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Abstract

In this paper, we introduce the notion of snap-
stabilization. A snap-stabilizing algorithm protocol guar-
antees that, starting from an arbitrary system configuration,
the protocol always behaves according to its specification.
So, a snap-stabilizing protocol is a self-stabilizing protocol
which stabilizes in0 steps.

We propose a snap-stabilizing Propagation of Informa-
tion with Feedback (PIF) scheme on a rooted tree network.
We call this schemePropagation of information with Feed-
back and Cleaning(PFC). We present two algorithms. The
first one is a basicPFC scheme which is inherently snap-
stabilizing. However, it can be delayedO(h2) steps (where
h is the height of the tree) due to some undesirable local
states. The second algorithm improves the worst delay of
the basicPFC algorithm fromO(h2) to 1 step. ThePFC
scheme can be used to implement the distributed reset, the
distributed infimum computation, and the global synchro-
nizer inO(1) waves (or PIF cycles). Moreover, assuming
that a (local) checking mechanism exists to detect transient
failures or topological changes, thePFC scheme allows
processors to (locally) “detect” if the system is stabilized,
in O(1) waves without using any global metric (such as the
diameter or size of the network).

Finally, we show that the state requirement for both
PFC algorithms matches the exact lower bound of the PIF
algorithms on tree networks—3 states per processor, except
for the root and leaf processors which use only2 states.
Thus, the proposed algorithms are optimal PIF schemes in
terms of the number of states.

Keywords: Fault-tolerance, optimality, PIF, self-
stabilization, snap-stabilization, synchronization.
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1. Introduction

The concept of self-stabilization [11] is the most general
technique to design a system to tolerate arbitrary transient
faults. A self-stabilizing system, regardless of the initial
states of the processors and initial messages in the links,
is guaranteed to converge to the intended behavior in finite
time.

Chang [9] and Segall [16] defined the concept ofPropa-
gation of Information with Feedback(PIF) (also calledwave
propagation). The PIF scheme can be informally described
as follows: A node initiates a wave, called the propagation
wave. Every node, upon receiving this wave, forwards the
wave to its neighbors, except the one it received the wave
from. When a node receives an acknowledgment from all
the neighbors it sent the propagation wave, it sends an ac-
knowledgment, called the feedback wave, to the neighbor
which originally sent it the propagation wave. So, eventu-
ally, the feedback wave reaches the processor which initi-
ated the wave.

Related Work. Many distributed algorithms, e.g., dis-
tributed infimum function computations, synchronizers,
termination detection, are based on a wave propagation
scheme (see [17] for these algorithms). Self-stabilizing
wave propagation protocols have been extensively used in
the area of synchronizers [2, 4, 8, 18]. The counter flush-
ing technique [18] provides a PIF scheme on a tree network.
This scheme takesO(1) waves to stabilize and takes(logn)
extra space to implement the counters, whereh is the height
of the tree. A global self-stabilizing synchronizer for tree
networks is proposed in [2]. The space complexity of the al-
gorithm is4 states (2 bits) and the time complexity isO(h)
waves. It is important to mention the work of Kruijer [13].
The space complexity of this algorithm is also4 states. Al-
though this paper did not discuss the problem of PIF, this
algorithm can also be considered as a solution to the PIF in
tree networks.

The solution proposed in [8] deals with the topology
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changes, i.e., the dynamic systems. Protocols tolerating
topological changes, e.g., [1, 6, 12], assume a local mech-
anism allowing processors to detect that a local topological
change occurred. The ability to locally detect that some-
thing “wrong” happened (topology change, transient fault,
etc.) has also been assumed in [3, 5, 7]. The most general
method to “repair” the system is to reset the entire system
after a transient fault is detected. Reset protocols are also
wave-based algorithms.

Contributions. In this paper, we introduce the notion
of snap-stabilization. Asnap-stabilizing protocolguaran-
tees that the system always maintains the desirable behav-
ior. In other words, a snap-stabilizing algorithm is also a
self-stabilizing algorithm which stabilizes in0 steps. Obvi-
ously, any snap-stabilizing protocol is optimal in terms of
the worst-case stabilization time.

We present a new PIF paradigm for the rooted tree net-
works. We call it thePropagation of information with Feed-
back and Cleaning(PFC) scheme. It uses a key concept,
calledcleaning, introduced by Villain [19, 20]. We propose
an algorithm which implements the basicPFC scheme,
called AlgorithmPFC, without considering the property of
snap-stabilization. Then we show that AlgorithmPFC is
already snap-stabilizing. However, the PIF cycle may start
(in the worst case) afterO(h2) steps, whereh is the height
of the tree. We improve this undesirable delay by presenting
another algorithm, calledfastPFC which reduces the delay
to at most1 step only.

One of the main advantages of the PIF scheme to be
snap-stabilizing is the following: Assume that a (local)
mechanism (as in [1, 3, 5, 6, 7, 12]) exists which allows pro-
cessors to (locally) detect that a transient fault or a topolog-
ical change occurred. With such an assumption, when the
root initiates a round (a PIF cycle) during which no fault or
topological change occurred, the root “detects” at the end
of the round that the system is stabilized. So, using only
the PIF waves, both algorithms presented in this paper al-
low the processors to locally decide whether the system is
stabilized or not inO(1) waves with no knowledge of any
global metric (e.g., the network size or the height). The
above scheme of local detection is applicable to problems
like the distributed reset, the distributed infimum function
computation, and the global synchronizer.

Another parameter to evaluate the efficiency of self-
stabilizing algorithms is thenumber of statesthat each pro-
cessor is required to have. The space requirement for both
algorithms proposed in this paper is only3 states per pro-
cessor (only2 states for the root and leaves). We show that
this state requirement is the minimal state requirement for a
PIF algorithm on a rooted tree.

Thus, bothPFC algorithms stabilize in0 step, and are
state optimal implementation of the PIF scheme.

Outline of the Paper. In Section 2, we describe the dis-
tributed systems and the model we consider in this paper.
In Section 3, we define the problem to be solved in this pa-
per. The twoPFC algorithms are presented in Section 4.
The proof of the space optimality (in terms of the number
of states per processor) is given in Section 5. Finally, we
make some concluding remarks in Section 6.

2. Preliminaries

In this section, we define the distributed systems and pro-
grams considered in this paper, and state what it means for
a protocol to be snap-stabilizing.

System.A distributed systemis an undirected connected
graph,S = (V;E), whereV is a set of nodes (jV j = n) and
E is the set of edges. Nodes representprocessorsand edges
representbidirectional communication links. A communi-
cation link (p; q) exists iff p andq are neighbors. We con-
sider networks which areasynchronousandtree structured.
No processor, except the one, called theroot and denoted by
r, has any identity. We denote the set ofleaf processors by
L and the set ofinternalprocessors byI. We denote the set
of processors in the tree, rooted at processorp, asTp (here-
after, called thetreeTp). Note thatV = frg [ I [ L = Tr.
h(Tp) denotes theheightof the tree rooted atp.

Each processorp maintains its set of neighbors, denoted
asNp. Thedegreeof p is the number of neighbors ofp, i.e.,
equal tojNpj. We assume that each processorp (p 6= r)
knows itsancestor, denoted byAp. We assume thatNp

andAp are constants. In the remainder, we denote the set
of descendantsof any processorp 2 I [ frg by Dp, i.e.,
Dp = Np if p = r andDp = Np n fApg if p 2 I.

Programs. Every processor (except the rootr) with the
same degree executes the same program. This type of pro-
grams is known as asemi-uniform distributed algorithm
[12]. The program consists of a set ofshared variables
(henceforth referred to as variables) and a finite set of ac-
tions. A processor can only write to its own variables and
can only read its own variables and variables owned by the
neighboring processors. So, the variables ofp can be ac-
cessed byp and its neighbors.

Each action is of the following form:< label >:: <
guard > �! < statement >. The guard of an action
in the program ofp is a boolean expression involving the
variables ofp and its neighbors. The statement of an action
of p updates one or more variables ofp. An action can be
executed only if its guard evaluates to true. We assume that
the actions are atomically executed, meaning the evaluation
of a guard and the execution of the corresponding statement
of an action, if executed, are done in one atomic step. The
atomic execution of an action ofp is called astepof p.
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The stateof a processor is defined by the values of its
variables. Thestateof a system is a product of the states of
all processors (2 V ). In the sequel, we refer to the state of
a processor and system as a (local) stateandconfiguration,
respectively. Let a distributed protocolP be a collection
of binary transition relations denoted by7!, on C, the set
of all possible configurations of the system. Acomputation
of a protocolP is a maximalsequence of configurations
e = 
0; 
1; :::; 
i; 
i+1; :::, such that fori � 0; 
i 7! 
i+1

(a singlecomputation step) if 
i+1 exists, or
i is a termi-
nal configuration.Maximality means that the sequence is
either infinite, or it is finite and no action ofP is enabled in
the final configuration. All computations considered in this
paper are assumed to be maximal. The set of computations
of a protocolP in systemS starting with a particular con-
figuration� 2 C is denoted byE�. The set of all possible
computations ofP in systemS is denoted asE .

We assume adistributed daemon, i.e., during a computa-
tion step, one or more processors execute a step and a pro-
cessor may take at most one step. A processorp is said to
be enabledat 
 (
 2 C), if there exists an actionA such
that the guard ofA is true inp at 
. We assume aweakly
fair daemon, meaning that if a processorp is continuously
enabled, p will be eventually chosen by the daemon to exe-
cute an action.

Snap-Stabilization. Let X be a set.x ` P means that
an elementx 2 X satisfies the predicateP defined on the
setX .

Definition 2.1 (Snap-stabilization) The protocol P is
snap-stabilizing for the specificationSPP onE if and only
if the following condition holds:8� 2 C : 8e 2 E� :: e `
SPP .

3. Specification of the Propagation of Informa-
tion With Feedback

Let us quickly review the well-knownPIF scheme[9, 16]
on tree structured networks. The PIF scheme is the rep-
etition of a PIF cycle. The PIF cycle can be informally
defined as follows: Starting from an initial configuration
where no message has been yet broadcast, the root (r) ini-
tiates thebroadcastphase and its descendants (except the
leaf processors) participate in this phase by forwarding the
broadcast message to their descendants. Once the broadcast
phase reaches the leaf processors, since the leaf processors
have no descendants, they notify to their ancestor of the ter-
mination of the broadcast phase by initiating thefeedback
phase. Once every processor, except the root, sent the feed-
back message to its ancestor, the root executes a special in-
ternal action indicating theterminationor completion of the
current PIF cycle.

Based on the above description, we define the PIF cy-
cle in terms ofB-actions, F-actions, and aT-action. B-
actionsandF-actionsrefer to the actions executed during
the broadcastand feedbackphase, respectively. TheT-
action is a special internal action executed by the root to
terminatethe current PIF cycle. We will use the terma
PIF-actionto refer to aB-action, anF-action, or aT-action.

Specification 3.1 (PIF Cycle)A finite computatione 2 E
is called a PIF Cycle, denoted bye ` PIF -cycle, if and
only if the following conditions are true:

[L1] At least one processorp, called an initiator, sends a
message or terminates (or completes) the PIF cycle
(PIF -action).

[L2] If an internal processorp (p 2 I) receives a broadcast
message from its ancestorAp, thenp eventually sends
a broadcast message to all its descendants (B-action).

[L3] If a leaf processorp (p 2 L) receives a broadcast mes-
sage from its ancestorAp, thenp eventually sends a
feedback message toAp (F -action).

[L4] If an internal processorp (p 2 I) receives a feedback
message from at least one of its descendants, thenp

eventually sends a feedback message to its ancestorAp

(F -action).

[L5] If the rootr receives a feedback message from at least
one of its descendants, thenr eventually terminates the
current PIF cycle (T -action).

[S] The rootr cannot terminate the PIF cycle (T -action)
more than once.

Conditions [L1] to [L5] are called thelivenessproper-
ties, and Condition [S] is called thesafetyproperty. Speci-
fication 3.1 is similar to the one proposed in [17].

From Condition [L1], there exists at least one initiator in
a PIF cycle. LetInit be the set of processors that initiate
the PIF cycle. We will call a PIF cycle as anormal PIF
cycle if Init = frg and the first action ofr is a B-action.
The following property follows from Specification 3.1:

Property 3.1 In a normal PIF cycle (i.e.,Init = frg), ev-
ery processorp executes aT -action, anF -action, and a
B-action at most once.

From Property 3.1, it is obvious that once a processor
p executes one of the threePIF -actions, p will not exe-
cute thatPIF -action any more in the same PIF cycle. We
say thatp is B-done, F -done, or T -done to indicate thatp
has executed its corresponding action (B, F , or T , respec-
tively) during the current PIF cycle. The following property
follows from Specification 3.1 and Property 3.1:

Property 3.2 In any configuration of the PIF cycle, one of
the following two conditions is true: (i) The rootr will be
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eventually enabled to execute aPIF -action, and (ii) r is
surrounded by a border of processors, which will be even-
tually enabled to execute a PIF-action, such that every pro-
cessorp betweenr and the enabled processors (including
r) isB-done.

Property 3.2 implies that, starting from any configuration
of a normal PIF cycle, the system may contain several initia-
tors (see Condition [L1] of Specification 3.1) enabled to ex-
ecute either aB-actionor anF-action. TheB-actionsextend
the broadcast phase until the information (message from the
initiators) reaches a leaf processor initiating the feedback
phase. Similarly, theF-actionsextend the feedback phase
until the root terminates the end of the PIF-cycle. Thus,
any suffix of a PIF-cycle is also a PIF-cycle. We state this
property formally in the following property:

Property 3.3 8e ` PIF -cycle; 8e0; e00 : e = e0e00 :: e00 `
PIF -cycle.

Specification 3.2 (PIF Scheme)We define a computation
e starting from a configuration� (e 2 E�) as a PIF scheme,
denoted bye ` SPPIF , if e is an infinite sequence of PIF
cyclese0; e1; : : : (8i � 0 : ei ` PIF -cycle) such that
8i � 1, ei is a normal PIF cycle (i.e.,Init = frg).

Specification 3.2 implies that the only possible
PIF -action following a T -action is a B-action by the
root r. We assume thatr executes theT -action and
B-action in the same computation step, and we refer to this
as anTB-action. Property 3.2 for the PIF cycle can now
be extended to the PIF scheme as follows:

Property 3.4 In any configuration of the PIF scheme,
Property 3.2 is true.

4. Propagation of Information With Feedback
and Cleaning (PFC)

4.1. The Basic Algorithm

Algorithm PFC, an implementation of the PIF scheme
(as defined in Specification 3.2) is shown in Figure 4.1. Ev-
ery processorp maintains a variableSp, called thestate
variable of p. An internal processor (2 I) can have three
different state valuesC, B, or F . The valueC denotes
the initial state of any processor before it participates in the
PIF-cycle. The idea of this new state, called thecleaning
state was introduced by Villain [19]. The state valueB
or F means that the processor has executed itsB-action
or F -action, respectively. An internal processor executes
its B-action (respectively,F -action) by changing its state
variable fromC to B (respectively, fromB to F ). The leaf
processors use onlyF andC, and execute theirF -action by

changing their state fromC to F . The root also uses only
two state values:B andC. The root executes itsTB-action
andC-action by changing its state fromC to B andB to
C, respectively.

Algorithm 4.1 (PFC) PIF in Rooted Tree Networks.
Variable

Si (i 2 I) 2 fB;F;Cg for the internal processors.
Sr 2 fB;Cg for the root.
Sl (l 2 L) 2 fF;Cg for the leaf processors.

Actions
fFor the internal processorsg

IB-action :: Sp = C ^ SAp
= B ^ (8d 2 Dp :: Sd = C)

�! Sp := B;
IF -action :: Sp = B ^ (8d 2 Dp :: Sd = F )

�! Sp := F ;
IC-action :: Sp = F ^ (8q 2 Np :: Sq 2 fF;Cg)

�! Sp := C;
fFor the rootg

rTB-action :: Sp = C ^ (8q 2 Np; Sq = C) �! Sp := B;
rC-action :: Sp = B ^ (8q 2 Np; Sq = F ) �! Sp := C;

fFor the leaf processorsg
LF -action :: Sp = C ^ SAp

= B �! Sp := F

LC-action :: Sp = F ^ SAp
2 fF;Cg �! Sp := C;

According to the PIF cycle specification, the normal
broadcastphase is followed by thefeedbackphase which
is initiated by the leaf processors ([L3] andLF -action).
After initiating thefeedbackphase, in the next step, the leaf
processors can initiate thecleaningphase by changing its
state fromF to C (LC-action). So, the feedback and the
cleaning phase can run concurrently. All we have to make
sure is that thecleaningphase does not meet the broadcast
phase, i.e., the processors in thecleaningphase do not con-
fuse the processors in thebroadcastphase. We implement
this constraint as follows: An internal processor can execute
itsC-action (i.e., changes its state fromF toC) only if all
its neighbors are in thefeedbackor cleaningphase (i.e., in
stateF or C). Thus, as soon as the ancestor of a leaf pro-
cessor executes itsF -action (i.e., changes its state fromB
to F ), the leaf processor can execute itsC-action.

Eventually, thefeedbackphase reaches the descendants
of the root. The root now executes itsrC-action, i.e.,
changes its state fromB to C. The root then waits until
all its descendants are in thecleaningphase. Next, the root
changes its state fromC toB (TB-action). This marks the
end of the current PIF cycle and the start of the next cycle.

Since our solution requires three phases (broadcast,
feedback,andcleaning) in the PIF cycle, we call our method
the Propagation of Information with Feedback and Clean-
ing (PFC) and the corresponding cycle thePFCcycle.

Due to asynchrony in the network, some processors may
be involved in aPFC cycle whereas the others are still exe-
cuting thecleaningphase of the previousPFC-cycle. But,
we need to make sure that these two cycles do not confuse

Authorized licensed use limited to: Universite Picardie Jules Verne. Downloaded on June 02,2023 at 08:34:10 UTC from IEEE Xplore.  Restrictions apply. 



each other. We solve this problem by adding two preven-
tives in the algorithm. (i) A processor is allowed to execute
its C-action only if all its neighbors are in thefeedback
or cleaningphase. As we explained above, it prevents the
cleaningphase to meet thebroadcastphase. (ii) A proces-
sor can execute theB-action only after all its descendants
execute theirC-action (while its ancestor is in thebroad-
castphase). Thus, the processors which are slow to execute
theirC-action, are protected from thebroadcastphase of
the nextPFC cycle.

4.2. Algorithm PFC: A Snap-Stabilizing PIF
Scheme

We claim that AlgorithmPFC is a snap-stabilizing PIF
scheme, i.e., starting from any configuration, it satisfies the
specification of the PIF scheme (Specification 3.2).

Informally, the system is in an “abnormal” configuration
if there exists at least an internal processorp (2 I) such
that Sp = B andSAp

6= B. This local configuration is
called anabnormal local configuration. In such a config-
uration,Ap in not enabled. WhileSp = B, it is easy to
observe (by AlgorithmPFC and by induction on every ab-
normal local configuration inTp) that(i) thePFC cycle in
Tp eventually completes, and(ii) once thePFC cycle in
Tp completes, no abnormal local configuration exists in the
system. So, eventually, the condition8q 2 Dp; Sq = F

becomes true. Then,p will execute theIF -action and the
abnormal local configuration will disappear. Hence, in the
worst case, the abnormal local configuration inp disappears
after a completePFC cycle. This process will be repeated
until all abnormal local configurations disappear.

Now, consider a processorp such that the value ofh(Tp)
is one of the maximum among all processors which are in
an abnormal configuration. Then, every processorq on the
path from the rootr to p hasSq = B. Thus, irrespective of
the initial configuration, every computation satisfies Prop-
erty 3.4. The abnormal configurations can just delay the
initiation of the first PIF cycle. This leads to the following
theorem:

Theorem 4.1 AlgorithmPFC is snap-stabilizing.

It is obvious from the above discussion that the delay to
start the firstPFC cycle depends on how quickly all the ab-
normal local configurations can be removed. The removal
of an abnormal local configuration onp depends on the du-
ration of thePFC cycle rooted atTp. The worst case is
the existence of a path from the root to a leaf node, which
has the following sequence of states:(BC)�C or (BC)�

(� > 1), depending on the length of the path being even or
odd. In this case, every processorp in stateC has to wait
for all its descendants to becomeF , beforep can extend the

broadcast phase from its ancestor to its descendants. Obvi-
ously, in the worst case, the delay isO(h2) steps. Thus, we
can claim the following result:

Theorem 4.2 The delay to start the first PIF cycle using
AlgorithmPFC is bounded byO(h2) steps.

We will now improve AlgorithmPFC to reduce the
above delay to only1 step.

4.3. Fast Snap-Stabilizing AlgorithmPFC

We make two modifications (shown below) in Algo-
rithm PFC to obtain the fast snap-stabilizing PIF algo-
rithm, calledfastPFC. First, we add acorrection action
called ICorrection. When an internal processorp finds
that the relation between its state and that of its ancestor is
not correct, i.e., the system is in an abnormal configuration,
then the internal processor executes ActionICorrection

to correct its state. Second, we modify ActionIF -action
by adding the condition(SAp

= B) to make Actions
IF -action andICorrection mutually exclusive.

IF -action :: Sp = B ^ SAp
= B ^ (8d 2 Dp :: Sd = F )

�! Sp := F ;
ICorrection :: Sp = B ^ SAp

2 fF;Cg �! Sp := C;

Obviously, like AlgorithmPFC, Algorithm fastPFC
also satisfies Property 3.4.

Theorem 4.3 Algorithm fastPFC is snap-stabilizing.

Now, let us consider the worst delay of the firstPFC
wave of AlgorithmfastPFC. Consider an abnormal local
configuration onp, i.e.,SAp

2 fF;Cg andSp = B. Ap is
not enabled because at least one of its descendants (p) is in
stateB. Hence,Ap cannot execute any action whilep does
not change its state. The only wayp can change its state
in the current configuration is by executingICorrection.
Also, the guard ofICorrection does not depend on the
status ofp’s descendants. So, the time to remove the ab-
normal local configurations depends only on the execution
of ICorrection by every processor enabled to execute this
action. It is easy to observe that the concurrent executions
of ICorrection by processors in different branches of the
tree do not affect each other. Thus, we can assume that
all the processors enabled to executeICorrection, execute
ICorrection during the same computation step. Oncep

executesICorrection, Sp becomesC andAp may be en-
abled to execute an action. So, we can claim the following
result:

Theorem 4.4 The delay to start the first PIF cycle using
Algorithm fastPFC is bounded by1 step.
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5. State Optimality

In this section, we will show that both algorithms pro-
posed in this paper are optimal PIF algorithms on a tree
(as defined in Specification 3.2) in the number of states
per processor. We will first consider a special type of tree
networks which have onlyone leaf processor(jLj = 1),
henceforth referred to as a (linear) chain. We can describe
any 2-state algorithm on a chain using a set ofatomic ac-
tions. The atomic actionsare those that cannot be split-
ted into other actions. For every internal processorp, each
atomic action is of the following form:a(b)c ! d, where
a; b; c; d 2 f0; 1g, a, b, andc are the state of the left neigh-
bor of p, the current state ofp, and the state of the right
neighbor ofp, respectively. d is the new value assigned
to the state ofp. Assume that the root and the leaf are
the two extreme end processors, left and right, respectively.
The atomic actions of the root and leaf are(b)c ! d and
a(b)! d, respectively.

Snap-Stabilizing PIF Cycle on a 3-Processor Linear
Chain with 2 States. Algorithm 5.1 (see [19] for details)
is a general PIF scheme for 3-processor chains with 2 states
per processor.a; b; c denote three constants, all of which
2 f0; 1g. For everyx 2 fa; b; cg, �x denotes(x+1)mod 2.
< B > and< F > refer to theB-actionsandF-actionsof
the processors, respectively.

Algorithm 5.1 Two State Snap-Stabilizing PIF Scheme for
3-Processor Chains.
8(a; b; c) 2 f0; 1g3 ::
fFor the rootp1g
R1 :: (a)b! �a < B > R2 :: (�a)�b! a

fFor the internal processorp2g
N1 :: �a(b)c! �b < B > N2 :: a(�b)�c! b < F >

fFor the leaf processorp3g
L1 :: �b(c)! �c < F > L2 :: b(�c) ! c

Note that, since the system has only three processors, any
configuration of the system can be represented ass1s2s3,
where 8i 2 [1; 3], si denotes the state of processorpi
(C = f0; 1g3). Figure 5.1 shows the complete behavior of
Algorithm 5.1. We can easily observe the following result
from Figure 5.1:

Theorem 5.1 8(a; b; c) 2 f0; 1g3 : 8e 2 Eabc :: e `
SPPIF .

Note that every executione, starting from any configu-
ration � 2 C (e 2 E�), satisfiesSPPIF . Hence, Algo-
rithm 5.1 is trivially snap-stabilizing.

We will now show that, assuming a weakly fair central
daemon, Algorithm 5.1 is the “unique” scheme to imple-
ment the PIF scheme on a 3-processor chain using only2
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F
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F
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||R2 L||R1 L1
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N1
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F

2
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Figure 5.1. General 2-state PIF Scheme for a
linear chain with three processors.

states per processor. It isuniquein the sense that any PIF
algorithm written for such a chain is an instantiation of Al-
gorithm 5.1 with a particular set of values forabc.

We useA(3p=2s) to denote the set of 2-state algorithms
on a 3-processor chain. Assuming a central daemon, any
algorithmA 2 A(3p=2s) can be modeled as a subgraph�A
of the transition graphT of all possible configurations, as
shown in Figure 5.2.

abc abc

abc

abcabc

abcabc

abc

Figure 5.2. T : The Transition Graph of a 3-
processor chain using 2 states.

Definition 5.1 An elementary configuration path� is a fi-
nite sequence of configurations
0; 
1; : : : ; 
t (t > 0) such
that (i) 8i 2 [0; t[: 
i 7! 
i+1 and(ii) 8i; j 2 [0; t[: (
i =

j) , (i = j). The length of the elementary path� is
denoted by]� and is equal tot.

Definition 5.2 An elementary configuration cycle� is an
elementary configuration path� = 
0; 
1; : : : ; 
t such that

0 = 
t.

As T is a hypercube of dimension3, we can make the
following remarks:
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Remark 5.1 The maximum length of an elementary config-
uration path� and an elementary configuration cycle� in
T is 8.

Remark 5.2 The length of any configuration cycle� in T

is even.

We refer to an elementary configuration cycle� as
an x-cycle, where x is even and x = ]� (Re-
mark 5.2). For example, in Figure 5.2, the cycles�1 =
abc; �abc; abc, �2 = abc; ab�c; �ab�c; �abc; abc, and �3 =
abc; ab�c; �ab�c; �a�b�c; �a�bc; a�bc; abc are a2-cycle, a4-cycle, and
a6-cycle, respectively.

Remark 5.3 In anx-cycle,x = 2y, y 2 [1; 3], onlyy pro-
cessors execute an action.

LetPIF (3p=2s) be the subset ofA(3p=2s) such that every
executione of A, denoted byeA, satisfiesSPPIF (as de-
fined in Specification 3.2), i.e.8A 2 PIF (3p=2s) :: eA `
SPPIF . The following lemma follows from Remark 5.3
and Specification 3.1:

Lemma 5.1 The length of every PIF cycle� (� ` PIF cy-
cle) is greater than or equal to6.

Lemma 5.2 Consider a configuration� 2 �A A 2
PIF (3p=2s). If � is in a configuration cycle� such that at
least onePIF -action belongs to�, then� is a PIF cycle.

Proof. Assume that� is not a PIF cycle. Since� 2 �A,
there may exist an executioneA of Algorithm A such that
eA = e0�!e00, i.e.,� may be executed at least twice succes-
sively. Thus,eA does not satisfySPPIF which contradicts
A 2 PIF (3p=2s). 2

Lemma 5.3 Every PIF cycle� of �A, A 2 PIF (3p=2s) is
a 6-cycle.

Proof. Assume that the computation stepabc 7!
�abc belongs to�A. So,ab�c 7! �ab�c belongs to�A because
p1 cannot distinguish the configurationsabc andab�c. Since
A 2 PIF (3p=2s), there exists at least one action inp1 to
changea to �a and another action to change�a to a. (Oth-
erwise, at least one computation does not satisfySPPIF

which contradictsA 2 PIF (3p=2s).) Moreover, at least
one of these two actions is theB-action of p1. So, by Lem-
mas 5.1 and 5.2, neither�abc 7! abc nor �ab�c 7! ab�c belongs
to �A. Thus,abc 7! �abc, ab�c 7! �ab�c, �a�bc 7! a�bc, and
�a�b�c 7! a�b�c belong to�A.

We now consider two cases forp3.
1: Assume thatabc 7! ab�c belongs to�A. Then, the four
computation stepsabc 7! ab�c, �abc 7! �ab�c, �a�b�c 7! �a�bc, and
a�b�c 7! a�bc also belong to�A. SinceA 2 PIF (3p=2s), there
exists at least one action inp2 to changeb to �b and another

action to change�b to b. By verifying every possible case of
at least two actions to changeb to �b and�b to b, we find that
every configuration containing an elementary configuration
cycle never contains a8-cycle (i.e., it contains a2-cycle, a
4-cycle, or a6-cycle). By Lemma 5.1, the only possible PIF
cycles are the6-cycles.
2: Assume thatab�c 7! abc belongs to�A. Following the
same reasoning as above leads to the same conclusion.

The above result is true for anyabc 2 f0; 1g3. 2

The following theorem follows from Lemmas 5.1, 5.2,
and 5.3.

Theorem 5.2 Algorithm 5.1 is the unique scheme to imple-
ment a2-state PIF scheme on a 3-processor chain under a
central daemon.

Any distributed daemon can behave like a central dae-
mon by choosing only one enabled processor in each con-
figuration. This leads to the following result:

Theorem 5.3 Algorithm 5.1 is the unique scheme to imple-
ment a2-state PIF scheme on a 3-processor chain under a
distributed daemon.

Minimal Number of Configurations on a Rooted Tree
Network. We first prove that there exists no2-state algo-
rithm to implement the PIF scheme on ann-processor chain
(n > 3). This result then leads to the fact that no such algo-
rithm exists for the rooted trees with a height greater than2
(h(Tr) > 2).

Lemma 5.4 There exists no2-state algorithm to implement
the PIF scheme on ann-processor chain (n > 3).

Proof Outline. Assume that such an algorithm ex-
ists. Since the algorithm works forn processors, it also
works for3 processors. So, for any three adjacent proces-
sorspi�1; pi; pi+1 (i 2 [1; n � 1]), the behavior ofpi is
similar to that ofp2 of a3-processor chainp1; p2; p3. (Oth-
erwise, we could write algorithms other than Algorithm 5.1
on a3-processor chain). So, every internal processor (i.e.,
every processor exceptp1 andpn) executes ActionsN1 and
N2 of Algorithm 5.1. Thus, there are two cases:(i)N1 and
N2 are asymmetric (case wherea 6= c in Algorithm 5.1), or
(ii) N1 andN2 are symmetric (i.e.,a = c). We can show,
by checking all possible cases, that in both cases (i) and (ii),
the system either reaches a deadlock situation (no action is
enabled) or violates the specificationSPPIF . 2

Our final result now trivially follows from Lemma 5.4.

Corollary 5.1 There exists no2-state algorithm to imple-
ment the PIF scheme on a rooted treeTr whereh(Tr) > 2.

Theorem 5.4 Both Algorithm PFC and Algo-
rithm fastPFC are optimal in terms of the number of
states per processor.
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6. Conclusions

The PFC paradigm is a new approach to designing
the PIF scheme. This scheme is optimal in space and
in time. We proposed two algorithms to implement the
PFC scheme. Both are snap-stabilizing, i.e., they are self-
stabilizing and stabilize in0 steps. The proposed algo-
rithms can be used to implement the distributed reset, the
distributed infimum function, and the global synchronizer
in O(1) waves (PIF cycle). Moreover, assuming the use of
a (local) mechanism to detect the transient failures or topo-
logical changes, both algorithms allow processors to (lo-
cally) “detect” if the system is stabilized inO(1) waves,
without any global metric (e.g., the diameter or the size of
the network).

ThePFC scheme uses the cleaning phase strategy in-
troduced by Villain [19, 20]. The cleaning phase strategy
has also been used in [14, 15] to implement a depth-first
token circulation on tree networks. The space optimality
of [14] is proven in [15]. The problem of the minimal state
requirement in general graphs is still open. The best known
solution to this problem was presented in [10].
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