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Abstract 1. Introduction

In this paper, we introduce the notion of snap- The concept of self-stabilization [11] is the most general
stabilization. A snap-stabilizing algorithm protocol guar- technique to design a system to tolerate arbitrary transient
antees that, starting from an arbitrary system configuration, faults. A self-stabilizing system, regardless of the initial
the protocol always behaves according to its specification. states of the processors and initial messages in the links,
So, a shap-stabilizing protocol is a self-stabilizing protocol is guaranteed to converge to the intended behavior in finite
which stabilizes ir) steps. time.

Chang [9] and Segall [16] defined the concepPdipa-
gation of Information with FeedbadlIF) (also calledvave
propagation. The PIF scheme can be informally described
as follows: A node initiates a wave, called the propagation
wave. Every node, upon receiving this wave, forwards the
wave to its neighbors, except the one it received the wave
h is the height of the tree) due to some undesirable local fom- When a node receives an acknowledgment from all
states. The second algorithm improves the worst delay oft'® Neighbors it sent the propagation wave, it sends an ac-
the basicPFC algorithm fromO(h2) to 1 step. ThePFC knowledgment, called the feedback wave, to the neighbor

scheme can be used to implement the distributed reset, th@/hich originally sent it the propagation wave. So, (.aver.mljj
distributed infimum computation, and the global synchro- ally, the feedback wave reaches the processor which initi-

nizer inO(1) waves (or PIF cycles). Moreover, assuming ated the wave.

thgt a (local) checkjng mechanism exists to detect transient  Reajated Work. Many distributed algorithms, e.g., dis-
failures or topological changes, theFC scheme allows  yipyted infimum function computations, synchronizers,
processors to (locally) “detect” if the system is stabilized, termination detection, are based on a wave propagation
in O(1) waves without using any global metric (such as the scheme (see [17] for these algorithms). Self-stabilizing
diameter or size of the network). wave propagation protocols have been extensively used in
Finally, we show that the state requirement for both the area of synchronizers [2, 4, 8, 18]. The counter flush-
PFC algorithms matches the exact lower bound of the PIF ing technique [18] provides a PIF scheme on a tree network.
algorithms on tree networks3-states per processor, except This scheme take3(1) waves to stabilize and takélog )
for the root and leaf processors which use oBlstates. extra space to implement the counters, wtieiethe height
Thus, the proposed algorithms are optimal PIF schemes inof the tree. A global self-stabilizing synchronizer for tree
terms of the number of states. networks is proposed in [2]. The space complexity of the al-
gorithm is4 states £ bits) and the time complexity i©(h)
waves. It is important to mention the work of Kruijer [13].
The space complexity of this algorithm is alsstates. Al-
though this paper did not discuss the problem of PIF, this
algorithm can also be considered as a solution to the PIF in

*Supported in part by a sabbatical leave grant from the University of tree network;. . )
Nevada, Las Vegas. The solution proposed in [8] deals with the topology

We propose a snap-stabilizing Propagation of Informa-
tion with Feedback (PIF) scheme on a rooted tree network.
We call this schemBropagation of information with Feed-
back and Cleanin@P FC). We present two algorithms. The
first one is a basi®®FC scheme which is inherently snap-
stabilizing. However, it can be delayéy h?) steps (where

Keywords:  Fault-tolerance, optimality, PIF, self-
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changes, i.e., the dynamic systems. Protocols tolerating Outline of the Paper. In Section 2, we describe the dis-
topological changes, e.g., [1, 6, 12], assume a local mech+ributed systems and the model we consider in this paper.
anism allowing processors to detect that a local topological In Section 3, we define the problem to be solved in this pa-
change occurred. The ability to locally detect that some- per. The twoP FC algorithms are presented in Section 4.
thing “wrong” happened (topology change, transient fault, The proof of the space optimality (in terms of the number
etc.) has also been assumed in [3, 5, 7]. The most generabf states per processor) is given in Section 5. Finally, we
method to “repair” the system is to reset the entire systemmake some concluding remarks in Section 6.
after a transient fault is detected. Reset protocols are also
wave-based algorithms. o
2. Preliminaries

Contributions. In this paper, we introduce the notion
of snap-stabilization. Asnap-stabilizing protocofjuaran- In this section, we define the distributed systems and pro-
tees that the system always maintains the desirable behavgrams considered in this paper, and state what it means for
ior. In other words, a snap-stabilizing algorithm is also a a protocol to be snap-stabilizing.

self-stabilizing algorithm which stabilizes thsteps. Obvi- o . )

the worst-case stabilization time. graph,S = (V, E), whereV’ is a set of nodeg (| = n) and
We present a new PIF paradigm for the rooted tree net-E is the set of edges. Nodes repregemtessorand edges

works. We call it thePropagation of information with Feed- rep_rese_nbidirectiorjal c_ommunication IinksA communi-
back and CleaningPFC) scheme. It uses a key concept, Cation link(p, ¢) exists iff p andq are neighbors. We con-
calledcleaning introduced by Villain [19, 20]. We propose sider networks which arasynchronousndtree structured
an algorithm which implements the basRC scheme, No processor, except the one, calledrbat and denoted by

called AlgorithmPFC, without considering the property of " has any iden_tity. We denote the sefedf processors by
snap-stabilization. Then we show that AlgorithA#FC is L and the set qhternal processors by. We denote the set
already snap-stabilizing. However, the PIF cycle may start oitprocelslsgrtsh;n th;treeN, rtoottﬁdﬂa/tfroce%?tst (_r]ej[e'
(in the worst case) afted(h?) steps, wheré is the height Z ;r, %a € i t;]eg 'p)ﬁt fotﬁ ta N ?é DIUL =1
of the tree. We improve this undesirable delay by presenting () denotes théeightof the tree rooted at.

another algorithm, callefastP FC which reduces the delay Each processqr maintains its set of neighbors, denoted
to at mostl step only. asN,. Thedegreeof p is the number of neighbors pf i.e.,

One of the main advantages of the PIF scheme to beequal t(.)'Np" We assume that each procespdp # r)
Lo . knows itsancestor denoted by4,. We assume that,
snhap-stabilizing is the following: Assume that a (local) .
. . : , and A, are constants. In the remainder, we denote the set
mechanism (asin[1, 3, 5, 6, 7, 12]) exists which allows pro-

cessors to (locally) detect that a transient fault or a topolog-Of dEsceq;janisf amé proiessop il L.Jf {r} by Dy, i.e.,
ical change occurred. With such an assumption, when ther =Npifp=randD, =N, \ {4, }ifpel
root initiates a round (a PIF cycle) during which no faultor  programs. Every processor (except the rogtwith the
topological change occurred, the root “detects” at the endsgme degree executes the same program. This type of pro-
of the round that the system is stabilized. So, using only grams is known as aemi-uniform distributed algorithm
the PIF waves, both algorithms presented in this paper al-[12]. The program consists of a set sihared variables

low the processors to locally decide whether the system is(henceforth referred to as variables) and a finite set of ac-
stabilized or not inO(1) waves with no knowledge of any  tions. A processor can only write to its own variables and
global metric (e.g., the network size or the height). The can only read its own variables and variables owned by the
above scheme of local detection is applicable to problemspeighhoring processors. So, the variableg @an be ac-

like the distributed reset, the distributed infimum function cessed by and its neighbors.

computation, and the global synchronizer. Each action is of the following form< label >:: <
Another parameter to evaluate the efficiency of self- gyard > o < statement >. The guard of an action
stabilizing algorithms is thaumber of statethat each pro-  in the program ofy is a boolean expression involving the
cessor is required to have. The space requirement for both/ariables ofp and its neighbors. The statement of an action
algorithms proposed in this paper is orlystates per pro-  of » updates one or more variables;of An action can be
cessor (only2 states for the root and leaves). We show that executed only if its guard evaluates to true. We assume that
this state requirement is the minimal state requirement for athe actions are atomically executed, meaning the evaluation

PIF algorithm on a rooted tree. of a guard and the execution of the corresponding statement
Thus, bothP FC algorithms stabilize i) step, and are  of an action, if executed, are done in one atomic step. The
state optimal implementation of the PIF scheme. atomic execution of an action ¢fis called astepof p.
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The stateof a processor is defined by the values of its
variables. Thestateof a system is a product of the states of
all processorsd V). In the sequel, we refer to the state of
a processor and system adacél) stateandconfiguration
respectively. Let a distributed protoc® be a collection
of binary transition relations denoted by, onC, the set
of all possible configurations of the systemcémputation
of a protocolP is a maximalsequence of configurations
€ = Y0, V1y -5 Viy Vitls s such that for > 0,’)/1' = Yi+1
(a singlecomputation stepif ;41 exists, ory; is a termi-
nal configuration. Maximality means that the sequence is
either infinite, or it is finite and no action @t is enabled in
the final configuration. All computations considered in this

paper are assumed to be maximal. The set of computations

of a protocolP in systemS starting with a particular con-
figurationa € C is denoted byt,. The set of all possible
computations of? in systemS is denoted a$.

We assume distributed daemayi.e., during a computa-
tion step, one or more processors execute a step and a pr
cessor may take at most one step. A procegsgsrsaid to
be enabledaty (v € C), if there exists an actior such
that the guard ofd is true inp aty. We assume aveakly
fair daemon, meaning that if a procesgas continuously
enabled, p will be eventually chosen by the daemon to exe-
cute an action.

Snap-Stabilization. Let X’ be a set.x - P means that
an elementr € X satisfies the predicate defined on the
setX.

Definition 2.1 (Snap-stabilization) The protocol P is
snap-stabilizing for the specificatiagPp on £ if and only
if the following condition holdsVa € C :Ve € &, el
SPp.

3. Specification of the Propagation of Informa-
tion With Feedback

Let us quickly review the well-knowRIF schemg9, 16]
on tree structured networks. The PIF scheme is the rep
etition of aPIF cycle The PIF cycle can be informally
defined as follows: Starting from an initial configuration
where no message has been yet broadcast, theroioi

tiates thebroadcastphase and its descendants (except the

2

Based on the above description, we define the PIF cy-
cle in terms ofB-actions F-actions and aT-action B-
actionsand F-actionsrefer to the actions executed during
the broadcastand feedbackphase, respectively. Th&
action is a special internal action executed by the root to
terminatethe current PIF cycle. We will use the teran
PIF-actionto refer to aB-action anF-action, or aT-action

Specification 3.1 (PIF Cycle)A finite computatiore € £
is called a PIF Cycle, denoted byt PIF-cycle, if and
only if the following conditions are true:

[L1] At least one processqf, called an initiator, sends a
message or terminates (or completes) the PIF cycle
(PIF-action).

If an internal processop (p € I) receives a broadcast
message from its ancestdr,, thenp eventually sends

a broadcast message to all its descendaBtsi(tion).

If a leaf processop (p € L) receives a broadcast mes-
sage from its ancestad,,, thenp eventually sends a
feedback message #y, (F-action).

If an internal processop (p € I) receives a feedback
message from at least one of its descendants, phen
eventually sends a feedback message to its ancdgtor
(F-action).

If the rootr receives a feedback message from at least
one of its descendants, theeventually terminates the
current PIF cycle T-action).

The rootr cannot terminate the PIF cycld¢action)
more than once.

[L2]

[L4]

[LS]

[S]

Conditions [L1] to [L5] are called thévenessproper-
ties, and Condition [S] is called tteafetyproperty. Speci-
fication 3.1 is similar to the one proposed in [17].

From Condition [L1], there exists at least one initiator in
a PIF cycle. Let/nit be the set of processors that initiate
the PIF cycle. We will call a PIF cycle asreormal PIF
cycleif Init = {r} and the first action of is aB-action
The following property follows from Specification 3.1:

"Property 3.1 In a normal PIF cycle (i.e.Jnit = {r}), ev-
ery processop executes &-action, an F-action, and a
B-action at most once.

From Property 3.1, it is obvious that once a processor

leaf processors) participate in this phase by forwarding they; executes one of the threRl F-actions, p will not exe-
broadcast message to their descendants. Once the broadcasite thatPI F-action any more in the same PIF cycle. We
phase reaches the leaf processors, since the leaf processosay thatp is B-done, F-done, or T-done to indicate thap
have no descendants, they notify to their ancestor of the terhas executed its corresponding actidh ¢, or T', respec-

mination of the broadcast phase by initiating thedback

tively) during the current PIF cycle. The following property

phase. Once every processor, except the root, sent the feedollows from Specification 3.1 and Property 3.1:

back message to its ancestor, the root executes a special i
ternal action indicating theerminationor completion of the
current PIF cycle.

n_
Property 3.2 In any configuration of the PIF cycle, one of
the following two conditions is true: (i) The roetwill be
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eventually enabled to executeld F-action, and (i) r is changing their state fror@' to F'. The root also uses only
surrounded by a border of processors, which will be even- two state valuesB andC'. The root executes it B-action
tually enabled to execute a PIF-action, such that every pro- and C-action by changing its state fror@' to B and B to
cessorp between- and the enabled processors (including C, respectively.

r) is B-done.

Algorithm 4.1 (PFC) PIF in Rooted Tree Networks.
Property 3.2 implies that, starting from any configuration \zrizpie

of anormal PIF cycle, the system may contain several initia- Si (i € I) € {B, F,C} for the internal processors.
tors (see Condition [L1] of Specification 3.1) enabled to ex- S, € {B, C} for the root.

ecute either 8-actionor anF-action TheB-actionsextend Si (I € L) € {F, C} for the leaf processors.

the broadcast phase until the information (message from theActions

initiators) reaches a leaf processor initiating the feedback
phase. Similarly, thé-actionsextend the feedback phase

{For the internal processorg
IB-action :: S, =CANSa, =BA(Nd € D,:: Sq=C)

. . — Sp == B;
until the_ root terminates _the end of the PIF-cycle. Thu_s, I F-action - Sp=BA(Nd€D,: Sqg=F)
any suffix of a PIF-cycle is also a PIF-cycle. We state this .8 .= p

. . P~ )

property formally in the following property: IC-action :: S,=FA(Nge N, S, € {F,C})

— Sp =

Property 3.3 Ve - PIF-cycle, Ve',e" : e = €'’ 1 e {For the root}

PIF-cycle. rT'B-action :: S, = C A (Vg € Np,Sq =C) — Sp := B;

L i . rC-action :: S, = BA (Vg € Np, Sq =F) — S, :=C}

Specification 3.2 (PIF Scheme)Ve define a computation {For the leaf processor$

e starting from a configuration (e € &£,) as a PIF scheme, LF-action :: Sp=CNASa,=B—5,:=F

denoted by - SPp;F, if e is an infinite sequence of PIF LC-action :: Sp=FASa, €{F,C} — S, :=C;

cycleseg,er,... (Vi > 0 : ¢; = PIF-cycle) such that

Vi > 1, ¢; is a normal PIF cycle (i.e.fnit = {r}). According to the PIF cycle specification, the normal

broadcastphase is followed by théeedbackphase which

is initiated by the leaf processors ([L3] add:-action).
After initiating thefeedbaclkphase, in the next step, the leaf
processors can initiate trdeaningphase by changing its
state fromF’ to C' (LC-action). So, the feedback and the
cleaning phase can run concurrently. All we have to make
sure is that theleaningphase does not meet the broadcast
Property 3.4 In any configuration of the PIF scheme, Phase,i.e. the processors in teaningphase do not con-
Property 3.2 is true. fu_se the processors in tthxeoa_dcasqohase. We implement
this constraint as follows: An internal processor can execute
its C-action (i.e., changes its state frofito C') only if all

its neighbors are in thieedbaclor cleaningphase (i.e., in

Specification 3.2 implies that the only possible
PIF-action following a T-action is a B-action by the
root . We assume that executes thel-action and
B-action in the same computation step, and we refer to this
as anT B-action. Property 3.2 for the PIF cycle can now
be extended to the PIF scheme as follows:

4. Propagation of Information With Feedback

and Cleaning (PFC) stateF" or (). Thus, as soon as the ancestor of a leaf pro-
_ _ cessor executes ifS-action (i.e., changes its state from
4.1. The Basic Algorithm to F), the leaf processor can executeGtsuction.

Eventually, thefeedbackphase reaches the descendants
Algorithm PFC, an implementation of the PIF scheme of the root. The root now executes it€-action, i.e.,

(as defined in Specification 3.2) is shown in Figure 4.1. Ev- changes its state from3 to C. The root then waits until
ery processop maintains a variables,, called thestate all its descendants are in tokeaningphase. Next, the root
variable of p. An internal processorg I) can have three  changes its state froi to B (7' B-action). This marks the
different state value¢’, B, or F'. The valueC denotes  end of the current PIF cycle and the start of the next cycle.
theinitial state of any processor before it participates inthe  Since our solution requires three phasésoédcast,
PIF-cycle. The idea of this new state, called theaning feedbackandcleaning in the PIF cycle, we call our method
state was introduced by Villain [19]. The state valBe  the Propagation of Information with Feedback and Clean-
or F' means that the processor has execute®sction ing (PFC) and the corresponding cycle tieFCcycle
or F-action, respectively. An internal processor executes  Due to asynchrony in the network, some processors may
its B-action (respectivelyF'-action) by changing its state  be involved in @ FC cycle whereas the others are still exe-
variable fromC to B (respectively, fromB to F'). The leaf cuting thecleaningphase of the previouBFC-cycle. But,
processors use onky andC, and execute theif-action by we need to make sure that these two cycles do not confuse
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each other. We solve this problem by adding two preven- broadcast phase from its ancestor to its descendants. Obvi-
tives in the algorithm. (i) A processor is allowed to execute ously, in the worst case, the delay@$h?) steps. Thus, we
its C-action only if all its neighbors are in théeedback  can claim the following result:
or cleaningphase. As we explained above, it prevents the
cleaningphase to meet thiegroadcastphase. (ii) A proces- Theorem 4.2 The delay to start the first PIF cycle using
sor can execute thB-action only after all its descendants  AlgorithmP.FC is bounded by) (h?) steps.
execute theilC-action (while its ancestor is in thbroad-
castphase). Thus, the processors which are slow to execute We will now improve AlgorithmPFC to reduce the
their C-action, are protected from thbroadcastphase of  above delay to only step.
the nextPFC cycle.
4.3. Fast Snap-Stabilizing AlgorithmP FC
4.2. Algorithm PFC: A Snap-Stabilizing PIF
Scheme We make two modifications (shown below) in Algo-
rithm PFC to obtain the fast snap-stabilizing PIF algo-
We claim that AlgorithnPFC is a snap-stabilizing PIF  rithm, calledfastPFC. First, we add &orrection action
scheme, i.e., starting from any configuration, it satisfies the called ICorrection. When an internal processprfinds
specification of the PIF scheme (Specification 3.2). that the relation between its state and that of its ancestor is
Informally, the system is in arebnormat configuration not correct, i.e., the system is in an abnormal configuration,
if there exists at least an internal procesgde I) such then the internal processor executes Acti@orrection
thatS, = B andS4, # B. This local configuration is to correct its state. Second, we modify Actidf-action

called anabnormal local configuration In such a config- by adding the condition(S4, = B) to make Actions
uration, A, in not enabled. While5, = B, it is easy to IF-action andICorrection mutually exclusive.

observe (by Algorithn? FC and by induction on every ab- [F-action - S, = BASa, =BA(Vd€ D, Sq=F)
normal local configuration ifi},) that (i) the PFC cycle in 5 S, = F;
T, eventually completes, andi) once thePFC cycle in ICorrection :: Sp=BASa, €{F,C}— 8, :=C;
T, completes, no abnormal local configuration exists in the

system. So, eventually, the conditidy € D,,S, = F Obviously, like AlgorithmPFC, Algorithm fastPFC

becomes true. Themp,will execute thel F-action and the also satisfies Property 3.4.

abnormal local configuration will disappear. Hence, in the

worst case, the abnormal local configuratiom tisappears ~ Theorem 4.3 AlgorithmfastP FC is snap-stabilizing.

after a completé® FC cycle. This process will be repeated

until all abnormal local configurations disappear. Now, let us consider the worst delay of the fifg8FC
Now, consider a processpisuch that the value @f(7},) wave of AlgorithmfastPFC. Consider an abnormal local

is one of the maximum among all processors which are in configuration orp, i.e.,S4, € {F,C} andS, = B. A, is

an abnormal configuration. Then, every procegson the not enabled because at least one of its descendaritsif

path from the root to p hasS, = B. Thus, irrespective of ~ stateB. Hence,4, cannot execute any action whijedoes

the initial configuration, every computation satisfies Prop- not change its state. The only waycan change its state

erty 3.4. The abnormal configurations can just delay the in the current configuration is by executidg’'orrection.

initiation of the first PIF cycle. This leads to the following Also, the guard ofl Correction does not depend on the

theorem: status ofp’s descendants. So, the time to remove the ab-
normal local configurations depends only on the execution
Theorem 4.1 Algorithm PFC is snap-stabilizing. of ICorrection by every processor enabled to execute this

action. It is easy to observe that the concurrent executions

It is obvious from the above discussion that the delay to of ICorrection by processors in different branches of the
start the firstP FC cycle depends on how quickly all the ab- tree do not affect each other. Thus, we can assume that
normal local configurations can be removed. The removal all the processors enabled to execlt@rrection, execute
of an abnormal local configuration grdepends on the du-  [Correction during the same computation step. Once
ration of thePFC cycle rooted aff,. The worst case is ~ executes Correction, S, becomes’ and A, may be en-
the existence of a path from the root to a leaf node, which abled to execute an action. So, we can claim the following
has the following sequence of statd&3C')*C' or (BC)* result:
(o« > 1), depending on the length of the path being even or
odd. In this case, every procesgoin stateC' has to wait Theorem 4.4 The delay to start the first PIF cycle using
for all its descendants to becorfie beforep can extend the ~ AlgorithmfastPFC is bounded by step.
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5. State Optimality

In this section, we will show that both algorithms pro-
posed in this paper are optimal PIF algorithms on a tree
(as defined in Specification 3.2) in the number of states
per processor. We will first consider a special type of tree
networks which have onlgne leaf processof|L| = 1),
henceforth referred to as bBinar) chain We can describe
any 2-state algorithm on a chain using a setavémic ac-
tions. The atomic actionsare those that cannot be split-
ted into other actions. For every internal procegsaach
atomic action is of the following formu(b)c — d, where
a,b,c,d € {0,1}, a, b, andc are the state of the left neigh-
bor of p, the current state of, and the state of the right
neighbor ofp, respectively. d is the new value assigned
to the state ofp. Assume that the root and the leaf are

the two extreme end processors, left and right, respectively.

The atomic actions of the root and leaf dfg¢c — d and
a(b) — d, respectively.

Snap-Stabilizing PIF Cycle on a 3-Processor Linear
Chain with 2 States. Algorithm 5.1 (see [19] for details)

is a general PIF scheme for 3-processor chains with 2 state
per processora, b, ¢ denote three constants, all of which
€ {0,1}. Foreveryz € {a,b, c}, T denotegz + 1) mod 2.

< B > and< F > refer to theB-actionsandF-actionsof

the processors, respectively.

Algorithm 5.1 Two State Snap-Stabilizing PIF Scheme for
3-Processor Chains.
Y(a,b,c) € {0,1} =

{For the rootp; }

Ri:(a)b—a < B> Ry (@) —a

{For the internal processom- }

Ny a(b)e—=b < B> a(b)e —b < F >
{For the leaf processops }

Liblc)»¢c <F> Ly ::b(e) —c

Note that, since the system has only three processors, any

configuration of the system can be represented;asss,
whereVi € [L,3], s; denotes the state of processgr
(C = {0,1}?). Figure 5.1 shows the complete behavior of
Algorithm 5.1. We can easily observe the following result
from Figure 5.1:

Theorem 5.1V(a,b,c) € {0,1}3
SPprF.

Ve € Egpe 2 €

Note that every executios, starting from any configu-
rationa € C (e € &,), satisfiesSPprr. Hence, Algo-
rithm 5.1 is trivially snap-stabilizing.

We will now show that, assuming a weakly fair central
daemon, Algorithm 5.1 is the “unique” scheme to imple-
ment the PIF scheme on a 3-processor chain using dnly

abc RllL:| B, 1 RIL,|F 3

NP

abc—» abc

Figure 5.1. General 2-state PIF Scheme for a
linear chain with three processors.

states per processor. Itimiquein the sense that any PIF
algorithm written for such a chain is an instantiation of Al-
gorithm 5.1 with a particular set of values fac.

We useA s, 2, to denote the set of 2-state algorithms
on a 3-processor chain. Assuming a central daemon, any
algorithm A € A(s,/25) can be modeled as a subgraph
of the transition grapi” of all possible configurations, as

Zhown in Figure 5.2.

abc

2

/abc

abc

Figure 5.2. T: The Transition Graph of a 3-
processor chain using 2 states.

Definition 5.1 An elementary configuration paghis a fi-
nite sequence of configurations, 71, ..., v: (t > 0) such
that (i) Vi € [0,t[: v; = vit1 @and(ii) Vi, j € [0,t]: (v; =
v;) < (i = j). The length of the elementary pathis
denoted byip and is equal to.

Definition 5.2 An elementary configuration cycte is an
elementary configuration path= ~q,v1, - - ., 7: such that

Yo = Vt-

As T is a hypercube of dimensiddy we can make the
following remarks:
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Remark 5.1 The maximum length of an elementary config-
uration pathp and an elementary configuration cyciein
Tis8.

Remark 5.2 The length of any configuration cyckein T'
is even.

We refer to an elementary configuration cycleas
an z-cycle, wherex is even andzx fo (Re-
mark 5.2). For example, in Figure 5.2, the cycles =
abc, abe, abe, oo abe, abe, abe, abe, abe, and o3

a6-cycle, respectively.

Remark 5.3 In anz-cycle,z = 2y, y € [1, 3], only y pro-
cessors execute an action.

Let PZF 3,)2s) be the subsetofl 5, /2,) such that every
executione of A, denoted by 4, satisfiesSPp;r (as de-
fined in Specification 3.2), i.eVA € PIF (3,/25) : €4 -
SPprr. The following lemma follows from Remark 5.3
and Specification 3.1.:

Lemma 5.1 The length of every PIF cycle (o - PIF cy-
cle) is greater than or equal t6.

Lemma 5.2 Consider a configurationrn € 74 A €
PLF (3p/25)- If ais in a configuration cycle such that at
least onePI F-action belongs tar, theno is a PIF cycle.

Proof. Assume that is not a PIF cycle. Since € 74,
there may exist an executian, of Algorithm A such that
ea = €'o¥e’, i.e.,o may be executed at least twice succes-
sively. Thuse 4 does not satishtP p;  which contradicts
Ae PIf(g,p/zs). a

Lemma 5.3 Every PIF cycler of 74, A € PLF (3,/24) IS
a6-cycle.

Proof. Assume that the computation stepc —
abc belongs tors. So,abc — abc belongs tor, because
p1 cannot distinguish the configurationdc andabe. Since
A € PLF (3p)24), there exists at least one actionyin to
changea to @ and another action to changeto a. (Oth-
erwise, at least one computation does not sati&B/p;
which contradictsA € PZF 3,/25).) Moreover, at least
one of these two actions is thi&-action of p;. So, by Lem-
mas 5.1 and 5.2, neith@bc — abc norabé — abc belongs
to 74. Thus,abe — abe, abé — a@bé, abe — abe, and
abe — abe belong tory.

We now consider two cases fos.

1. Assume thatibc — abc belongs tor,. Then, the four
computation stepsbc — abé, abc — abé, abé — abe, and
abt — abc also belong toy. SinceA € PLF (3,)25), there
exists at least one action jn to change to b and another

action to changé to b. By verifying every possible case of
at least two actions to changeo b andb to b, we find that
every configuration containing an elementary configuration
cycle never contains &cycle (i.e., it contains a-cycle, a
4-cycle, or a6-cycle). By Lemma 5.1, the only possible PIF
cycles are thé-cycles.
2. Assume thatib¢ — abc belongs tor,. Following the
same reasoning as above leads to the same conclusion.
The above result is true for ampc € {0, 1}3. O

The following theorem follows from Lemmas 5.1, 5.2,
and 5.3.

Theorem 5.2 Algorithm 5.1 is the unique scheme to imple-
ment a2-state PIF scheme on a 3-processor chain under a
central daemon.

Any distributed daemon can behave like a central dae-
mon by choosing only one enabled processor in each con-
figuration. This leads to the following result:

Theorem 5.3 Algorithm 5.1 is the unigue scheme to imple-
ment a2-state PIF scheme on a 3-processor chain under a
distributed daemon.

Minimal Number of Configurations on a Rooted Tree
Network. We first prove that there exists Restate algo-
rithm to implement the PIF scheme onsaprocessor chain

(n > 3). This result then leads to the fact that no such algo-
rithm exists for the rooted trees with a height greater than
(h(Ty) > 2).

Lemma 5.4 There exists n@-state algorithm to implement
the PIF scheme on am-processor chaim{ > 3).

Proof Outline. Assume that such an algorithm ex-
ists. Since the algorithm works for processors, it also
works for 3 processors. So, for any three adjacent proces-
Sorsp;—1,pi, pit1 (i € [1,n <1]), the behavior ofp; is
similar to that ofp, of a 3-processor chaipy, p2, p3. (Oth-
erwise, we could write algorithms other than Algorithm 5.1
on a3-processor chain). So, every internal processor (i.e.,
every processor except andp,,) executes ActiongV1 and
N2 of Algorithm 5.1. Thus, there are two cas¢s: N1 and
N2 are asymmetric (case whetre# ¢ in Algorithm 5.1), or
(it) N1 and N2 are symmetric (i.eq = ¢). We can show,
by checking all possible cases, that in both cases (i) and (ii),
the system either reaches a deadlock situation (no action is
enabled) or violates the specificati6® prp. ]

Our final result now trivially follows from Lemma 5.4.

Corollary 5.1 There exists n@-state algorithm to imple-
ment the PIF scheme on a rooted ttBewhereh(7}.) > 2.

Theorem 5.4 Both  Algorithm PFC and  Algo-
rithm fastPFC are optimal in terms of the number of
states per processor.
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6. Conclusions
The PFC paradigm is a new approach to designing 9]
the PIF scheme. This scheme is optimal in space and
in time. We proposed two algorithms to implement the [10
‘PFC scheme. Both are snap-stabilizing, i.e., they are self-
stabilizing and stabilize i) steps. The proposed algo-
rithms can be used to implement the distributed reset, the
distributed infimum function, and the global synchronizer

in O(1) waves (PIF cycle). Moreover, assuming the use of [11]
a (local) mechanism to detect the transient failures or topo-
logical changes, both algorithms allow processors to (lo-
cally) “detect” if the system is stabilized i®(1) waves,
without any global metric (e.qg., the diameter or the size of
the network).

The PFC scheme uses the cleaning phase strategy in-
troduced by Villain [19, 20]. The cleaning phase strategy
has also been used in [14, 15] to implement a depth-first [14]
token circulation on tree networks. The space optimality
of [14] is proven in [15]. The problem of the minimal state
requirement in general graphs is still open. The best known
solution to this problem was presented in [10].
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