive integer k: k<_n + 1 and 
cSk is in F). 

ii. The same consequence does not necessarily hoM i f  S 
merely pseudo-stabilizes to F. 

Proof Part i: Let c be a computation of  S. Because of 
the stabilization of  S, every computation of  S, including 
c, has a suffix in F, i.e., there is a positive integer k such 
that c?k is in F. We now show that i f k  > n + 1 then there 
is a positive integer i smaller than k such that c$i is 
in F. Let k be larger than n + 1. Thus, because S has 
only n states, the first k - 1  states of c, namely 
c. 1, c.2 . . . . .  c.(k - 1), include at least two identical states. 
Therefore, there is an infinite computation d of S whose 
states are all taken from {c.l ,c.2 . . . . .  c . ( k - 1 ) } .  Because 
S stabilizes to F, then one of the states in d, say c.i, is 
such that every computation that starts with c.i is in F. 
Because c?i is a computation that starts at c.i, then c$i 
is in F. 

Part ii: Consider the system S and its specification F in 
the proof  of Theorem 2. Recall that S pseudo-stabilizes 
to F. We need to show that 

(3 computation c, V positive integer k : 
k > n + l  or c$k is not in F ) .  

Note that n -- 2 since S has two states. Consider the com- 
putation c = (p, p, p, q, q, . . . )  of  S; it is straightforward 
to check that (V positive integer k : k > 3 or c~k is not 
in F).  [] 

4 Relationship between attraction and stabilization 

In this section, we present sufficient conditions for es- 
tablishing that a given system S stabilizes or pseudo- 
stabilizes to a given specification F. In particular, we 
show that if S has a (pseudo-) attractor that satisfies 
certain conditions involving F, then S (pseudo-) stabilizes 
to F. An example of applying this method to establish 
that a given system pseudo-stabilizes to its specification 
is discussed in the next section. 

Theorem 4. Let S be a system with a specification F. I f  S 
has an attractor P such that every computation of  S whose 
states are all in P is in F, then S stabilizes to F. 

Proof Let c be any computation of S; we show that c 
has a state p such that every computation that starts with 
p is in F. Because P is an attractor, every computation 
of S, including c, has a state in P. Let p be any state of  
c that is also in P. Because p is in P and P is closed, then 
the states of a computation that starts with p are all in 
P. All such computations are in F. [] 

Theorem 5. Let S be a system with a specification F. I f  S 
has a pseudo-attractor (P1, P2 .... ) such that every com- 
putation of  S whose states are all in the same P~, i=  1, 2 .. . . .  
has a suffix in F, then S pseudo-stabilizes to F. 

Proof Let c be any computation of  S; we show that c 
has a suffix in F. Because (P1, P2 .... ) is a pseudo-attrac- 
tor, every computation of S, including c, has a state in 
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U Pi. Let Pk be the region in the pseudo-attractor 
i = 1  

(P1, P2 .... ) such that c has a state in Pk but does not 
k - - 1  

have a state in U P;. Also, let p be any state of c that 
i = 1  k 

is also in P~. Because p is in Pk, and U Pi is closed, and 
k - - 1  i = 1  

because no state of c is in U Pi, then each of the states 
i = l  

that follows p in c is also in P~. In other words, c has a 
nonempty suffix whose states are all in Pk. Because every 
computation whose states are all in Pk has a suffix in F, 
c has a suffix in F. [] 

5 Case-study: the alternating-bit protocol 

We show in this section that the well-known Alternating- 
Bit Protocol [13] pseudo-stabilizes to its intended speci- 
fication. Our objective of  this exercise is two-fold. First, 
we want to illustrate how Theorem 5 can be utilized in 
verifying that a given system pseudo-stabilizes to a given 
specification. Second, and more important, we wish to 
point out that the stabilization properties of this impor- 
tant protocol are not as bad as may have been suggested 
by recent results [8, 12] which showed that this protocol 



is not stabilizing, and so prompted "probabilistic ver- 
sions" of  the protocol in order to achieve stabilization 
[11. 

5.1 Informal presentation of  the protocol 

Consider a system of two processes s and r that  com- 
municate by exchanging messages over two channels. 
Each channel is an unbounded first-in-first-out buffer 
that stores the messages sent by one process until each 
of  them is either received by the other process or lost, 
i.e. disappeared f rom the channel. (Note that channel 
characteristics, e.g. unboundedness and the ability to lose 
messages, are not under the control of  the system de- 
signer.) Despite the possibility of  message loss, process s 
is required to transfer reliably an infinite stream of data 
messages to process r. The following protocol is adopted: 

i. Process s sends the data messages one at a time. After 
sending each message, s waits to receive an acknowl- 
edgement (ack) message before sending the next data 
message. 
ii. I f  after sending a data message process s does not 
receive an ack message for some time, it concludes cor- 
rectly that either the data message or its corresponding 
ack message was lost. In this case, process s times out 
and re-sends the last data message. 
iii. Each data message has two fields: 

data (t, b) 

where t is the message text and b is either 0 or 1. When 
s sends a data message for the first time, it assigns the 
message a different b f rom that of  the last data message. 
I f  later s re-sends the data message, the re-sent message 
will have the same b (and same t) as the last message. 

5.2 Formal presentation o f  the protocol 

The program of each of  the two processes s and r is a set 
of  actions that has the form: 

begin ( a c t i o n )  n ... 0 ( a c t i o n )  end 

The symbol "0"  is a separator that separates the different 
actions in the program of a process. Each action has the 
syntax 

<guard)  ~ <sequence of s tatements)  

Each guard is in one of  the following three forms: 

(local g u a r d ) ,  
rcv (message ) ,  or 
timeout <global guard)  

where a loal guard is a boolean expression over the local 
variables of  its process, and a global guard is a boolean 
expression over the variables in the two processes s and 
r, and the contents of  the two channels between them. 
The contents of  a channel is a sequence of messages. 
Sending of a message consists of  adding the message to 
the "tail" of  the sequence, while receiving a message con- 
sists of  removing the "head" message from the sequence. 
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The content of  the channel f rom s to r, denoted Csr , is a 
sequence of data messages. The content of  the channel 
from r to s, denoted Cry, is a sequence of ack messages. 

The program for process s is as follows. 

process s 
const in: array [integer] of  text {*text of  all messages 

to be sent*} 
var ns:  integer init 0 {*index of array 

"in"*} 
;readys: boolean init true {*ready to send next 

data message*} 
;bs: (0, 1) init 0 {*the alternating bit*} 

beff-m readys ---* readys: = false; send data 
(in [ns], bs) 

n rev ack ---* ns, readys, bs: = ns + 1, 
true, 1 -- bs 

0 timeout -7 readys ^ -7 readyr ^ 
c~=<)  ^ c,.~=< > 
send data (in [ns], bs) 

end s 

Process s has three actions. In the first action, s sends 
the next data message to r and waits for an ack message. 
In the second action, s receives an ack message (presum- 
ably for the last data message it has sent) and gets ready 
to send the next data message. In the third action, when 
neither process can send and the two channels between 
them are empty (indicating a message loss), process s 
times out and re-sends the last data message. 

The program for process r is as follows. 

process r 
var out :  array [integer] of  

text 
; nr:  integer 
; r eadyr :  boolean init 

false 
; br:  (0, 1) init 0 

; t: text 
; b :  (0,1) 

begin rcv data (t, b)  

[] readyr 
end r 

{*text of  all received 
messages* } 

{*index of array "out"* } 
{*ready to reply by an 

ack*} 
{*expected alternating 

bit*} 
[*received text*} 
{*received alternating 

bit*} 
if b = br then out [nr], nr, 
br:=t,  nr+ l, 1 - b r f i ;  
readyr: = true 

, r e a d y r : =  false; send ack 

Process r has two actions. In the first action, r receives 
a data message and checks whether it is an original mes- 
sage that should be stored or it is a repetition of the last 
received message and should be discarded. In either case, 
r gets ready to reply with an ack message which is then 
sent in the second action of r. 

5.3 Specification of  the protocol 

A state of the protocol is defined by a value for each 
variable in the two processes, and by a sequence of data 
messages for the forward channel f rom s to r, and by a 
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sequence of ack messages for the backward channel f rom 
r to s .  

An action in one of the two processes is enabled at a 
given state iff either its guard is a (local or global) predi- 
cate whose value is true at the given state or its guard is 
of  the form rcv (message)  and the input channel of  its 
process has at least one message at the given state. 

A state q of  the protocol follows a state p iff at least 
one action in one of  the two processes is enabled at p 
and executing the sequence of  statements of  an enabled 
action starting f rom p yields q. 

A computation of  the protocol is an infinite sequence 
of protocol states: p l ,  P2 .... such that each Pi+l follows 
pg. (Notice that the protocol has no terminating states; 
thus all its computat ions are infinite.) 

Let p be a state of  the protocol. For  convenience, 
let in, ns, out, and nr denote respectively the values of  
variables in, ns, out, and nr at state p. Also, let ms and 
mr be two integers. State p is (ms, mr)-safe iff the follow- 
ing condition holds: 

(ms N ns) ^ 

(mr <_ nr) ^ 

(Vi: O <_i < nr--mr:in[ms + i]=out[mr + i]). 

A computat ion of  the protocol is successful iff variable 
nr is incremented infinitely often along the computation,  
and there are two integers ms and mr such that  each state 
in the computat ion is (ms, mr)-safe. 

The protocol is specified by the set F of  all succcessful 
computations.  

5.4 Pseudo-stabilization of the protocol 

Consider a system that consists of  the two processes s 
and r, and a "message loss" action which when executed 
discards one message, if any, f rom one of  the two chan- 
nels between s and r. We assume that  along every (infi- 
nite) computat ion of  the system, if the same message is 
sent over and over by one process, then it is eventually 
received by the other process. 

In this section, we apply Theorem 5 to show that  this 
system pseudo-stabilizes to specification F. In particular, 
we show that the system has a pseudo-attractor 
(P~, P2 ....  ) such that every system computat ion whose 
states are all in the same Pi, i = 1, 2 . . . . .  has a suffix in F. 

Define a function "rank" that assigns to each state p 
of  the system a natural  number  rank.p as follows. 

rank.p = the number  of  data messages in the 
channel f rom s to r at p 

+ the number  of  ack messages in the 
channel f rom r to s at p 

+X.p 
+ Y.p 

where 

X.p = 0 if readys = false at state p 
1 otherwise, and 

Y.p = 0 if readyr-- false at state p 
1 otherwise. 

Notice that each action in the two processes of  the 
protocol either reduces the value of rank by 1 or keeps 
it unchanged. The message loss action reduces the value 
of  rank by 1. 

Consider the infinite sequence (P~, P2,. . .) ,  where 

P1---= {P[ P is a system state where either rank.p = 0 

or rank.p = 1}, 

and for i = 2, 3 .... 

P~= {p[ p is a system state where rank.p = i} 

I t  is straightforward to show that (P1, P2 .... ) is a 
pseudo-attractor of  the system. First, each action in the 
system, other than the t imeout action, either reduces the 
value of  rank or keeps it unchanged. The timeout action 
increases the value of rank from 0 to 1 but still keeps the 

system state within P1. Therefore, the region U Pi is 
i = 1  

closed for every k, k -- 1,2 . . . . .  Second, since the value of 
rank.p is a natural number for each system state p, each 
system state is in some Pi. Hence, each system compu- 
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tation leads (trivially) to the region U Pi. This completes 
i=~ 

the proof  that (P1, P2 .... ) is a pseudo-attractor of  the 
system. 

It remains now to show that every system computat ion 
whose states are all in the same Pg, i = 1,2 . . . . .  has a suffix 
in F. Consider a computat ion whose states are all in the 
same P~. We discuss the two cases of  i = 1 and i > 1 sep- 
arately. I f  i =  1, then at each state in the computat ion 
there is at most  one message in the two channels between 
s and r. It  is straightforward to show that such a com- 
putation has a suffix in F (provided that every message 
that  is sent over and over is eventually received). 

I f  i > 1, then every state in the computat ion has the 
same rank i which means that the message loss action is 
never executed (because it reduces the rank). Moreover,  
the t imeout action in process s is never enabled, and so 
is never executed. Along the computation,  process s 
merely keeps on receiving an ack message then sending 
the next data message (with a bit value different f rom 
that of  the last data message), and process r keeps on 
receiving a data message with the expected alternating 
bit, storing it in array out, then sending back an ack 
message. It  is straightforward to show that this compu- 
tation has a suffix in F. 

5.5 Dealing with message corruption 

We have assumed so far that each sent message can either 
be lost or received correctly; hence the protocol is de- 
signed to deal only with message loss. We now discuss 
how to extend the protocol to deal with message corrup- 
tion as well as message loss. 

The corruption of a sent message, whether data or 
ack, consists of  changing the message into a special mes- 
sage "error" before it is received. (Note that the form of 
corruption that changes a message into another message 
of  the same type can already be countered by the pseudo- 



stabilization properties of  the protocol. Hence, this form 
of  corruption is not considered here any further.) 

To deal with the "error" message that may result from 
message corruption, the following action is added to each 
of the process s and r: 

rcv error > skip 

With this action, each process discards all the corrupted 
messages it receives. In effect, each message corruption 
is eventually transformed into a message loss. 

Now, consider a system that consists of the new pro- 
cesses s and r, and a message loss action (similar to that 
defined in Sect. 5.4), and a message corruption action 
which when executed changes a message in one of the 
two chanels, if any, into an error message. We assume 
that along every (infinite) computation of the system, if 
the same message is sent over and over by one process, 
then it is eventually received correctly by the other pro- 
cess. It is straightforward to show that this system pseudo- 
stabilizes to specification F. (The proof  is similar to the 
one given in Sect. 5.4; in fact, it is based on the same 
pseudo-attractor (PI, Pe .... ), and the same definition of 
rank in the earlier proof.) 

5.6 Deal ing with message  reorder 

We now discuss how to extend the protocol to handle 
message reorder along with message loss and corruption. 
A message reorder consists of swapping two consecutive 
messages in the same channel. Because ack messages are 
all identical, the reordering of  ack messages in the channel 
from r to s has no effect on the protocol. Thus, we need 
only to consider reordering of data messages in the chan- 
nel from s to r. 

We assume that along every (infinite) computation, 
infinitely many original data messages are not reordered, 
corrupted, or lost after they are sent. (Recall that each 
sent data message is either an original or a repetition of 
the last sent message.) This assumption guarantees that 
every message reorder is eventually followed by a message 
loss or corruption (which reduces the value of rank), or 
eventually causes process r to receive two consecutive 
data messages that are original and have the same alter- 
nating-bit value. In the latter case, if process r can detect 
the reception of these two messages, it can discard the 
second message causing a message loss (which reduces 
the value of rank). Thus in either case, each message 
reorder eventually reduces the value of rank which en- 
sures pseudo-stabilization of the system as discussed in 
Sect. 5.4 and as utilized later in Sect. 5.5. 

Note that without message reorder, process r can still 
receive two consecutive data messages with the same al- 
ternating-bit value. In this situation, however, the second 
of these two messages is a "repetition" of the first mes- 
sage. This fact differentiates between this situation and 
the earlier situation caused by message reorder. Hence 
process r should be able to detect whether a received data 
message is an original or a repetition. 

This can be achieved by adding an extra bit c to each 
data message: 
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c = 0 if the data message is an original 
1 if the data message is a repetition 

Consequently, the first and third actions of process s are 
changed to become: 

readys , r e a d y s : =  false; send data (in [ns], bs, '0') 

timeout -'1 readys ^ "-q readyr ^ C~r = ( )  ^ Crs = ( )  

, send data(in [ns], bs, '1 ')  

Moreover, the first action of process r is changed to be- 
come: 

rcv data (t, b, e) > if b = br v e = 1 
then readyr : = true fi ; 
i f  b = br 
then out [ nr ], nr , br : = t, nr + 1, 

1 - b r  fi  

The first if-statement guarantees that every original data 
message with an unexpected alternating bit is not ac- 
knowledged reducing the value of rank. 

It is straightforward to verify pseudo-stabilization of 
the system consisting of the modified processes s and r 
and the three actions of message loss, corruption, and 
reorder that satisfy the following two constraints along 
every (infinite) computation: 

i. If  the same message is sent over and over by one proc- 
ess, then it is eventually received correctly by the other 
process. 
ii. Infinitely many original data messages are not lost, 
corrupted, or reordered after they are sent. 

The proof  of  pseudo-stabilization is similar to the one 
given in Sect. 5.4 using the same pseudo-attractor 
(P1, P2,. . . )  and the same definition of rank. 

6 Concluding  remarks  

Achieving stabilization can be an expensive proposition 
in some application domains. For  example, it is shown 
in [8, 12] that stabilization of communication protocols 
can be achieved only by using unbounded sequence num- 
bers - a feature that most system designers try to avoid. 
When it is clear that the cost of achieving stabilization is 
high, system designers should strive to meet weaker cri- 
teria. We believe that pseudo-stabilization is one such 
criterion. 

On one hand, the notion of  pseudo-stabilization is 
reasonably close to that of stabilization. On the other 
hand, pseudo-stabilization is clearly not as demanding as 
stabilization. After all, pseudo-stabilizing communica- 
tion protocols can be achieved without unbounded se- 
quence numbers, as evidenced by our case study of  the 
alternating-bit protocols. 

The alternating-bit protocol in this paper is new and 
intriguing. In this protocol, the sender process sends one 
additional bit per data message to identify whether the 
data message is an original or a repetition. This identi- 
fication is utilized by the receiver process to ensure that 
each message reorder is eventually followed by a message 
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loss, hence guaran tee ing  pseudo-s t ab i l i za t ion  in the pres-  
ence o f  message  reorder .  I t  wou ld  be h a r d  to mot iva t e  
o r  expla in  this p r o t o c o l  wi thou t  resor t ing  to the no t i on  
o f  pseudo-s tab i l i za t ion .  
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