
Resource Bounds for Self-Stabilizing Message DrivenProtocolsShlomi DolevDept. of Computer ScienceTechnion | Israel Amos Israeli�Dept. of Electrical EngineeringTechnion | IsraelShlomo MoranDept. of Computer ScienceTechnion | IsraelMarch 4, 1995AbstractSelf-stabilizing message driven protocols are de�ned and discussed. The class weak-exclusion that contains many natural tasks such as `-exclusion and token-passing is de-�ned, and it is shown that in any execution of any self-stabilizing protocol for a task inthis class, the con�guration size must grow at least in a logarithmic rate. This last lowerbound is valid even if the system is supported by a time-out mechanism that preventscommunication deadlocks. Then we present three self-stabilizing message driven proto-cols for token-passing. The rate of growth of con�guration size for all three protocolsmatches the aforementioned lower bound. Our protocols are presented for two processorsystems but can be easily adapted to rings of arbitrary size. Our results have an interestinginterpretation in terms of automata theory.
�Partially supported by NWO through NFI Project ALADDIN under Contract number NF 62-376.0

1 IntroductionA distributed system is a set of state machines, called processors, which communicate eitherby shared variables or by message-passing. In the �rst case, the system is a shared memorysystem, in the second case the system is a message-passing system. A distributed system is self-stabilizing if it can be started in any possible global state. Once started, the system regains itsconsistency by itself, without any kind of an outside intervention. The self-stabilization propertyis very useful for systems in which processors may crash and then recover spontaneously in anarbitrary state. When the intermediate period in between one recovery and the next crash islong enough, the system-stabilizes. Self-stabilizing systems were de�ned and discussed �rst inthe fundamental paper of Dijkstra, [Dij-74]. The work of [Dij-74] as well as most of the followingwork on self-stabilizing systems assume the communication model of shared variables. Amongthese papers are [Kr-79], [Tc-81], [Dij-82], [La-86], [BGW-87], [Bu-87], [BP-88], [IJ-90], [IJ-90a],[DIM-90] and [DIM-91].In the study of fault tolerant message-passing systems, it is customarily assumed that mes-sages might be corrupted over links, hence, processors may enter arbitrary states and link con-tents may be arbitrary. Self-stabilizing protocols treat these problems naturally, since they aredesigned to recover from inconsistent global-states. Surprisingly, there are very few papers whichaddress self-stabilizing, message-passing systems. The earliest research in this model was doneby Gouda and Multari in [Mu-89, GM-91]. In that work, they have developed a self-stabilizingsliding window protocol and two-way handshake that use unbounded counters. They provedthat any self-stabilizing message passing protocol must use time-outs and have in�nite numberof safe states. Following [GM-91], two additional works dealt with self-stabilizing protocols inthis model: The work of Katz and Perry, [KP-90], presents a general tool for extending anarbitrary message-passing protocol to a self-stabilizing protocol. The work of Afek and Brown,[AB-89], presents a self-stabilizing version of the well-known alternating-bit protocol, (see e.g.[BSW-69]).In this work we research complexity issues related to self-stabilizing, message-passing sys-tems; to do that we de�ne a con�guration of any message-passing system as a list of the states ofthe processors and of the messages which are in transit on each link. The size of a con�gurationof a message-passing system is the number of bits required to encode the con�guration entirely.A protocol for a message-passing system is message-driven if any action of the processors isinitiated by receiving a message. In the work of Gouda and Multari, [GM-91], it is proven thatany message-driven protocol has a possible con�guration in which all processors are waitingfor messages but there are no messages on any link. This unwanted situation is called com-munication deadlock. A self-stabilizing system should stabilize when started from any possibleinitial con�guration, including a con�guration with communication deadlock. This implies thata non-trivial, completely asynchronous, self-stabilizing system cannot be message-driven. Thisproblem can be dealt with in at least two methods: Gouda and Multari, in [GM-91], proposedthe use of a time-out mechanism which preserves the message driven structure of the protocol atthe expense of compromising the complete asynchronisity. On the other hand, Katz and Perry,in [KP-90], have chosen to give up the message-driven structure and present protocols for whichat any con�guration there is at least one processor whose next operation is sending a message.Thus, there is an execution in which in every atomic step a message is sent, and no message isever received. In this execution the size of the con�gurations grows linearly.In this work we de�ne and study the class of self-stabilizing, message-driven protocols. By1

the argument of [GM-91], there exists no self-stabilizing, message-driven protocol which is com-pletely asynchronous. Since we look for protocols whose con�guration size does not grow in linearrate we resort to slightly limited assumptions of asynchronous behavior. For lower bounds weassume an abstract time-out device which detects communication deadlocks and initiates thesystem upon their occurrence. Consequently, the lower bounds we present take into accountonly executions in which no communication deadlock occurs. Our upper bounds assume that inevery initial con�guration there is at least one message on some link. This assumption is muchweaker than the assumption on a general time-out mechanism.A speci�c task which we study in details is token-passing. Informally, the token-passing taskis to pass a single token fairly among the system's processors. Usually it is assumed that in thesystem's prede�ned initial con�guration there exists a single token. In self-stabilizing system inwhich there is no prede�ned initial con�guration, each execution should reach a con�gurationin which exactly one token is present in the entire system. Token-passing is a very basic taskin fault tolerant systems, among other works it was studied in [DK-86] for some fault tolerantmessage-passing systems and in [IJ-90], for self-stabilizing, shared memory systems. The token-passing task can be looked at as a special case of mutual-exclusion since possession of the singletoken can be interpreted as a permission to enter the critical section.In the �rst part of the presentation we prove a lower bound on the con�guration size forprotocols for a large class of tasks called weak-exclusion. The weak-exclusion class contains allnon-trivial tasks which require continuous changes in the system's con�guration; in particularthis class includes both `-exclusion and token-passing. We show that the con�guration sizeof any self-stabilizing protocol which realizes any weak-exclusion task is at least logarithmicin the number of steps executed by the protocol. The lower bound holds for message-drivenprotocols for any week-exclusion task, including protocols for systems equipped with time-outmechanism. This result should be compared with a result of [GM-91] where it is shown thatany message-driven, self-stabilizing protocol (not necessarily for week-exclusion task) must havein�nitely many safe system con�gurations, but not that each speci�c execution must containin�nitely many distinct con�gurations, as implied by our results. Our lower bound does notspecify which part of the system grows, is it the size of the memory used by the state machines,the size of messages stored on the links, the number of messages stored on the links or all ofthese together?We then present three self-stabilizing, message-driven protocols for token-passing. The com-munication deadlock problem is avoided by the assumption that at least a single message ispresent on some communication link. Using this assumption, we present three token-passingprotocols, for two processors each. The rate of growth of con�guration size for all three proto-cols matches the aforementioned lower bound. All protocols are presented for systems with twoprocessors but can be easily adapted to work on rings of arbitrary size without increasing theirasymptotic complexity. This is done by considering the ring as a single virtual link.In the �rst protocol both processors memory and messages size grow unboundedly withtime, this protocol uses ideas similar to the ideas of the sliding window protocol of [GM-91].The second protocol is an improvement on the �rst protocol in which the size of the memoryof the processors grows (in logarithmic rate) while the size of the link content is bounded. Thesecond protocol is an improvement of the deterministic alternating bit protocol of [AB-89]. Thethird protocol is a self-stabilizing token-passing protocol in which processors are deterministic�nite state machines and messages are of �xed size. The only growing part of the system is thenumber of messages on the links; the rate of growth matches the lower bound mentioned above.2

Our results can be described also in terms of automata theory, as follows: Let � be analphabet. De�ne a queue machine Q to be a �nite state machine which is equipped with aqueue, which initially contains an arbitrary non empty word from �+. Initially Q is in anarbitrary state, and in each step it performs the following: (a) reads and deletes a letter fromthe head of the queue, (b) adds one or more letters from � to the tail of the queue, and (c) movesto a new state. The computational power of a queue machine is severely limited by the fact thatits input alphabet and its work alphabet are identical. In particular a queue machine cannotperform simple tasks like computing the length of the input word, or even deciding whether theinput word contains a speci�c letter.Assume that the alphabet contains a speci�ed subset � of token letters. A queue machine isa token-controller if, starting with a nonempty queue of arbitrary content, eventually the queuecontains exactly one occurrence of a letter from � forever. Our lower bound result implies thatif a token-controller exists, then in every computation the size of the queue must grow at leastlogarithmic in the number of moves of the machine. Our third protocol implies that a token-controller whose con�guration size growth matches the lower bound exists. In view of the factthat a queue machine cannot compute any estimation of the number of occurrences of lettersfrom � in the input word, this latter result appears to be somewhat counter intuitive.2 Self-Stabilizing Message-Driven Systems2.1 Asynchronous Message-Driven SystemsAn asynchronous, distributed, message-passing system contains n processors where each proces-sor is a state machine. Processors communicate using message-passing along links. An edgee = (i; j) of G stands for two directed links, one from Pi to Pj and the other from Pj to Pi. Amessage sent from Pi to Pj can be delayed for an unbounded amount of time on the connectinglink. Messages which did not reach their destination yet, are stored on the link and transferredin FIFO (First In First Out) order.A processor is uniquely de�ned by the set of its atomic steps. Whenever a processor isactive it executes one of its atomic steps. In a message-driven protocol an atomic step ofany processor P begins with a receive operation in which P receives a message from oneof its incoming links. The atomic step ends with zero or more send operations in whichP sends messages along some of its outgoing links. An atomic step a of Pi is de�ned bya = (i; si1; (e;msg); (e1;msg1); (e2;msg2) � � � (e`;msg`); si2) meaning that: Pi is in state si1,e is the link through which Pi receives the message msg, e1; e2; � � � ; e` are the outgoing linksalong which Pi sends msg1;msg2; � � � ;msg`, respectively and si2 is the state of Pi following theexecution of this atomic step.Let n and m be the number of processors and links respectively in the system. For 1 � i � ndenote by Si the set of states of Pi. A con�guration of the system is a vector of states ofall processors together with m lists, a list for every link, of messages stored on that link. Acon�guration is denoted by c=(s1 � s2 � � � � sn �Me1 �Me2 � � � �Mej :::�Mem) where si 2 Si,1 � i � n, and Mej is a list of the messages stored on ej, for 1 � j � m. Let c be a con�gurationas above, and let a = (i; si1; (e;msg); (e1;msg1); (e2;msg2) � � � (e`;msg`); si2) be an atomic step.a is applicable to (Pi in) c, if Pi is in state si1 in c and msg is the �rst message stored on e in c.3

Application of a to c yields the result con�guration c0. We denote this fact by c a! c0. Asequence of atomic steps, A = (a1; a2; � � �), is applicable to con�guration c0, if the �rst atomicstep in the sequence, a1, is applicable to c0, the second atomic step is applicable to c1 wherec0 a1! c1, and so on. An execution, E = (c0; a1; c1; a2; � � �) is a (�nite or in�nite) sequence whichstarts with some arbitrary con�guration c0 and for every i > 0, ci�1 ai! ci, that is: the sequenceof atomic steps A = (a1; a2; � � �) is applicable to c0. Note: Since we deal with self-stabilizingsystems we do not assume any particular initial con�guration, every con�guration is a validinitial con�guration. Execution E is fair if every atomic step that is applicable in�nitely oftenis executed in�nitely often.Each execution E de�nes a partial order on the atomic steps of E by the relation happenedbefore of Lamport in [La-78]:1. If ai and aj are atomic steps executed by the same processor in E and ai appears beforeaj in E, then ai happened before aj.2. If during ai the message msg is sent and during aj the same message msg is received, thenai happened before aj.3. If ai happened before aj and aj happened before ak then ai happened before ak.We also adopt the de�nition of concurrent atomic steps from [La-78]: atomic steps a1 � � � akare said to be concurrent in an execution E if for 1 � i < j � k, ai does not happen before ajand aj does not happen before ai in E. The following proposition gives a su�cient condition fora set of steps to be concurrent in some execution:Proposition 1: Let Pi1 ; � � � ; Pik be k distinct processors and let fa1; � � � ; akg be a set ofatomic steps where aj is aplicable to Pij , 1 � j � k in some con�guration c. Then there existsan execution in which the atomic steps a1 � � � ak are concurrent.Proof: Observe that once step a is applicable to processor P in con�guration c, step aremains applicable to P in all subsequent con�gurations. The execution E is de�ned as theexecution that starts from c, in which processors Pi1; � � � ; Pik are activated one after the other,and each processor Pij executes aj. The proof follows since the processors are distinct and sincein E, no message that was sent during aj, 1 � j � k, is received before ak is executed. Note thatthe proposition holds for any system in which once some step is applicable it remains applicableas long as it is not executed.An asynchronous protocol, PR, is de�ned by a set of n processors. By the above de�nitions,an asynchronous protocol de�nes a set of executions that satisfy the following:1. Let E = (c0; a1; c1; a2; � � �) be an arbitrary execution of PR. Then every pre�x of E is alsoan execution of PR.2. Let E = (c0; a1; c1; a2; � � � ; ar; cr) be arbitrary �nite execution of PR. Then for everyatomic step a and con�guration c, satisfying cr a! c, PR has an execution E � (a; c)1.1For sequences S1 and S2, S1 � S2 denotes the concatenation of S1 and S2.4

2.2 Self-Stabilizing Message-Driven ProtocolsA self-stabilizing system demonstrates a legitimate behavior some time after it is started froman arbitrary con�guration. A natural way to specify a behavior in an abstract way is by a setof sequences of con�gurations. We de�ne tasks as sets of legitimate-sequences. The semanticsof any speci�c task is expressed by requirements on its sequences. Intuitively each legitimatesequence can be thought of as an execution of a protocol but we do not require it formally. Forinstance, the mutual-exclusion task is de�ned as the set of sequences of con�gurations whichsatisfy: Each processor has a subset of its states called critical section; in each con�guration,at most one processor is in its critical section, and every processor is in its critical section inin�nitely many con�gurations. To formally de�ne a task T , one should specify for each possiblesystem ST , a set of legitimate sequences for ST . The task T is de�ned as the union of thelegitimate sequence set over all possible systems. A con�guration c of a system is safe withrespect to a task T and a protocol PR if any fair execution of PR starting from c belongs to T .In proving lower bound results on self-stabilizing message-driven protocols, we assume thatthe system can recover from a communication deadlock (called deadlock from now on). Inother words: When we prove our lower bounds, we assume only that the protocol stabilizes inexecutions in which no deadlock occurs. For this purpose, we distinguish between two types ofdeadlocks: global and local. A con�guration c is a global deadlock con�guration if no atomic stepis applicable to c. Our �rst lower bound holds for asynchronous systems that can recover fromglobal deadlocks by applying a global time-out mechanism. This abstract mechanism initiatesa system in a global deadlock con�guration to a default initial con�guration, after which nodeadlock occurs. Below we bring the requirement for self-stabilizing systems equipped with aglobal time-out mechanism. In this de�nition the system is required to reach a safe con�gurationin every in�nite fair execution. Note that by our de�nition an in�nite fair execution does nothave a deadlock con�guration.[Self-Stabilization] - assuming global time-out mechanismLet PR and LE be a message driven protocol and set of legitimate sequences, respectively.Protocol PR is sellf-stabilizing relative to LE, if for every c, there is an execution of PRthat starts with c and every such in�nite fair execution reaches a safe con�guration withrespect to LE and PR.Later on, we prove a lower bound that holds for systems immuned from a stonger typeof communication deadlock called local deadlock. Processor P is in a local deadlock duringexecution E, if P is activated (i.e. executes an atomic step) only �nitely many times during E.The second lower bound holds for systems equipped with an abstract local time-out mechanismwhich prevents such executions (e.g. by enabling each processor which is idle for a su�cientlylong time to initiate the system to some default con�guration after which no deadlock is possible).Note that a local time-out mechanism is strictly stronger than a global time-out mechanism.[Self-Stabilization] - assuming local time-out mechanismLet PR and LE be a message driven protocol and set of legitimate sequences, respectively.Protocol PR is sellf-stabilizing relative to LE, if for every c, there is an execution ofPR that starts with c, and every such in�nite fair execution, in which each processor isactivated in�nitely often, reaches a safe con�guration with respect to LE and PR.5

3 Lower BoundIn this section we prove a lower bound on the rate in which the con�guration size grows alongevery execution of any protocol for a large class of tasks called weak-exclusion. This classcontains all non-trivial tasks which require continuous changes in the system's con�guration; inparticular this class includes both `-exclusion and token-passing. For an execution E, denoteby Ai(E) the set of distinct atomic steps executed by Pi during E. A task belongs to the classweak-exclusion if its set of legitimate sequences, LE, satis�es:[WE]- For any E 2 LE there exists a set of two or more atomic steps B = fai1; � � � ; aikg, k � n,where aj 2 Aij(E), such that the atomic steps in B are never concurrent during E.We �rst consider self-stabilizing protocols for systems equipped with a global time-out mech-anism. For these protocols we prove that in every execution (in which no communication dead-lock occurs) all con�gurations are distinct. From this we conclude that the con�guration size ofevery self-stabilizing protocol which realizes any weak-exclusion task is at least logarithmic inthe number of steps executed by the protocol. Throughout the proof we assume that PR is aself-stabilizing, message-driven protocol for an arbitrary weak-exclusion task, in a system witha global time-out mechanism. At the end of this section, we present a slightly weaker lowerbound for systems with a local time-out mechanism.For any con�guration c and any link e, denote by M ce the sequence of messages present on ein c. For any execution E, denote by MEe;s (MEe;r) the sequence of messages sent (received) alonge during E.Proposition 2: For every execution E = (c0; a1; � � � ; ar; cr) and for every link e, M c0e �MEe;s =MEe;r �M cre .Proof: The left hand side of the equation contains the messages present on e in c0, concate-nated with the messages sent during E, through e. The right hand side of the equation containsthe messages received during E through e, concatenated with the messages left on e in cr. It isnot hard to verify that both sides of the equation represent the same sequence of messages.An execution E = (c0; a1; � � � ; c`�1; a`; c`) whose result con�guration c` is equal to its initialcon�guration c0 is called a circular execution. A link e is active in a circular execution E ifsome messages are received (and hence, by the circularity of E, some messages are sent) alonge in E. Repeating a circular execution E forever yields an in�nite execution E1 which isnot necessarily fair | The original execution may have an applicable step a which is neverexecuted during E. The step a is applicable throughout E1 but it is never executed. Toavoid this problem the original circular execution is changed by removing all messages fromlinks that are not active throughout E. The result execution, which is still called E is stillcircular and its in�nite repetition E1 is a fair in�nite execution. Observe that an executionin which a certain con�guration appears more than once has a circular sub-execution, E =(ci; ai+1; � � � ; ai+`; ci+`) � (c0; a1; � � � ; a`; c`), where ci = ci+` = c0 = c`. Thus, to show that inevery execution of PR all the con�gurations are distinct, we assume that PR has a circularsub-execution E and reach a contradiction by showing that PR is not self-stabilizing.Using E, we now construct an initial con�guration cinit by changing the list of messages intransit on the system's links. For each link e, the list of messages in transit on e, at cinit, is6

obtained by concatenating the list of messages in transit on e at c0 with the list of all messagessent on e during E. Roughly speaking, the e�ect of this change is creating an additional\layer" of messages that helps to decouple each send from its counterpart receive and achieve anadditional exibility in the system which enables the proof of the lower bound: Formally, cinitis obtained from c0 as follows:� The state of each processor in cinit is equal to its state in c0.� For any active link in E, M cinite = M c0e �MEe;s and for any non-active link in E, M cinite isempty.Let A(i) be the sequence of atomic steps executed by Pi during E. De�ne merge(A) to bethe set of sequences obtained by all possible mergings of all sequences A(i), 1 � i � n, whilekeeping the internal order in each A(i). Note that all the sequences in merge(A) have the same�nite length and contain the same atomic steps in di�erent orders.Lemma 3: Every A 2 merge(A) is applicable to cinit, and the resulting execution, EA =(cinit) �A, is a circular execution of PR.Proof: Let A be an arbitrary sequence in merge(A) and let Pi be an arbitrary processor ofthe system. Then we have: (i) The initial state of Pi in cinit is equal to its initial state in c0. (ii)In cinit all messages which Pi receives during E are stored on Pi's appropriate incoming links inthe right order. (iii) The atomic steps of Pi appear in A in the same order they appear in A(i).(i) - (iii) above imply that the sequence A is applicable to cinit, and the application of A to cinityields an execution, EA, with result con�guration, cres whose state vector is equal to the statevector of cinit and in which for every active link MEAe;s = MEe;s and MEAe;r = MEe;r.To prove that the obtained execution is circular it remains to be shown that the content ofevery link in the result con�guration, cres, is equal to its content in cinit i.e. M cinite = M crese . Forany arbitrary link e it holds that:1. M cinite �MEe;s = MEe;r � M crese (by Proposition 2 and by the fact that MEAe;s = MEe;s andMEAe;r = MEe;r).2. M c0e �MEe;s =MEe;r �M c0e (by Proposition 2 and the circularity of E).Replacing M cinite in equation 1 with its explicit contents yields:3. M c0e �MEe;s �MEe;s = MEe;r �M crese .Using equation 2 to replace M c0e �MEe;s by MEe;r �M c0e in equation 3 gives:4. MEe;r �M c0e �MEe;s = MEe;r �M crese . 7

Dropping MEe;r from the two sides of equation 4 yields the desired result: M cinite = M c0e �MEe;s =M crese , which proves the lemma.De�ne blowup(E) to be the set of executions whose initial sate is cinit and whose sequenceof atomic steps belongs to merge(A). Notice that, for every circular execution E and for everyexecution E 2 blowup(E) it holds that Ai(E) = Ai(E).Lemma 4: For any set of atomic steps B = fa1; � � � ; akg, k � n, where aj 2 Aij(E), there isan execution E 2 blowup(E) that contains a con�guration for which all the atomic steps in Bare concurrent.Proof: For notational simplicity, assume that k = n and that B = fa1; a2; � � � ; ang. LetA 2 merge(A) be the sequence constructed as follows: �rst take all the steps in A(1) thatprecede a1, then take all the steps in A(2) that precede a2,..., then take all the steps in A(n)that precede an. Applying the sequence constructed so far to cinit results in a con�guration inwhich all the ai's are applicable. This sequence is completed to a sequence A in merge(A) bytaking the remaining atomic steps in an arbitrary order, which keeps the internal order of eachAi.Lemma 5: Let PR be a self-stabilizing, message-driven protocol for an arbitrary weak-exclusion task T , in a system with a global time-out mechanism. If PR has a circular executionE then PR has an in�nite fair execution E1 none of whose con�guration is safe for T .Proof: Let E be an arbitrary execution in blowup(E). De�ne E1 to be the in�nite executionobtained by repeating E forever). By the de�nition of blowup(E), E1 is fair. So it remains toshow that no con�guration in E1 is safe.Assume by way of contradiction that some con�guration c0 in E1 is safe. Now, we constructa �nite circular execution E 0 whose sequence of atomic steps A0 is obtained by concatenatingsequences from merge(A), that is Ai(E 0) = Ai(E). Since PR is a protocol for some weak-exclusion task, E 0 should have some set of atomic steps B = fa1; � � � ; akg, where aj 2 Aij thatare never applicable for a single con�guration c during E 0. We reach a contradiction by refutingthis statement for E 0: For this we choose some arbitrary enumeration B = B1; � � � ; Bs, of allthe sets containing n atomic steps of n distinct processors. Execution E 0 is constructed by �rstcontinuing the computation from c0 as in E until con�guration cinit is reached. Then applyLemma 4 to extend E 0 by s consecutive executions E1; � � � ; Es, where Ek, 1 � k � s containsa con�guration in which all the steps in Bk are applicable and that ends with cinit. The prooffollows. Note: Execution E 0 can be repeated forever to obtain an in�nite execution whichdoes not have any su�x in LE, thus, the protocol PR is not even pseudo self-stabilizing (see[BGM-90]).The proof for the lower bound is completed by the following theorem:Theorem 6: Let PR be a self-stabilizing, message-driven protocol for an arbitrary weak-exclusion task, in a system with a global time-out mechanism. For every execution E of PR,all the con�gurations of E are distinct. Hence, for every t > 0, the size of at least one of the�rst t con�gurations in E is at least dlog2(t)e. 8

Proof: Assume by way of contradiction that there exists an execution E of PR in which notall the con�gurations are distinct, then E contains a circular sub-execution, E. By Lemma 5,there exists an in�nite execution E 0 of PR, which is obtained by an in�nite repetition of someexecution from blowup(E), and which never reaches a safe con�guration, a contradiction.For proving a similar lower bound to systems with a local time-out mechanism the de�nitionof a circular execution must be modi�ed. Removing messages from non active links to constructan in�nite execution from E as in the proof of Theorem 6 may yield an in�nite execution inwhich some processor is enabled only �nitely many times. In order to allow repetitions of �niteexecutions to form an in�nite fair execution, in which every processor is active in�nitely often,we require that each such �nite execution contains an atomic step of each processor in thesystem. For this we need the concept of a round of an execution: Let E 0 be a minimal pre�xof an execution E in which every processor receives a message; E 0 is the �rst round of E. LetE 00 be the su�x of E which satis�es E = E 0 � E 00. The second round of E is the �rst round ofE 00, and so on. Let Ei be the pre�x that contains the �rst i atomic steps of E. Let ti = R(Ei)be the number of rounds in Ei. The next theorem presents a lower bound for systems equippedwith a local time-out mechanism. The proof is similar to the proof of Theorem 6.Theorem 7: Let PR be a self-stabilizing, message-driven protocol for an arbitrary weak-exclusion task, in a system with a local time-out mechanism. For every execution E of PR,E does not contain a circular sub-execution which contains a complete round. From this weconclude that in each execution of PR, E, the �rst t rounds contain at least t distinct con�gu-rations. Hence, for every t > 0, the size of at least one con�guration in Ei, is at least dlog2(ti)e.In particular, in any fair execution, the con�guration size is unbounded.4 Upper BoundThe token-passing task is de�ned informally as a set of executions in which a single token ispresent in the entire system and is passed fairly among the system's processors. Token-passingis a special case of mutual-exclusion since possession of the single token can be interpretedas a permission to enter the critical section. For this reason token-passing also satis�es theweak-exclusion property, and hence the lower bound of section 3 holds for it. In particular, itmeans that any self-stabilizing, message-driven protocol PR for token-passing must use someunbounded resource, since in any in�nite execution the system size grows beyond any bound. Inthis section we present three self-stabilizing, token-passing protocols for systems of two proces-sors. In each protocol the con�guration size grows during every execution at a rate that matchesthe lower bound. Each of these protocols can be easily adapted to work on rings of arbitrarysize without increasing its asymptotic complexity, by considering the ring as a single virtual link.Similar ideas can be used for adapting the protocols to arbitrary rooted tree systems.By a standard symmetry argument there exists no self-stabilizing, deterministic, token-passing protocol if the processors are identical. Hence, in this section we assume that the systemconsists of two distinct processors, called sender and receiver, connected by two links: The �rstlink carries messages from the sender to the receiver while the second link carries messages fromthe receiver back to the sender. The receiver processor is identical in all three protocols andit is probably the simplest possible �nite-state machine. Its program is to copy each message9

it receives from its incoming link to its outgoing link without any alteration. To the outsideworld, the combined behavior of the receiver and the two links looks like the behavior of a singlequeue whose head and tail are used by the receiver. In our analysis we ignore the receiver andconsider systems with a single processor, the sender, communicating with itself using a singlelink on which messages are kept in FIFO order. In each step the sender consumes a messagefrom the head of the link and puts one (or more) messages back at the tail of the link. Tokens arerepresented by a special symbol, T , which is appended to some of the messages. Our protocolsspecify the messages that carry a token, but they do not use explicitly the token symbol T , Theprotocol should guarantee that eventually there is a unique message in the system to which T isappended. All our protocols assume that initially there is at least one message on the link (thisassumption is weaker than both the global and the local versions of the time-out mechanism).With this last assumption, the requirement that the link never becomes empty is equivalent tothe requirement that whenever a message is received, at least one message is sent. Hence inevery step of the protocol the sender receives the message on the head of the (single) link andthen puts one or more messages at the link's end. The three protocols we present are:Protocol 1: In this protocol the sender is an in�nite state machine, and in every execution thelink capacity is unbounded.Protocol 2: In this protocol the sender is an in�nite state machine, but in each in�nite executionthe link capacity is bounded (the bound for each speci�c execution depends on its initialcon�guration).Protocol 3: In this protocol both processors are �nite state machines.1 do forever2 receive(msg counter)3 if msg counter � counter then (* token arrives *)4 begin (* send new token *)5 counter := msg counter +16 send(counter, T)7 end8 else send(counter)9 end Figure 1: protocol 1protocol 1 (of the sender) appears in Figure 1. The sender uses a variable called counter. Eachmessage consists of the present value of counter, possibly with the token symbol T . Wheneverthe sender receives a message whose counter value, msg counter, is not smaller than counter,it sets counter := msg counter + 1 and sends this new value of counter together with thetoken T ; otherwise the sender just sends the current value of counter (without the token T).The token letter T is not used by the protocol itself. The correctness of the protocol is basedon the fact that eventually the value of counter will be larger than all the values that appear inthe messages present on the link in the initial con�guration. The asymptotic size of counter in10

each execution is
(log t), where t is the number of messages sent. The details of the proof areomitted.4.1 Aperiodic SequencesProtocols 2 and 3 use the following method: each message is associated with some ternarynumber which is called color. The protocol considers any message whose color is di�erent fromthe color of the previous message as carrying a token. The sender has a local variable calledtoken color. At any given con�guration the sender is sending a sequence of messages whose coloris equal to (the value of) token color; at the same time the sender waits for a message whosecolor is equal to token color. As long as the sender receives messages of di�erent colors it sendsmessages whose color is equal to token color. Once the sender receives a message whose coloris equal to token color, it chooses a new token color, and initiates a new sequence of messageswhose color is the new token color by sending the �rst message in this new sequence. This�rst message is carrying a (virtual) token. Then the sender continues sending messages of thenew token color (without tokens), until it receives a message of the new token color, and so on.Our goal is to reach a con�guration after which the link always holds at most two consecutivesequences of messages where the colors of all messages in each sequence are equal. In everystep the sender consumes a single message from the �rst sequence whose color is the previoustoken color and produces one or more messages whose color is equal to the present token color.After the last message whose color is the previous token color is consumed the link contains asingle sequence of messages whose color is token color. In the next step the sender receives the(single) token carried by this sequence and sends it once again by initiating a new sequence ofmessages whose color is the new token color. In each of the described con�gurations there existsa single token which is carried by the �rst message of the sequence whose color is token color.The correctness of the protocols follows from the fact that the sequences of token-colors sent bythe receiver is aperiodic, as de�ned below.De�nition: A sequence A= (a1; a2; � � �) is periodic if for some positive integer k and for alli � 1, ai = ai+k. The sequence A is eventually periodic if it has a su�x which is periodic. A isaperiodic if it is not eventually periodic.Aperiodic sequences over the integers f0; 1; 2g were used in [AB-89] in order to obtain self-stabilizing, data link protocols. Such sequences are created there either by a random numbergenerator or by an in�nite state machine (in the �rst case the algorithm is randomized). Theelements of this sequence are used by the protocol of [AB-89] whenever it has to decide on theternary number to be sent with a new message. In this paper aperiodic sequences are generatedby using a counter and the sequence xor de�ned below:De�nition: For an integer i, xor(i) is the sum of the bits (mod 2) in the binary representationof i (e.g., xor(1) = xor(2) = 1; xor(3) = 0). The sequence (xor(1); xor(2); � � �) is denoted byxor.As we show later, the sequence xor is aperiodic.Protocol 2 (of the sender) which appears in Figure 2, is an improvement of the protocol thatappears in [AB-89] in the sense that it achieves the lower bound of the previous section. thesense that it achieves the lower bound of the previous section. (The amount of memory usedfor producing the aperiodic sequence is not addressed nor speci�ed in [AB-89].) In protocol 211

1 do forever2 receive(color)3 if color = token color then (* token arrives *)4 begin (* send new token *)5 token color := (color +xor(counter) + 1) (mod 3)6 counter := counter +17 end8 send(token color)9 end Figure 2: protocol 2the sender keeps a counter in its local memory; whenever a message with a new color is sentthe counter is incremented. The new color 2 f0; 1; 2g is determined by the previous color andby applying xor to the counter. Roughly speaking, the correctness of the protocol is implied bythe fact that since xor is aperiodic, the sequence of colors generated by the sender is aperiodicas well. The nature of the variables and the correctness proof of protocol 2 are easily derivedfrom the description of protocol 3 and from its correctness proof, hence, they are omitted.4.2 Informal Description of Protocol 3We now present protocol 3, in which both processors are �nite state machines. It is easilyobserved that when an aperiodic sequence is supplied by some external device, a �nite statemachine can use this sequence to perform the protocol in [AB-89]. Our construction uses the factthat the �nite state machine augmented with the previously described FIFO link can generatean aperiodic sequence. The �nite state machine uses the link both for message-passing and forgenerating the aperiodic sequence, while its size is kept within the optimal bound. Protocol 3can be easily transformed to a self-stabilizing, data link protocol in which both processors are�nite state machines.Protocol 3 appears in Figure 3. In this protocol each message is a pair (color; bit), wherecolor 2 f0; 1; 2g and bit 2 f0; 1g. The local variables color and token color are ternary variableswhile the variables counter bit; counter xor; carry; and new counter bit are binary. The binaryxor operation is denoted by �. For a sequence s = ((color1; bit1); :::; (colork; bitk)) of suchmessages, N(s) denotes the integer whose binary representation is bitk; bitk�1; : : : ; bit1 (bit1 isthe least signi�cant bit). A maximal sequence of consecutive messages of the same color sentby the sender is called a block. For each block b, N(b) denotes the integer described above andjbj denotes the number of messages in b. The �rst message in each block is viewed as a token.To show that the protocol is self-stabilizing, we have to prove that eventually the link containsexactly one message which is the �rst message in a block. This goal is achieved by making thesequence of the colors of the blocks aperiodic.The sender uses a local variable called token color, which denotes the color of the block itis now sending. It continues to send messages of this color as long as the colors of the messagesit receives are di�erent from token color. Once the sender receives a message whose color is12

equal to token color (which eventually means that all messages on the link belong to the sameblock), it: (a) possibly sends one last message of the current block, (b) changes the value oftoken color, and (c) sends the �rst message of a new block, with this new color.1 do forever2 receive(color,counter bit)3 if color = token color then (* token arrives *)4 begin5 if carry = 1 then send (color, 1)(* new token *)6 token color := (color + counter xor + 1) (mod 3)7 counter xor := 08 carry := 19 end10 counter xor := counter xor � counter bit11 new counter bit := carry � counter bit12 carry := carry ^ counter bit13 send (token color,new counter bit)14 end Figure 3: protocol 3In Lemma 8 we show that in every execution the sender initiates in�nitely many blocks.Let b1; b2 : : : be the sequence of blocks initiated by the sender, where the color of bi is color(bi)and the integer it represents is N(bi), as de�ned above. The protocol is designed so that thefollowing properties are kept:(p1) The sequence (color(b1); color(b2); � � �) is aperiodic.(p2) For every large enough i, N(bi+1) = N(bi) + 1, and the bit �eld in the last message of bi is1 (that is: N(bi) = i+ const for some constant const, and the representation of N(bi) bybi has no leading zeroes, implying that jbij = dlog2N(bi)e.)We will prove that (p1) above implies that eventually there is only one token in the system,while (p2) guarantees that the size of the system is logarithmic in the number of steps. We nowshow that the protocol indeed satis�es (p1) and (p2) above. For this, we describe the two rulesby which the sender computes the bits and the colors it sends. We need the following de�nition:De�nition: Let k � 1. Denote by sk the sequence of messages whose colors are di�erent fromcolor(bk), which are received by the sender while it sends the block bk, and by N(sk) the integerrepresented by sk. Note that sk consists of one or more complete blocks.Rule 1: (rule for computing counter bits): The counter bit sent with each message is sent sothat for each k, N(bk) = N(sk) + 1, and jbkj = maxfjskj; dlog2(N(bk))eg. In other words:the counter bits sent in block bk are obtained by adding 1 to the binary number representedby the messages received while this block is sent.13

Rule 2: (rule for computing token color): When receiving a message whose color is equal tothe value of token color, the new value of token color, which is the color of the next block,bk+1, is determined as follows: color(bk+1) = color(bk) + xor(N(sk)) + 1 (mod 3).Note that Rule 1 can be implemented by a binary adder which is set to zero at the initiationof each new block, and Rule 2 can be implemented by a counter (mod 2). Thus, both rules areeasily implemented by a �nite state machine.4.3 Correctness and Complexity Proofs of Protocol 3Lemma 8: In every fair execution, E, the sender initiates an in�nite number of blocks.Proof: The sender initiates a new block whenever it receives a message whose color is equalto the current value of token color. In every atomic step in which the sender receives a messagewhose color is not equal to token color, it sends a message, say M 0, whose color is token color.Since the link carries messages in FIFO order, the message M is eventually received by thesender and it initiates a new block not later than upon receipt of M . The lemma follows.A con�guration in an execution is called a limit con�guration if in the next step of the sendera new token color is computed; that is, the color of the next arriving message is equal to thepresent value of token color. Observe that at a limit con�guration c, the link contains a �nite(possibly zero) number of complete blocks, and one possibly incomplete block at the tail of thelink (this block may be incomplete since upon receipt of the next message the sender may sendone more message in this block, by executing line 5 of the code). The �rst block has the samecolor as the last (possibly incomplete) block. For an execution E, we denote by ik the index ofthe k-th limit con�guration in E. In other words, cik is the limit con�guration just before bk isinitiated.Next we prove that the number of blocks in consecutive limit con�gurations does not increase.Lemma 9: Let `k be the number of blocks in the limit con�guration cik (including the possiblyincomplete block). Then `k � `k+1, with equality only if sk is a single block.Proof: Let mk � 1 be the number of blocks in sk. In the sub-execution starting with cik andending with cik+1 one block is added to the link (namely, bk), and mk blocks of sk are removedfrom it. Therefore `k+1 = `k + 1�mk � `k.Next we show that the number of blocks in the limit con�gurations must eventually get downto one. First we need a technical Lemma:Lemma 10:(a) The sequence xor is aperiodic.(b) Let (a1; a2; � � �) be an eventually periodic sequence, and let bi = ai+1 � ai. Then thesequence B = (b1; b2; � � �) is also eventually periodic.14

(c) Let (a1; a2; � � �) be an eventually periodic sequence. Then for each i; p > 0, the sequenceA(i; p)=(ai; ai+p; ai+2p; � � �) is also eventually periodic.Proof:(a) Assume in contradiction that the sequence xor = (xor(1); xor(2); : : :) is eventually periodic.Then there exist i and `, s.t. xor(j) = xor(j + `) for every j � i. Let q be a non-negativeinteger such that 2q � ` < 2q+1 and let d be an integer satisfying d � q + 2 and 2d � i.Consider the following cases:� xor(`) = 1: By the de�nition of d it holds that xor(2d + `) = 0. Thus, 1 = xor(2d) 6=xor(2d + `) = 0.� xor(`) = 0: Then xor(`) = xor(2q+`) = 0, and 2q+` < 2d. Hence, xor(2d+2q+`) = 1.Thus, 0 = xor(2d + 2q) 6= xor(2d + 2q + `) = 1.Thus, there exist a and b such that: (1) a > i and b > i, (2) a � b = ` and (3) xor(a) 6=xor(b), a contradiction.(b) This claim is trivial.(c) Let j and ` be such that xor(k) = xor(k + `) for every k � j. Then for every p > 1 andk � j it holds that ak = ak+`p. Thus, the sequence A(i; p) is eventually periodic withperiod length � `.Lemma 11: In every fair execution E there exists a su�x in which the number of blocks inthe limit con�gurations is always one.Proof: By Lemma 9 this number never increases, and hence it eventually remains L for someconstant L > 0 forever. We shall assume that L > 1 and derive a contradiction.Call a limit con�guration cik ultimate if `k, the number of blocks in cik , is L. If cik isultimate then `k+1 = `k and hence, by Lemma 9, sk is a single block, which must be bk�L.Thus, the �rst block that follows sk is bk�L+1. By the protocol, bk is terminated when thesender receives a message whose color is equal to the color of bk. Therefore, we have thatthe color of (the messages in) the block bk�L+1 is equal to the color of the messages in bk,i.e.: color(bk�L+1) = color(bk). Hence the sequence COLORS = (color(b1); color(b2); � � �) iseventually periodic with period length L� 1 > 0. Let BXOR = (xor(N(b1)); xor(N(b2)); � � �).By the way color(bk+1) is computed, we have that for an ultimate con�guration cik , xor(N(bk�L)) = [color(bk+1)� color(bk)] (mod 3) -1. Hence, by Lemma 10 (b), if COLORS is eventuallyperiodic so is BXOR. We shall derive a contradiction by showing that the sequence BXOR isaperiodic.Lemma 10 (c) implies that in order to show that BXOR is aperiodic, it issu�cient to show that for some positive i and p, the sequence BXOR(i; p) =(xor(N(bi)); xor(N(bi+p)); xor((N(bi+2p)); � � �) is aperiodic. For this, observe that for an ul-timate con�guration cik , it must hold that N(bk) = N(sk) + 1 = N(bk�L) + 1. Hence, forany integer i we have that BXOR(i; L) = (xor(N(bi)); xor(N(bi+L)); xor((N(bi+2L)); � � �) =(xor(N); xor(N + 1); xor(N + 2); � � �), where N = N(bi). Thus, BXOR(i; L) is a su�x of the15

sequence xor, which is aperiodic by Lemma 10 (a). Hence, BXOR(i; L) is also aperiodic. Thisyields the desired contradiction.Lemma 11 and its proof imply that properties (p1) and (p2) hold: Property (p1) holds sincethe proof of Lemma 11 shows that the sequence COLORS is aperiodic. Property (p2) is provedas follows: Let E 0 be a su�x of E satisfying Lemma 11, and let cik be any limit con�gurationin E 0. Then, by Rule 1, N(bk+1) = N(sk+1) + 1 = N(bk) + 1, which easily implies (p2).We now show that the space complexity of protocol 3 indeed matches the lower bound ofthe previous section. Since both the number of states of a processor and the number of distinctmessages in our protocol are constants, the size of a con�guration is proportional to the numberof messages in it. Therefore to bound the size of a con�guration from above it is enough tobound the number of messages in it. In the next lemma we show that for each executionE = (c0; a1; c1; � � �) of the protocol, the size of the i-th con�guration of E, ci, is O(log2(i)). Letcik denotes the k-th limit con�guration of E, and let bk be the corresponding block. We shallprove that jbkj = O(log k).Lemma 12: For every large enough k, the number of messages in the limit con�guration cikis dlog2N(bk�1)e.Proof: By Lemma 11 there exists a su�x E 0 of E such that every limit con�guration inE 0 contains one block. Clearly, it is su�ces to prove the Lemma for E 0. As observed above,property (p2) eventually holds for every limit con�guration in E 0. The lemma follows.Corollary 13: The number of messages in c`, the ` � th con�guration of E, is O(log2(`)).Proof: Let E 0 be a su�x of E as in Lemma 12, and assume that ` is large enough so thatc` belongs to E 0. Then the number of messages in c` is equal to the number of messages in thenext limit con�guration, cik , which is O(log2 k) (for some k). The proof is completed by theobservation that, since ij � j for all j, and since con�guration cik�1 precedes c` in E, we havethat ` � ik�1 + 1 � (k � 1) + 1 = k.4.4 Larger SystemsNow, we describe how to use our protocols in directed rings with more than two processors.The processors of the ring are denoted by P1; � � � ; Pn where P1 is a sender while P2; � � � ; Pn arereceivers. Whenever a processor Pi, 1 < i < n, receives a message M from Pi�1, Pi sends M toPi+1. Similarly, whenever Pn receives a message M from Pn�1, it sends M to P1. Thus, the ringbehaves like a virtual link from the sender, P1, to itself. It is not hard to see that the existenceof a single message on the entire ring prevents communication deadlocks, thus, we assumethat there is a time-out mechanism that guarantees this condition (this time-out mechanism isinvoked only once to recover from initial deadlock con�guration). It can be proved, in a waysimilar to previous proofs, that our protocols guarantee that eventually there is exactly onetoken that encircles the ring from the sender to itself. Actually, our protocols can be used inany connected system by hardwiring a directed ring that spans the entire system.16

4.5 Construction of a Token ControllerIn this subsection we de�ne queue machines and token controllers and interpret our results inthese terms.A queue machine Q is a �nite state machine which is equipped with a queue, which initiallycontains a non-empty word from �+ for some (�nite) alphabet �. In each step of its computationQ performs the following: (a) reads and deletes a letter from the head of the queue, (b) adds zeroor more letters from � to the tail of the queue, and (c) moves to a new state. The computationterminates when Q halts or when its queue becomes empty, which prevents Q from performingany further steps.The main di�erence between queue machines and various types of Turing Machine is thatthe input alphabet and the work alphabet of a queue machine are identical. For this reason, aqueue machine cannot perform simple tasks like deciding the length of the input word, or evendeciding whether the input word contains a speci�c letter2.We now de�ne token controller, which is a special type of queue machine. Assume that thealphabet � contains a speci�ed subset � of token letters. A queue machine is a token controllerif, starting with a nonempty queue of arbitrary content, eventually the queue contains exactlyone occurrence of a letter from � forever.A priori, it is not clear that a token controller exists. Observe that if a token controller exists,then its queue never becomes empty (since once the queue is empty it remains so forever). Moreimportantly, a token controller (if exists) can never halt, since it cannot guarantee that uponhalting, the queue contains exactly one occurrence of a token letter. The last two observationsimply that a token controller can be viewed as a special case of a token-passing system, in which� is the set of messages sent by the protocol, and � is the set of messages that carry the token.We show below how to transform the sender from protocol 3 to a token controller.De�ne the alphabet � to be a set of triplets (color; bit; t), where color and bit are as inprotocol 3, and t is either T | in case the message carries a token (i.e., it is the �rst messageof some block), or nil, in case it does not. The set � is de�ned as the set of all possible tripletswhose third component is T . The two anti-parallel FIFO links between the sender and thereceiver are considered as a single queue. Receiving a message is regarded as deleting a letterfrom the head of the queue, while sending a message is regarded as appending a message to theend of the queue.Since protocol 3 guarantees that eventually exactly one message in every con�guration iscarrying a token, the queue machine described above is a token controller. Moreover, our lowerbound results imply that this token-controller is optimal with respect to the rate in which thesize of the queue grows.5 Self Stabilizing Simulation of Shared MemoryIn this section we present a method for simulating self-stabilizing, shared-memory protocols byself-stabilizing, message-driven protocols. The simulated protocols are assumed to be in the2A variant of queue machine which can use arbitrary work alphabet is in fact an oblivious Turing machine,which is as powerful as a standard Turing machine 17

shared-memory model de�ned in [DIM-90]. In this model, communication between neighbors,Pi and Pj , is carried out using a two-way link. The link is implemented by two shared registerswhich support read and write atomic operations. Processor Pi reads from one register andwrites in the other while these functions are reversed for Pj. In the implementing system, everylink is simulated by two directed links: one from Pi to Pj and the other from Pj to Pi. Theheart of the simulation is a self-stabilizing implementation of the read and write operations.The proposed simulation implements these operations by using a self-stabilizing, token-passing protocol. For any pair of neighbors, we run the protocol on the two links connectingthem. In order to implement our self-stabilizing, token-passing protocol we need to de�ne foreach link which of the processors acts as the sender and which of the processors acts as thereceiver. We assume that the processors have distinct identi�ers. Every message sent by eachof the processors carries the identi�er of that processor. Eventually each processor knows theidenti�er of all its neighbors. In each link, the processor with the larger identi�er acts as thesender while the other processor acts as the receiver. Since each pair of neighbors uses a di�erentinstance of the protocol, a separate time-out mechanism is needed for every such pair. In otherwords: A correct operation of the simulation requires that for any pair of neighbors there existsat least a single message on one of the two links connecting the neighbors.We now describe the simulation of some arbitrary link e, connecting Pi and Pj : In the sharedmemory model, e is implemented by a register Ri;j in which Pi writes and from which Pj reads,and by a register Rj;i for which the roles are reversed. In the simulating protocol, processor Pi(Pj) keeps a local variable called ri;j (rj;i), which keeps the values of Ri;j (Rj;i respectively).Every token has an additional �eld called VALUE. Every time Pi receives a token from Pj,Pi writes the current value of ri;j in the VALUE �eld of that token. A write operation of Piinto Ri;j is simply implemented by locally writing into ri;j. A read operation of Pi from Rj;i isimplemented by the following steps:1. Pi receives a token from Pj and then2. Pi receives another token from Pj . The value read is the VALUE attached to the secondtoken.The correctness of the simulation is proved by showing that for every execution E whoseinitial con�guration contains at least one message on each link, it is possible to linearize allthe simulated read and write operations executed in E so that eventually every simulatedread operation from Ri;j returns the last value that was written to it. (i.e., that the protocolsimulates executions in the shared-memory model in which the registers are eventually atomic,see [La-86]). De�ne the time of a simulated write operation to Ri;j to be the time in whichthe local write operation to ri;j is executed. De�ne the time of a simulated read operation ofPj from Ri;j to be the time in which Pi sends the value of its local variable ri;j attached to thetoken that later reaches Pj in step (2) of the simulated read. Once each link holds a singletoken, all the operations to register ri;j are linearized, and every read operation from ri;j returnsthe last value written to ri;j.AcknowledgmentsWe thank Alan Fekete for helpful remarks. 18

References[AB-89] Y. Afek and G.M. Brown, \Self-Stabilization of the Alternating-Bit Protocol", Proc.of the 8th IEEE Symposium on Reliable Distributed Systems, (1989), pp. 10-12.[BGW-87] G.M. Brown, M.G. Gouda, and C.L. Wu, \A Self-Stabilizing Token system", Proc.of the Twentieth Annual Hawaii International Conference on System sciences (1987),pp. 218-223.[BGM-90] J. Burns, M.G. Gouda and R. E. Miller, \Stabilization and Pseudo stabilization",Technical Report TR-90-13, The University of Texas at Austin, May 1990.[BP-88] J.E. Burns and J. Pachl, \Uniform Self-Stabilizing Rings", Aegean Workshop OnComputing, 1988, Lecture notes in computer science 319, pp. 391-400.[BSW-69] K.A. Bartlet, R.A. Scantlebury and P.T. Wilkinson, \A Note on Reliable Full-DuplexTransmission over Half-Duplex Links", Communication of the ACM, 12 (1969), pp.260-261.[Bu-87] J.E. Burns, \Self-Stabilizing Rings without Demons", Technical Report GIT-ICS-87/36, Georgia Institute Of Technology.[Dij-74] E.W. Dijkstra, \Self-Stabilizing Systems in Spite of Distributed Control", Communi-cations of the ACM 17,11 (1974), pp. 643-644.[Dij-82] E. W. Dijkstra, \self-stabilizing systems in spite of distributed control (EWD391)",Reprinted in Selected Writing on Computing: A Personal Perspective, Springer-Verlag, Berlin, 1982, pp. 41-46.[DIM-90] S. Dolev, A. Israeli and S. Moran, \Self Stabilization of Dynamic Systems Assum-ing Only Read/Write Atomicity", Proc. of the Ninth ACM symp. on Principles ofDistributed Computing (1990), pp. 103-117.[DIM-91] S. Dolev, A. Israeli and S. Moran, \Resource Bounds for Self Stabilization MessageDriven Protocols", Proc. of the Tenth Annual ACM Symposium on Principles of Dis-tributed Computation, Montreal, August 1991, pp. 281-294.[DIM-91] S. Dolev, A. Israeli and S. Moran, \Uniform Dynamic Self-Stabilizing Leader Elec-tion", Proceedings of the 5th International Workshop on Distributed Algorithms, Del-phi Greece, October 1991.[DK-86] D. Dolev and D. Koller, \Token Survival", preprint.[GM-91] M.G. Gouda and N.J. Multari, \Stabilizing Communication Protocols", IEEE Trans-actions on Computers , Vol. 40 No. 4 (1991), pp. 448-458.[IJ-90] A. Israeli and M. Jalfon, \Token Management Schemes and Random Walks YieldSelf Stabilizing Mutual Exclusion", Proc. of the Ninth ACM symp. on Principles ofDistributed Computing (1990), pp. 119-131.19

[IJ-90a] A. Israeli and M. Jalfon, \Self-stabilizing Ring Orientation", in Lecture Notes in Com-puter Science 486: Distributed Algorithms (Proceedings of the Fourth InternationalWorkshop on Distributed Algorithms, Bari, Italy, September 1990), J. Van Leeuwenand N. Santoro, Editors, pp. 1-14, Springer-Verlag, 1991, Also to appear in Informa-tion and Computation.[KP-90] S. Katz and K. J. Perry, \Self-stabilizing extensions for message-passing systems",Proc. of the Ninth ACM symp. on Principles of Distributed Computing (1990), pp.91-101.[Kr-79] H.S.M. Kruijer, \Self-stabilization (in spite of distributed control) in tree-structuredsystems", Information Processing Letters 8,2 (1979), pp. 91-95.[La-78] L. Lamport, \Time, Clocks, and the Ordering of Events in a Distributed System",Comm. of the ACM 21,7 , (1978), pp. 558-565.[La-84] L. Lamport, \Solved problems, unsolved problems, and non-problems in concurrency",Proc. of the Third ACM symp. on Principles of Distributed Computing (1984), pp. 1-11.[La-86] L. Lamport, \On Interprocess Communication. Part I: Basic Formalism", DistributedComputing 1, 2 1986, 77-85.[Mu-89] M. Multari, \Toward a Theory for Self-stabilizing Protocols," Ph.D. dissertation, Dep.Comput. Sci. Univ. of Texas at Austin, 1989.[Tc-81] M.Tchuente, \Sur l'auto-stabilisation dans un r�eseau d'ordinateurs", RAIRO Inf.Theor. 15 (1981), pp. 47-66.

20

