
Snap-Stabilizing PIF Algorithm in Arbitrary Networks

Alain Cournier1 Ajoy K. Datta2 Franck Petit1 Vincent Villain1

1 LaRIA, Université de Picardie Jules Verne, Amiens France
fcournier,petit,villaing@laria.u-picardie.fr

2 Department of Computer Science, University of Nevada Las Vegas
datta@faculty.egr.unlv.edu

Abstract

We present the first snap-stabilizing Propagation of In-
formation with Feedback (PIF) protocol in arbitrary net-
works. A snap-stabilizing protocol, starting from any arbi-
trary initial system configuration, always behaves accord-
ing to its specification. Our protocol is distributed, deter-
ministic, and does not use a pre-constructed spanning tree.
Keywords: Fault-tolerance, propagation of information
with feedback, reset protocols, self-stabilization, snap-
stabilization, wave algorithms.

1 Introduction

Chang [10] and Segall [21] defined the concept of Propa-
gation of Information with Feedback (PIF) (also called wave
propagation). A processor p initiates the first phase of the
wave: the propagation or broadcast phase. Every proces-
sor, upon receiving the first broadcast message, chooses the
sender of this message as its parent in the PIF wave, and for-
wards the wave to its neighbors except its parent. When a
processor receives a feedback (acknowledgment) message
from all its children with respect to the current PIF wave,
it sends a feedback message to its parent. So, eventually,
the feedback phase ends at p. In arbitrary distributed sys-
tems, any processor may need to initiate a global compu-
tation. Thus, any processor can be an initiator in a PIF
protocol, and several PIF protocols may be running simul-
taneously. To cope with this concurrent execution of the
PIF algorithms, every processor maintains the identity of
the initiators. Broadcast with feedback scheme has been
used extensively in distributed computing to solve a wide
class of problems, e.g., spanning tree construction, dis-
tributed infimum function computations, snapshot, termi-
nation detection, and synchronization (see [19], [20], and
[22] for details). So, designing efficient fault-tolerant wave
algorithms is an important task in the distributed comput-
ing research. The concept of self-stabilization [14] is the

most general technique to design a system to tolerate ar-
bitrary transient faults. A self-stabilizing system, regard-
less of the initial states of the processors and initial mes-
sages in the links, is guaranteed to converge to the in-
tended behavior in finite time. Snap-stabilization was intro-
duced in [9]. A snap-stabilizing algorithm guarantees that
it always behaves according to its specification. In other
words, a snap-stabilizing algorithm is also a self-stabilizing
algorithm which stabilizes in 0 steps. Obviously, a snap-
stabilizing protocol is optimal in stabilization time.

Related Work. PIF algorithms have been proposed in the
area of self-stabilization, e.g., [7, 8, 9, 16, 18] for tree
networks, and [12, 23] for arbitrary networks. The self-
stabilizing PIF protocols have also been used in the area
of self-stabilizing synchronizers [2, 4, 6]. The most gen-
eral method to “repair” the system is to reset the entire
system after a transient fault is detected. Reset protocols
are also PIF-based algorithms. Several reset protocols ex-
ist in the self-stabilizing literature (see [1, 3, 4, 5, 23]).
Self-stabilizing snapshot algorithms [17, 23] are also based
on PIF scheme. Snap-Stabilizing PIF for oriented and un-
oriented tree networks are proposed in [7, 9]. The PIF algo-
rithms for trees of [7, 9] are also optimal in terms of space.
Except in [12, 23], all self-stabilizing PIF algorithms in the
current literature work on trees. These protocols assume an
underlying self-stabilizing rooted spanning tree construc-
tion algorithm [1, 3, 4, 11, 15]. So, to design a reset or snap-
shot protocol using these self-stabilizing PIF algorithms,
PIF algorithms must be modified such that every processor
sends messages to all its outgoing links including the links
which are not in the spanning tree.

Contribution. We present a snap-stabilizing PIF algo-
rithm on an arbitrary network. The wave scheme in this
paper is a PIF scheme for an arbitrary graph which does not
use a pre-constructed spanning tree. The property of snap-
stabilization of the proposed algorithm ensures that the pro-
tocol always works as expected (by its specification). On

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

the contrary, a self-stabilizing algorithm [12, 23] achieves
the convergence to the specified behavior of the system only
in a finite time. So, using a self-stabilizing algorithm, when
a processor p starts a PIF wave to propagate a value, say
V , it is not guaranteed that every processor will receive V .
In other words, a self-stabilizing algorithm just guarantees
that, eventually, a value (not necessary V) propagated with a
PIF wave initiated by p will be received by every processor.
Removing this particular drawback is the goal of our snap-
stabilizing PIF. In the same situation as above, i.e., when p
starts a PIF wave to propagate a value V , using the proposed
PIF protocol, the property of snap-stabilization ensures that
every processor receives V and sends an acknowledgment
which will reach p.

Outline of the paper. In the next section (Section 2), we
describe the distributed system and the model in which our
PIF scheme is written. In the same section, we also state
what it means for a protocol to be snap-stabilizing and give
a formal statement of the problem solved in this paper. The
PIF algorithm is presented in Section 2. We prove the cor-
rectness of the algorithm in Section 4, followed by the com-
plexity analysis (Section 5). Finally, we make some con-
cluding remarks in Section 6.

2 Preliminaries

Distributed System. We consider an asynchronous net-
work of N processors connected by bidirectional commu-
nication links according to an arbitrary topology. We con-
sider networks which are asynchronous. Neigp denotes the
set of neighbors of processor p. We assume that the labels,
stored in the set Neigp, are arranged in some arbitrary order
�p (8q1; q2 2 Neigp :: (q1 �p q2) ^ (q2 �p q1) ()
(q1 = q2)). We consider the local shared memory model
of communication. The program of every processor con-
sists of a set of shared variables (henceforth, referred to as
variables) and a finite set of actions. A processor can only
write to its own variables, and read its own variables and
variables owned by the neighboring processors. Each ac-
tion is of the following form: < label >:: < guard >
�!< statement >. The guard of an action in the pro-
gram of p is a boolean expression involving the variables
of p and its neighbors. The statement of an action of p up-
dates one or more variables of p. An action can be executed
only if its guard evaluates to true. We assume that the ac-
tions are atomically executed, meaning, the evaluation of a
guard and the execution of the corresponding statement of
an action, if executed, are done in one atomic step. The
state of a processor is defined by the value of its variables.
The state of a system is the product of the states of all pro-
cessors (2 V). We will refer to the state of a processor

and system as a (local) state and (global) configuration, re-
spectively. Let a distributed protocol P be a collection of
binary transition relations denoted by 7!, on C, the set of
all possible configurations of the system. A computation
of a protocol P is a maximal sequence of configurations
e = 0; 1; :::; i; i+1; :::, such that for i � 0; i 7! i+1
(a single computation step) if i+1 exists, or i is a termi-
nal configuration. Maximality means that the sequence is
either infinite, or it is finite and no action of P is enabled
in the final configuration. All computations considered in
this paper are assumed to be maximal. The set of all pos-
sible computations of P in system S is denoted as E . A
processor p is said to be enabled in (2 C) if there ex-
ists an action A such that the guard of A is true in . We
consider that any processor p executed a disable action in
the computation step i 7! i+1 if p was enabled in i and
not enabled in i+1, but did not execute any action between
these two configurations. (The disable action represents the
following situation: At least one neighbor of p changed its
state between i and i+1, and this change effectively made
the guard of all actions of p false.) Similarly, an action A is
said to be enabled (in) at p if the guard of A is true at p (in
). We assume a weakly fair and distributed daemon. The
weak fairness means that if a processor p is continuously
enabled, then p will be eventually chosen by the daemon
to execute an action. The distributed daemon implies that
during a computation step, if one or more processors are en-
abled, then the daemon chooses at least one (possibly more)
of these enabled processors to execute an action. In order
to compute the time complexity measure, we use the defi-
nition of round [16]. This definition captures the execution
rate of the slowest processor in any computation. Given a
computation e (e 2 E), the first round of e (let us call it
e0) is the minimal prefix of e containing the execution of
one action (an action of the protocol or the disable action)
of every continuously enabled processor from the first con-
figuration. Let e00 be the suffix of e, i.e., e = e0e00. Then
second round of e is the first round of e00, and so on.

Snap-Stabilization. Let X be a set. x ` P means that an
element x 2 X satisfies the predicate P defined on X .

Definition 1 (Snap-stabilization) Let T be a task, and
SPT the specification of T . The protocol P is snap-
stabilizing for the specification SPT on E iff the following
condition holds: 8e 2 E :: e ` SPT .

The problem to be solved. Any processor can be an ini-
tiator in a PIF protocol, and several PIF protocols may run
simultaneously. We consider the problem in this paper in a
general setting of the PIF scheme where we assume that the
PIF is initiated by a processor, called the root. We denote
the root processor by r.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

Definition 2 (PIF Cycle) A finite computation e =
0; : : : ; i; i+1; : : : ; t 2 E is called a PIF Cycle iff Pro-
cessor r broadcasting a message m in the computation step
0 7! 1 implies:

[PIF1] For each p 6= r, there exists i 2 [1; t� 1] such that p
receives m in i 7! i+1, and

[PIF2] In t, r receives an acknowledgment of the receipt of
m from every processor p 6= r.

Remark 1 Every finite computation in which r broadcasts
no message m is also a PIF Cycle.

Specification 1 (PIF Scheme) The PIF scheme is an infi-
nite sequence of PIF Cycles.

From Specification 1 and Remark 1, before the root
broadcasts any message, the system is in a PIF Cycle. So,
every execution e with a prefix � in which r sends no mes-
sages, followed by a suffix � such that r sends a message in
the first computation step, is a PIF scheme, provided Con-
ditions [PIF1] and [PIF2] are satisfied.

3 Algorithm

3.1 Normal Behavior

The snap-stabilizing PIF algorithm is shown in Algo-
rithms 1 and 2 for the root and other processors, respec-
tively. Let us quickly review the details of the PIF scheme.
The PIF scheme is the repetition of the PIF Cycle. The
PIF cycle can be informally described as follows: Start-
ing from an initial configuration where no message has yet
been broadcast, the root r initiates the broadcast phase. The
neighbors of r participate in this phase by forwarding the
broadcast message, if possible. It is not possible for a pro-
cessor p to broadcast the message if all its neighbors have
received the message from some other neighbor. So, a span-
ning tree rooted at r is dynamically built during the broad-
cast phase. Let us call this tree the B-treer. The processors
which are not able to broadcast the message further are the
leaves of B-treer. Once the broadcast phase reaches the
leaf processors of B-treer, they notify to their parent in
B-treer of the termination of the broadcast phase by ini-
tiating the feedback phase. The feedback phase eventually
reaches the root r. This completes the current PIF Cycle.
Based on the above description, each processor p executes
at least two actions. The first one, called the B-action, refers
to the action executed by p during the broadcast phase. The
second one is called the F-action. F-actions refer to the ac-
tion executed during the feedback phase. Every processor
maintains a variable Pifp. This variable can take three dif-
ferent values as described below:
C: p is ready to participate in the next PIF Cycle.

Algorithm 1 (PIF) For the root (p = r).

Input: Neigp : set of (locally) ordered neighbors
N : number of processors in the network;
Lmax : � N � 1

Constants: Lp = 0; Parp = ?
Variables:

Countp 2 [1; N 0], where N 0 is an upper bound of N ;
Fokp : Boolean;
Pifp 2 fB;F;Cg

Macros:
Sum Setp = fq 2 Neigp :: (Pifq = B) ^ (Parq = p)

^(Lq = Lp + 1) ^ :Fokpg;
Sump = 1 +

P
q2Sum Setp

Countq ;

Predicates:
GoodFok(p)� (Pifp = B)) (Fokp = (Sump = N));
GoodCount(p)� ((Pifp = B) ^ :Fokp)

) (Countp � Sump);
Normal(p)�GoodFok(p) ^GoodCount(p);
Broadcast(p)� (Pifp = C)^

(8q 2 Neigp :: Pifq = C);
Feedback(p)� (Pifp = B) ^Normal(p)^

(8q 2 Neigp :: Pifq 6= B) ^ Fokp;
Cleaning(p)� (Pifp = F) ^ (8q 2 Neigp :: Pifq = C)
NewCount(p)� (Pifp = B) ^Normal(p)^

(Countp < Sump) ^ :Fokp;
. .
Actions:
B-action :: Broadcast(p)�!Pifp := B;Countp := 1;

Fokp := (1 = N);
F -action :: Feedback(p)�!Pifp := F ;
C-action :: Cleaning(p)�!Pifp := C;
Count-action :: NewCount(p) �!Countp := Sump;

Fokp := (Sump = N);
B-correction :: :Normal(p)�!Pifp := C;

B: p sent the broadcast message if p = r. Otherwise (6= r),
p has received a message from one of its neighbors (Parp
as described below) and has broadcast this message to its
(p’s) neighbors, except Parp.
F: If p is not a leaf processor in B-treer, p received a feed-
back from all its neighbors p sent a message to, meaning
that all of them received the message broadcast by p. Each
processor p 6= r acknowledges to its parent in B-treer of
the receipt of the message.

Consider the configuration where 8p; P ifp = C. We
refer to this configuration as the normal starting configura-
tion. In this configuration, the root is the only enabled pro-
cessor. The root broadcasts a message and switches to the
broadcast phase by executingPifr = B (B-action). When
a processor p (such that Pifp = C) waiting for a message
finds one of its neighbors q in the broadcast phase, p re-
ceives the message from q. Then, p sets its variable Pifp to
B, points to q using the variable Parp, and sets its level Lp

to Lq + 1 (B-action). Typically, Lp contains the length of
the path followed by the broadcast message from the root

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

r to p. (Since r never receives a broadcast message from
any of its neighbor, Parr and Lr are shown as constants in
the algorithm.) Processor p is now in the broadcast phase
(Pifp = B) and is supposed to broadcast the message to
its neighbors (except Parp). Variable Countp holds the
number of nodes which are involved in the subtree dynami-
cally built during the broadcast phase from p, i.e., B-treep.
When p receives the message broadcast by the root, p sets
Countp to 1. Next, each time a neighbor q of p takes p as
the parent, p re-computes Countp (Count-action). But, p
may not be able to broadcast the message further. In that
case, p is a leaf processor in B-treer, and Countp remains
equal to 1 (B-treep = fpg).

Since every processor p (including r) maintains the vari-
able Countp, Countr contains the total number of proces-
sors currently involved in B-treer. So, Countr is even-
tually equal to N , the total number of processors in the
network. (N is considered as an input at the root.) Once
Countr = N , r initiates a wave in B-treer. This wave
is implemented by using the boolean variable Fokp main-
tained by every processor p (Fok-action). The Fok wave
allows every leaf processor p in B-treer to initiate the feed-
back phase. So, when a leaf processor in B-tree is reached
by the Fok wave, p switches to the feedback phase by set-
ting Pifp to F (F -action). Every processor p propagates
the feedback phase towards the root in B-treer by execut-
ing the action F -action. The feedback phase eventually
reaches the root r. Finally, the leaf processors in B-treer
initiate the third phase, called the cleaning phase. The aim
of this phase is to erase the trace of the last PIF cycle (the
broadcast phase followed by the feedback phase) initiated
by the root, i.e., to bring the system back to the normal
starting configuration (8p; P ifp = C). The C-action refers
to the action executed by a processor during the cleaning
phase. A leaf processor p in B-treer initiates the cleaning
phase by setting Pifp to C when each of its neighbors q
is in either the feedback phase (Pifq = F) or the cleaning
phase (Pifq = C). So, the cleaning phase works in parallel
and follows the feedback phase. Once all neighbors of the
root change to the cleaning phase, the root also participates
in the cleaning phase. Then, the system is in the normal
starting configuration again. The root is now ready to start
a new PIF cycle. The snap-stabilization of the algorithm is
guaranteed by the knowledge of the exact size of the net-
work (N) at the root.

3.2 Error Correction

During the normal behavior, the processors must main-
tain some properties based on the value of their variables
and that of their parent. For the processors p 6= r, we list
some of those conditions below:
1. If p is in the broadcast phase, then its parent is also in the

Algorithm 2 (PIF) For other processors (p 6= r).

Input: Neigp : set of (locally) ordered neighbors
Lmax : � N � 1

Variables:
Fokp : Boolean;
Countp 2 [1; N 0], where N 0 is an upper bound of N ;
Pifp 2 fB;F;Cg
Lp 2 [1; Lmax];
Parp 2 Neigp if p 6= r;

Macros:
Sum Setp = fq 2 Neigp :: (Pifq = B) ^ (Parq = p)^

(Lq = Lp + 1) ^ :Fokpg;
Sump = 1 +

P
q2Sum Setp

Countq ;
Pre Potentialp = fq 2 Neigp :: (Pifq = B)^

(Parq 6= p) ^ (Lq < Lmax) ^ :Fokqg;
Potentialp = fq 2 Pre Potentialp :: 8u 2 Setp; Lu � Lqg
Predicates:
GoodFok(p)� ((Pifp = B))

((Fokp 6= FokParp)):Fokp))^
((Pifp = F)) ((PifParp = B)) FokParp))

GoodP if(p)� (Pifp 6= C)) ((PifParp 6= Pifp))
(PifParp = B));

GoodLevel(p)� (Pifp 6= C)) (Lp = LParp + 1);
GoodCount(p)� ((Pifp = B) ^ :Fokp))

(Countp � Sump);
Normal(p)�GoodP if(p) ^GoodLevel(p)^

GoodFok(p) ^GoodCount(p);
Leaf(p)� (8q 2 Neigp :: (Pifq 6= C)) (Parq 6= p));
BLeaf(p)� (Pifp = B)) (8q 2 Neigp :: (Parq = p)

) (Pifq = F));
BFree(p)� (8q 2 Neigp :: Pifq 6= B);
Broadcast(p)� (Pifp = C) ^ Leaf(p) ^ (Potentialp 6= ;);
ChangeFok(p)� (Pifp = B) ^Normal(p)^

(Fokp 6= FokParp);
Feedback(p)� (Pifp = B) ^Normal(p) ^BLeaf(p)

^ Fokp;
Cleaning(p)� (Pifp = F) ^Normal(p) ^ Leaf(p)^

BFree(p);
NewCount(p)� (Pifp = B) ^Normal(p)^

(Countp < Sump) ^ :Fokp;
AbnormalB(p)� :Normal(p) ^ (Pifp = B);
AbnormalF (p)� :Normal(p) ^ (Pifp = F);

. .
Actions:
B-action :: Broadcast(p)�!

Parp := min�p(Potentialp); Lp := LParp + 1;
Countp := 1;Fokp := false;Pifp := B;

Fok-action :: ChangeFok(p)�!Fokp := true;
F -action :: Feedback(p)�!Pifp := F ;
C-action :: Cleaning(p)�!Pifp := C;
Count-action :: NewCount(p) �!Countp := Sump;
B-correction :: AbnormalB(p)�!Pifp := F ;
F -correction :: AbnormalF (p)�!Pifp := C;

broadcast phase. Also, if p is in the feedback phase, then its
parent is either in the broadcast or feedback phase (Predi-
cate GoodP if).

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

2. If p is involved in the PIF Cycle (Pifp 6= C), then its
level Lp must be equal to one plus the level of its parent
(Predicate GoodLevel).
3. If p is in the broadcast phase, then if Fokp is differ-
ent from that of its parent, then it must be false. Also, if
p is in the feedback phase, then FokParp must be true if
PifParp = B (Predicate GoodFok).
4. If p is in the broadcast phase and still is not involved in
the Fok wave, then Countp must be less than or equal to
the sum of the count values of its descendants in B-treep
(Predicate GoodCount).

Conditions 3 and 4 must also be true if p is the root (Pred-
icates GoodFok and GoodCount). A processor conform-
ing to the above rules is called a normal processor (Pred-
icate Normal). Otherwise, it is called an abnormal pro-
cessor. The correction actions in both Algorithms 1 and 2
(B-correction and F -correction) are used to correct the
abnormal processors. We discuss the correction process in
detail in the next section.

4 Proof of Correctness

As the system can start in an arbitrary (including an un-
desirable) configuration, we need to show that the algorithm
can deal with all the possible errors. To characterize these
erroneous configurations, in Section 4.1, we define some
terms to distinguish these configurations. Moreover, we
must show that despite these erroneous configurations, the
system always behaves according to its specifications, i.e.,
is snap-stabilizing. We first show some general properties
of the algorithm (Section 4.2). Next, in Section 4.3, we
prove that the system will be free of abnormal processor in
at most 3�LMax+3 rounds. Then, we show in Section 4.4
that our algorithm is snap-stabilizing.

4.1 Some Definitions

Definition 3 (Path) The sequence of processors
p0; p1; p2; : : : pk is called a path if 8i; 1 � i � k; pi 2
Neigi�1. The path is referred to as an elementary path if
8i; j; 0 � i < j � k; pi 6= pj . The processors p0 and pk
are termed as the extremities of the path.

Definition 4 (ParentPath) For any processor p such that
Pifp 6= C, the path p = p0; p1; p2; : : : pk is called
ParentPath(p) iff the following conditions hold:
1. 8i; 0 � i � k � 1, Normal(pi) and Parpi = pi+1.
2. pk = r or pk is an abnormal processor.

Definition 5 (Tree) For any processor p such that p = r
or p is an abnormal processor, we define a set Tree(p) of
processors as follows: For any processor q, q 2 Tree(p) iff
p is an extremity of ParentPath(q).

Definition 6 (LegalTree) The tree rooted by r is called the
LegalT ree.

Definition 7 (Source) A processor p is called a source of
Tree(q) iff p 2 Tree(q) and for any q0 2 Tree(q), p 6=
Parq0 .

Definition 8 (Normal Configuration) A configuration is
called a Normal configuration iff 8p : Normal(p).

Definition 9 (Broadcast Configuration) A configuration
 is called a Broadcast (B) configuration iff Pifr = B and
Fokr = false.

Definition 10 (Start Broadcast Configuration) A config-
uration is called a Start Broadcast (SB) configuration iff
Pifr = C.

Definition 11 (Start Broadcast Normal Configuration)
A configuration is called a Start Broadcast Normal
(SBN) configuration iff is both an SB and a normal
configuration. Note that in ; 8p; P ifp = C.

Definition 12 (End Broadcast Normal Configuration) A
configuration is called a End Broadcast Normal (EBN)
configuration iff is normal, Fokr = false, and 8p,
Pifp = B. Note that in ;8p; Fokp = false.

Definition 13 (End Feedback Configuration) A configu-
ration is called an End Feedback (EF) configuration iff
Pifr = F .

Definition 14 (End Feedback Normal Configuration)
A configuration is called an End Feedback Normal
(EFN) configuration iff is both an EF and a normal
configuration.

Definition 15 (Good Configuration) A configuration is
called a Good Configuration (GC) iff 8p =2 LegalT ree;
((Pifp 2 fB;Fg) ^ (Parp 2 LegalT ree)))
GoodCount(p).

Definition 16 (Good LegalTree) In a Good Configura-
tion, the LegalT ree is called GoodLegalTree (GLT).

4.2 General Properties

The following property is an invariant:

Property 1 ((Pifr = B) ^ :Fokr))
8p; (p 2 Legaltree) ((Pifp = B)^((p 6= r)) (Lp =
LParp + 1)) ^ :Fokp ^ (Countp � Sump)))

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

Proof. Let p be a processor of the Legaltree, and p =
p0; p1; : : : pk = r be LegalParentPath(p). So, 8i; i 2
[0::k]; pi 2 Legaltree. Furthermore, Pifr = B, Fokr =
false, and Countr � Sumr. Since pk�1 is a normal pro-
cessor of Legaltree, Pifpk�1 = B, Fokpk�1 = false,
and Countpk�1 � Sumr (pk�1 satisfies GoodP if(pk�1),
GoodFok(pk�1) and GoodCount(pk�1)). By induction,
Pifpk�1 = B, Fokpk�1 = false, and Countp � Sumr.
2

Property 2 Let be a normal configuration (i.e., no pro-
cessor is abnormal.) Then, the following properties hold:
1. 8p; ((Pifp 6= C)) (p 2 GLT))
2. (Pifr = C)) 8p; (Pifp = C)
3. (Pifr = F)) 8p; (p 2 Legaltree) (Pifp = F))
4. ((Pifr = B) ^ :Fokr))

(8p; p 2 LegalT ree(Countp � #Subtree(p)))

Proof. 1. Let Pifp 6= C; p 6= r. Since p is a nor-
mal processor, ParentPath(p) contains at least two pro-
cessors. Let q be an extremity of ParentPath(p). Since
 is a normal configuration, using Definition 4, q = r. So,
ParentPath(p) is a LegalParentPath(p) and p 2 GLT .
2. Let us prove that 9p; (Pifp 6= C)) (Pifr 6= C). Let
Pifp 6= C; p 6= r. p 2 GLT from Case 1. So, Pifp 6= C.
3. Let us prove that 9p; (p 2 Legaltree^(Pifp 6= F)))
(Pifr 6= F). Let Pifp = B. The case p = r is triv-
ial. So, assume that p 6= r. Since p is a normal processor,
ParentPath(p) contains at least two processors. Let q be
an extremity of ParentPath(p). By Definition 4, q is ei-
ther an abnormal processor or q = r. Since each processor
of this path satisfies GoodP if(p), for all processor q 6= r
of ParentPath(p), Pifq = B implies PifParq = B. So,
Pifr = B and Pifr 6= F .
4. We prove this by induction on the height of Subtree(p).
Let p be a processor such that p 2 LegalT ree and
height(Subtree(p)) = 1. So, Leaf(p) is true. Since
Normal(p) is true (is normal), GoodCount(p) holds
and Countp � 1. Assume that for all processors p
such that p 2 LegalT ree and height(Subtree(p)) � i,
Countp � #Subtree(p). Let q 2 LegalT ree and
height(Subtree(q)) = i + 1. Then, #Subtree(q) =
1 +
P

t2fu::Paru=qg
#Subtree(t). Since q is a normal

processor, Countq � Sumq. Furthermore, Sumq =
1 +
P

t2fu::Paru=pg
Sumt. Since for all t 2 fu ::

Paru = qg, height(Subtree(t)) � i, Countt � Sumt �
#Subtree(t), so Countq � #Subtree(q). 2

4.3 Abnormal Processors

In this subsection, we show that in at most 3�LMax+3
rounds, all abnormal processors will be removed. We first
show that every processor p will satisfy GoodCount(p) in

at most LMax+1 rounds. Then, starting from this configu-
ration, every processor p will satisfy Normal(p) in at most
2� LMax + 2 rounds.

Every processor eventually holds GoodCount. The fol-
lowing lemma explains why every processor p eventually
satisfies GoodCount(p).

Lemma 1 Let p be a processor such that GoodCount(p)
is false at the beginning of a round R. Then, during
R, p either executes Action B-Correction or satisfies
GoodCount(p).

Proof. Follows from the definition of a round. 2

The next lemma explains the only situations when a pro-
cessor p may not satisfy GoodCount(p) for the first time.
In the following, X i

p (Y (p)i) denotes the value of Xp (re-
spectively, Y (p)) in the global configuration i.

Lemma 2 Consider a computation step i 7! i+1.
Assume that there exists a processor p such that
GoodCounti(p) is true and GoodCounti+1(p) is false.
Then, there exists a processor q such that : Pariq = p,
Li
q = Lp + 1, Pif ip = B, and GoodCounti(q) is false.

Furthermore, Action B-correction is executed by q during
i 7! i+1.

Proof. From the algorithm, a descendant q of p disap-
peared during i 7! i+1. So, q executed its B-correction.
Since the value of Countq was included in Sumi

p, we have
Pariq = p, Li

q = Lp+1, and Pif ip = B. So, q executed its
B-correction because GoodCounti(q) was false. 2

Property 3 After at most LMax + 1 rounds, 8p :
GoodCount(p) is true forever.

Proof. From Lemmas 1 and 2, the level of every proces-
sor p such that :GoodCount(p) strictly decreases. So, the
property holds since GoodCount(p) cannot be negative. 2

Every processor is eventually Normal. Let us assume
that in every configuration, GoodCount(p) is true for each
processor p.

Lemma 3 Let p be a processor and i 7! i+1 be a com-
putation step such that Normali(p) is false. Let q = Parip.
If Normali+1(p) holds, then either p executes a correction
action or q executes Fok-action during i 7! i+1.

Proof. First, note that the correction actions are the only
enabled actions in i on p if Normali(p) does not hold.
Let q = Parip and consider the three following cases.
1. Pif iq = C: since Leaf i(q) does not hold, q cannot ex-
ecute any action. Then, Pif i+1q = C. So, if p does not

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

execute any action, then Normali+1(p) does not hold.
2. Pif iq = F : The only action that q can execute is
F -correction. Then, Pif i+1q = C. So, if p does not exe-
cute any action, then Normali+1(p) does not hold.
3. Pif iq = B: Then Pif ip = B and either GoodLeveli(p)
or :GoodFoki(p). In the first case, q cannot change its
level. In the second case, if p does not execute any action,
then the only way Normal(p)i+1 can be true is if q exe-
cutes Fok-action during i 7! i+1. 2

Lemma 4 Let p be an abnormal processor in Configura-
tion i. Then, p is a normal processor in at least one con-
figuration during the next two rounds.

Proof. There are two cases:
1. Pif ip = F . In at most one round, p executes
F -correction and becomes a normal processor.
2. Pif ip = B. In at most one round, p executes
B-correction. So, Pifp becomes equal to F . If p is not
already a normal processor, then p now will become one by
Case 1. 2

Lemma 5 Consider a processor p and a computation
step i 7! i+1 such that Normali+1(p) is false and
Normali(p) is true. Let q = Pari+1p . Then, Normali(q)

is false and q executes a correction action during i 7!
i+1. Furthermore, Li+1

p = Li+1
q + 1.

Proof. Since Normali(p) holds, neither q nor p can
change its level. So, GoodLeveli+1(p) holds. Assume that
GoodP if i+1(p) does not hold. Note that p cannot exe-
cute any action leading to this configuration. So, q exe-
cutes an action. Furthermore, q executes a correction ac-
tion because no other action can be executed by q. Since
GoodLeveli+1(p) is true, Pif i+1p = B implies Li+1

p =

Li+1
q + 1. 2

Corollary 1 Let Sro be the set of abnormal processors at
the beginning of the round ro. Let levro be the minimal level
of processors in Sro. Then, levro � levro+1 < levro+2.

Proof. This is a direct consequence of Lemmas 3
and 5. Note that two rounds may be necessary to execute
B-correction and F -correction (see Lemma 4). 2

The following result follows directly from Corollary 1:

Corollary 2 Starting from a configuration where
GoodCount(p) is true for each processor p, in at
most 2 � LMax + 2 rounds, every processor becomes
normal.

The following theorem directly follows from Property 3
and Corollary 2:

Theorem 1 In at most 3�LMax+3 rounds, every proces-
sor will become normal.

4.4 Proof of Snap-Stabilisation

Theorem 2 Let i be a global configuration such that
GLT i 6= ;. One of the following propositions holds:
1. If Pif ir = F , the network reaches an SB Configuration
in at most 4� LMax + 4 rounds.
2. If Pif ir = B and Fokir = true, the network reaches an
EF Configuration in at most 5� LMax + 4 rounds.
3. If Pif ir = B and Fokir = false, the network reaches an
EBN Configuration in at most 5� LMax + 4 rounds.

Proof. Consider the three following cases:
1. Pif ir = F . Let s be any source of GLT i. Then,
Pif is = F and Normali(s). If s cannot execute any ac-
tion in the next step, then either Leaf i(s) or BFreei(s)
is false. In both cases, there exists an abnormal processor.
In the worst case, all the abnormal processors become nor-
mal before s may execute a C-action. So, it takes at most
4� LMax + 4 rounds to reach an SB Configuration.
2. Pif ir = B and Fokir = true. First, LMax rounds are
necessary to propagate the Fok value from the root to the
source of GLT . Then, by applying the same reasoning as
before (it is then an F -action), at most 5�LMax+4 rounds
are necessary to reach an EF Configuration.
3. Pif ir = B and Fokir = false. First, note that if every
processor is in GLT , then the property holds. By Defini-
tion 16, Fokr cannot be true unless every processor is in
GLT . Let p be a processor such that Np \ GLT i 6= ;. As
before, if it is not possible to add p to GLT , then some ab-
normal processors exist in the network. Then, following the
same reasoning as before, at most 5�LMax+4 rounds are
necessary to reach an EBN Configuration. 2

Theorem 3 Starting from any configuration, the protocol
creates the GLT in at most 8� LMax + 7 rounds.

Proof. First, note that if Pifr = C, then r just needs to
wait for the removal of the abnormal processors. Once ev-
ery processor is normal, r executes an action. Assume that
LegalT ree is not the GLT . So, there exists an abnormal
processor in the network. The GLT is obtained just after
the abnormal processors are removed. Finally, assume that
LegalT ree is already the GLT . Then From Theorem 2,
Pifr = C after at most 8� LMax + 7 rounds. 2

5 Complexity Analysis

In this section, we consider the time required to complete
a PIF cycle starting from an SBN configuration.

Theorem 4 Starting from an SBN configuration, the proto-
col executes a PIF cycle in at most 5�h+5 rounds, where h
is the height of the constructed tree during this cycle. Note
that h 2
(diameter) and that h is bounded by the length
of the longest elementary chordless path in the network.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

Proof. Let us first recall a definition. A path
p0; p1; : : : ; pk = r is an elementary chordless pass iff for
any i; j i < j, pi 6= pj (elementary path) and pi, pj are
linked in the network iff j = i+ 1 (chordless path). Macro
Potentialp implies that our algorithm creates only chord-
less ParentPaths. Assume the contradiction. Let p0; : : : ; pk
be a parent path created by the algorithm, and pipj is a
chord of this path. Without any loss of generality, assume
that i � j � 2. Since the path is the result of an execu-
tion of the algorithm, when pi chooses its parent, pi uses
Potentialpi . So, Lpj < Lpi+1 , and pi+1 cannot be in
Potentialpi . Thus, pi+1 cannot be taken as a parent by pi.
A contradiction. Since there are no abnormal processors in
the network, h+ 1 rounds are necessary to reach an EBN
configuration. Then, h more rounds are necessary again to
obtain the right Count at the root. Next, Fokr = true and
h new rounds are required to propagate Fok to the leaf of
the constructed tree. Finally, h + 1 rounds are executed to
set Pifr to F , followed by h + 1 extra rounds to reach the
SBN configuration. 2

6 Conclusions

We presented a snap-stabilizing PIF algorithm on an
arbitrary network. The algorithm does not use a pre-
constructed spanning tree. The snap-stabilizing property
guarantees that when a processor p initiates the broadcast
wave, the broadcast message will reach every processor in
the network. Moreover, all the feedback messages corre-
spond to the broadcast message and will be received by p.
The snap-stabilizing PIF algorithm presented in this paper
can be used to design a universal transformer [13] to pro-
vide a snap-stabilizing version of a wide class of protocols.

References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient
self-stabilization on general networks. In WDAG90 Dis-
tributed Algorithms 4th International Workshop Proceed-
ings, Springer-Verlag LNCS:486, pages 15–28, 1990.

[2] L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-
stabilization with global rooted synchronizers. In ICDCS98
Proceedings of the 18th International Conference on Dis-
tributed Computing Systems, pages 102–109, 1998.

[3] A. Arora and M. Gouda. Distributed reset. IEEE Transac-
tions on Computers, 43:1026–1038, 1994.

[4] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization.
In STOC93 Proceedings of the 25th Annual ACM Sympo-
sium on Theory of Computing, pages 652–661, 1993.

[5] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-
stabilization by local checking and correction. In FOCS91
Proceedings of the 31st Annual IEEE Symposium on Foun-
dations of Computer Science, pages 268–277, 1991.

[6] B. Awerbuch and G. Varghese. Distributed program check-
ing: a paradigm for building self-stabilizing distributed pro-
tocols. In FOCS91 Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science, pages
258–267, 1991.

[7] A. Bui, A. Datta, F. Petit, and V. Villain. Snap-stabilizing
PIF algorithm in tree networks without sense of direction. In
SIROCCO’99, The 6th International Colloquium On Struc-
tural Information and Communication Complexity Proceed-
ings, pages 32–46. Carleton University Press, 1999.

[8] A. Bui, A. Datta, F. Petit, and V. Villain. Space optimal
PIF algorithm: Self-stabilizing with no extra space. In
IPCCC’99, IEEE International Performance, Computing,
and Communications Conference, pages 20–26. IEEE Com-
puter Society Press, 1999.

[9] A. Bui, A. Datta, F. Petit, and V. Villain. State-optimal snap-
stabilizing PIF in tree networks. In Proceedings of the Forth
Workshop on Self-Stabilizing Systems, pages 78–85. IEEE
Computer Society Press, 1999.

[10] E. Chang. Echo algorithms: depth parallel operations on
general graphs. IEEE Transactions on Software Engineer-
ing, SE-8:391–401, 1982.

[11] N. Chen, H. Yu, and S. Huang. A self-stabilizing algorithm
for constructing spanning trees. Information Processing Let-
ters, 39:147–151, 1991.

[12] A. Cournier, A. Datta, F. Petit, and V. Villain. Self-
stabilizing PIF algorithm in arbitrary rooted networks. In
21st International Conference on Distributed Computing
Systems (ICDCS-21), pages 91–98. IEEE Computer Society
Press, 2001.

[13] A. Cournier, A. Datta, F. Petit, and V. Villain. Snap-
stabilizing systems. Technical Report RR01-10, LaRIA,
University of Picardie Jules Verne, 2001.

[14] E. Dijkstra. Self stabilizing systems in spite of distributed
control. Communications of the Association of the Comput-
ing Machinery, 17:643–644, 1974.

[15] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity. Dis-
tributed Computing, 7:3–16, 1993.

[16] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-
stabilizing leader election. IEEE Transactions on Parallel
and Distributed Systems, 8(4):424–440, 1997.

[17] S. Katz and K. Perry. Self-stabilizing extensions for
message-passing systems. Distributed Computing, 7:17–26,
1993.

[18] H. Kruijer. Self-stabilization (in spite of distributed control)
in tree-structured systems. Information Processing Letters,
8:91–95, 1979.

[19] N. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
[20] M. Raynal and J. Helary. Synchronization and Control of

Distributed Systems and Programs. John Wiley and Sons,
Chichester, UK, 1990.

[21] A. Segall. Distributed network protocols. IEEE Transac-
tions on Information Theory, IT-29:23–35, 1983.

[22] G. Tel. Introduction to distributed algorithms. Cambridge
University Press, 1994.

[23] G. Varghese. Self-stabilization by local checking and cor-
rection (Ph.D. thesis). Technical Report MIT/LCS/TR-583,
MIT, 1993.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 01,2023 at 08:44:41 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

